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Abstract: The recently developed machine learning (ML) models have the ability
to obtain high detection rate using biomedical signals. Therefore, this article
develops an Optimal Sparse Autoencoder based Sleep Stage Classification Model
on Electroencephalography (EEG) Biomedical Signals, named OSAE-SSCEEG
technique. The major intention of the OSAE-SSCEEG technique is to find the
sleep stage disorders using the EEG biomedical signals. The OSAE-SSCEEG
technique primarily undergoes preprocessing using min-max data normalization
approach. Moreover, the classification of sleep stages takes place using the Sparse
Autoencoder with Smoothed Regularization (SAE-SR) with softmax (SM)
approach. Finally, the parameter optimization of the SAE-SR technique is carried
out by the use of Coyote Optimization Algorithm (COA) and it leads to boosted
classification efficiency. In order to ensure the enhanced performance of the
OSAE-SSCEEG technique, a wide ranging simulation analysis is performed
and the obtained results demonstrate the betterment of the OSAE-SSCEEG tech-
nique over the recent methods.

Keywords: Biomedical signals; EEG; sleep stage classification; machine learning;
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1 Introduction

Sleep, a natural physiological behaviour, is an integral part of our day to day lives, it plays a significant
role in peoples’ health, cognition, and emotion, as well as has an impact on physiological and physical
recovery [1]. Consequently, the efficient monitoring of sleep has gained considerable interest among the
researchers that is the basis of treatment and diagnosis of sleep disorders [2]. The Sleep Stage
Classification (SSC) system is the diagnosis of different sleeping stages by utilizing polysomnographic
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(PSG) that contains thirty second sleep duration as an epoch. Furthermore, every stage can give a certain
application by using distinct classification processes [3]. By categorizing the rapid eye movement (REM)
and non-rapid eye movement (NREM) stages, we could perform the REM-based sleep disease diagnoses.
Sleep EEG signal is one of the effective and reliable methods, it comprises large number of data
associated with mental states, age, and gender. Therefore, different approaches were analyzed for
Electroencephalography (EEG) based SSC systems [4].

Generally, in conventional method for Automatic Sleep Stage Classification (ASSC), three special
operations were made, classification, preprocessing, and feature extraction. The initial phase involves
transforming, modifying, and cleaning the raw information as to understandable format for feature
extraction [5]. In the second phase, the transformation of the primary data as to group of data with a
limited amount of variables, and the classifier search for discovering an ideal mapping of the class label
from the input feature [6]. Various approaches have been widely employed for extracting features from
the signals. Generally, this feature is determined by previous knowledge of experts and is separated into
i) frequency domain features ii) non-linear features, and ii) time-domain features. The efficacy is heavily
based on data pre-processing and feature engineering. As well, because of the heterogeneity of the
patterns amongst the subjects, this approach has generalized weakly for the information from other
subjects [7]. The alternative method to resolve the abovementioned problems is deep learning (DL)
technique that leads to great achievement in several domains. It finds its own pattern in information.
Hence, it might be more generalizable [8].

This article develops an Optimal Sparse Autoencoder based Sleep Stage Classification Model on EEG
Biomedical Signals, named OSAE-SSCEEG technique. The OSAE-SSCEEG technique primarily undergoes
preprocessing using min-max data normalization approach. Moreover, the classification of sleep stages takes
place using the Sparse Autoencoder with Smoothed Regularization (SAE-SR) with softmax (SM) approach.
Finally, the parameter optimization of the SAE-SR technique is carried out by the use of Coyote Optimization
Algorithm (COA) and it leads to boosted classification efficiency. In order to ensure the enhanced
performance of the OSAE-SSCEEG technique, a wide ranging simulation analysis is performed on
benchmark dataset.

The rest of the paper is organized as given here. Section 2 provides related works, section 3 elaborates
the proposed model, Section 4 offers the result analysis, and Section 5 concludes the work.

2 Literature Review

An et al. [9] examined the EEG signals classifier issue and present a novel unsupervised multi-
subepochs feature learning and hierarchical classifier technique to ASSC. Initial, it can be separate the
EEG epoch as to several signal subepochs, and all subepochs were mapped to amplitude as well as time
axis correspondingly for obtaining 2 types of features data with amplitude–time dynamic features.
Afterward, the statistical classifier features were removed in the mapped feature data.

Eldele et al. [10] presented a new adversarial learning framework for tackling the field shift issue under
the unlabeled target field. Primary, it can be established unshared attentions process for preserving the
domain-specific features from the source and target domains. Secondary, it can be proposal an iterative
self-trained approach for aligning the fine-grained class distribution to source and target fields using target
region pseudo label. In [11], a deep multilayer perceptron neural network (MLPNN) has been established
for classifying sleep-wake state utilizing multi-channel bipolar EEG signal that gets an input vector of
size 108 involving the combined features of 9 channels. The network avoids some post-modelling stage
for working as complete-fledged real time applications.
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An et al. [12] devised an effectual multi-model fusion technique by utilizing hybrid-channel EEG signal
that has 2 parts: the recognition of combined step of S1 as well as REM sleeps and the classifier amongst
these 2 steps. Primary, it can be identified S1 as well as REM sleeps with characteristic the combined
step in another sleep phases utilizing centered support vector machine (C-SVM) method and single-
channel EEG signal. For overcoming the control due to class imbalances, a one-class OC-SVM technique
of combined phase was recognized for correcting S1 as well as REM sleeps in the misclassified negative
instances.

An et al. [13] studied the EEG signal classifier issue and present the multi-subbands and multi-
subepochs time series feature learning (MMTSFL) technique to ASSC. Especially, MMTSFL primary
decomposes several subbands with distinct frequency in raw EEG signal and partition the attained
subbands as to several succeeding subepochs, and afterward utilizes time series feature learning for
obtaining effectual discriminant features. Gurrala et al. [14] organized the sleep stage as way for
allowing/helping physicians for coming across sleep problems. Let us consider the single EEG before
multiple or multi-channel signals assume by previous works. Therefore, it can name our technique as
single channel-SSC (SC-SSC). During this manner, it can be regarded time region as well as frequency
domain features and the experimental machine learning (ML) technique called support vector machine
(SVM) that outcomes superior implements to previous techniques.

3 The Proposed Sleep Stage Classification Model

In this study, a new OSAE-SSCEEG technique has been developed to effectually find sleep stage
disorders using the EEG biomedical signals. The OSAE-SSCEEG technique involves several
subprocesses namely min-max data normalization, SAE-SR based classification, and COA based
parameter optimization. The parameter optimization of the SAE-SR technique is carried out by the use of
COA and it leads to boosted classification efficiency.

3.1 Data Pre-Processing

At first, the pre-processing phase is executed for the transformation of non-conventional data set into
conventional data set for enhancing the performance of the presented model [15]. The Neural network
(NN) training becomes more efficient on the achievement of some pre-processing stages on the network
targets and inputs. This method rescales the feature or output in one range of values to novel range of
values. Generally, the feature is rescaled to be in the interval of zero to one or from -l to 1. It can be
expressed as follows

y0 ¼ ðymax � yminÞ � ðxi � xminÞ
ðxmax � xminÞ þ xmin (1)

In which (ymax − ymin) = 0; when (xmax − xmin) = 0 for a feature, it indicates a constant rate to that features
in the data. When a value of feature was identified by a continuous value in the data, it shouldn't be concerned
since it doesn't transport any data to NN system. When the min-max normalization was performed, all the
features would lie in the novel range of values that remain unchanged.

3.2 Design of SAE-SR Based Classification Model

In SAE-SR technique, it can be providing a labeled m amount of input feature vectors are
fðxð1Þl ; yð1ÞÞ; ðxð2Þl ; yð2ÞÞ; . . . ; ðxðmÞl ; yðmÞÞg. Where input feature is xðiÞl 2 Rn (where “l” refers the
label recorded), yi∈ { + 1, − 1} are bibelsy classifier labels or yi∈ {1, 2, 3, …, C} are multi classifabeled
label. It considers that xð1Þu ; xð2Þu ; xð3Þu ; . . . ; xðmÞu 2 Rn are unlabeled instances created by distinct labels in
the trained set. For obtaining an appropriate illustration as well as minimum dimensionality trained set,
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xð1Þl ; xð2Þl ; xð3Þl ; . . . ; xðmÞl 2 Rn; it can be fed unlabeled trained instances xð1Þu ; xð2Þu ; xð3Þu ; . . . ; xðmÞu 2 Rn to
present SAE technique. It could be utilized for recreating and learning the trained input data set. Fig. 1
illustrates the SAE structure.

Then learning the optimum values of W and b with executing SAE on unlabeled data xu. It is
regenerating as well as learning their resultant values ðx̂ð1Þu ; x̂ð2Þu ; x̂ð3Þu ; x̂ð4Þu Þ that equivalent to their input
instances ðxð1Þu ; xð2Þu ; xð3Þu ; . . . ; xðmÞu Þ. It can be drive novel and minimum dimension representations
fðhð1Þu ; yð1ÞÞ; ðhð2Þu ; yð2ÞÞ; ðhð3Þu ; yð3ÞÞ; . . . ; ðhðmÞu ; yðmÞÞ. An original input instances restoredure
equivalent reduction activation h. The procedure of feature removal and decrease of dimensional contains
2 stages [16]. The encoded method maps the input data xj as to the hidden unit illustration.

Z ¼ hðWX þ bÞ (2)

X̂ ¼ gðW 0zþ b0Þ (3)

During the above calculations, maximum dimension input data has = (x1, x2, x3, …, xm), the reform
vector of input data has X̂ ¼ ðx̂1; x̂2; x̂3; . . . x̂mÞ and minimum dimension vector outcome in the hidden
layer Z = (h1, h2, h3, …, hk). In the beyond design, g and h refers the activation function of hidden layer
neuron and resultant layer neuron correspondingly. W and W′ are the weight matrices end b and b′ implies
the bias vectors of encoding as well as decoding correspondingly. The reform error function E amongst
the input x and recreated input x̂ utilizes following function.

E ¼ 1

N

XN
i¼1

xj þ x020i (4)

The smoothed l1 regularized contained from ML. The l1 regularization is non-differentiable and their
outcomes are effort of optimization. The infimal convolutional of 1st and 2nd order entire difference as the
regularized terms from penalization maximal probability reconstruction. The application of novel
techniques provided as:

Figure 1: SAE architecture
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guðtÞ ¼
t2

2l
; if jtj � l

jtj � l
2
; otherwise

8><
>: (5)

between μ > 0 is a hyperparameter that controls the resemblances amongst l1 and smoothed l1 regularized. If
μ = 0, it develops as l1 regularized. The SAE executes back propagation (BP) for diminishing the cost
function that is projected under the subsequent in Eq. (6):

JsparseðW ; bÞ ¼ 1

N

XN
i¼1

1

2
khW ;bðxiÞ � x̂ik2

" #
þ k
2

(6)

Xnl�1

l¼1

Xs1
i¼1

Xslþ1

¼1

ðW ðlÞ
_ji
Þ2 þ b

Xn
_j¼1

SðtjÞ (7)

In Eq. (5), S(.) refers the function that induces sparsity. The average outcome of jth hidden unit is tj.

tj ¼ 1

m

Xm
i¼1

aðiÞ_j (8)

aðiÞ_j in Eq. (6) implies the jth hidden unit outcome of ith input is utilized smoothed l1 regularized rather
than typically utilized Kullback–Leibler (KL) divergence under the above sparsity functions. But it can be
select the activation function rectified linear unit (ReLU).

f ðxÞ ¼ max ð0; xÞ (9)

aðiÞ_j only accept values in zero to one. In other words, the average activations tj of hidden unit j on the
whole trained set is range amongst zero and one, the state of t > 0 requires that assumed. The sparsity
constraint is executed in SAE, individuals are controlling the hidden layer neuron. The sparsity constraint
was changed the error condition with more penalty terms for reflecting deviation in wanted sparsity and
afterward, it execute BP including the sparsity penalty. A superior level of sparsity inclines for capturing
further helpful features. At the final layer of the SAE-SR method, the SM classifier is used.

The SM layer [17] is applied to forecast the label possibility of input data xi with utilizing the features
learned in 3rd hidden layer representation hð3Þi . The amount of nodes existing from SM layer has been selected
as corresponding to the number label. During this technique, the SM layer consists of 5 nodes equivalent for
grading groups in [1–5]. Although classifiers namely SVM are also utilized, softmax logistic regression
permits for optimizing the entire deep network by fine-tuning the network composed with softmax layer.

JSSAE�SMCðW ; b; x; ẑÞ ¼ min
W ;b

Jðx; ẑÞ þ ksmckWsmck22 (10)

where W and b refers the weight as well as bias of entire deep network, collected of SAE-SR and the SM
layer, Jðx; ẑÞ refers the logistic regression (LR) cost amongst the classifier attained with input feature x
and the unsupervised outcome ẑ of SAE-SR and Wsmc refers the weight and λsmc denotes the weight
decay parameter on SM layer. On execution fine-tune, the weight as well as bias of SM layer and SAE-
SR are optimizing together, and the SM layer is utilized to classifier. Assume yj signifies the label of
trained instance xj. Probability of xj goes to the kth class has expressed as:

Pðyi ¼ kjxi; Wsmc; bsmcÞ ¼ eW
ðkÞT
smc xiþbðkÞsmc0PN

j¼1 e
W ðjÞT

smc xi þ bðjÞsmc
(11)
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where W ðkÞ
smc and bðkÞsmc implies the distribution of weight as well as bias from the kth class. N represents the

entire amount of classes that equivalents to 5 grade sets. According to maximum probability, it calculates
the grade set of instance xi utilizing the formula:

Grade ðxiÞ ¼ arg max
k¼1...N

ðyi ¼ kjxi; Wsmc; bsmcÞ (12)

3.3 Design of COA Based Parameter Tuning

For optimally adjusting the parameters involved in the SAE-SR model, the COA is utilized. The
population in COA has separated to equivalent amount of coyotes per pack. All coyote places are assumed
that feasible solutions and their social conditions (the group of decision variables) signify the main purpose.
At the primary, this technique begins with arbitrarily allocated coyotes’ place utilizing the subsequent formula.

Xi ¼ lbi þ ri � ðubi � lbÞ (13)

where ubi and lbi refers the upper as well as lower bounds, ri signifies the arbitrary number amongst zero and
one and Xi refers the place of coyote of i

th dimensional. In COA, the amount of coyotes per pack are restricted to
14. It can promise the exploration ability of technique. An optimum coyote was determined as optimum one
modified to environment. Specifically, it can be one with minimal cost function to minimize issue and the one
with maximal cost function to maximize issue. During the COA, the coyotes were structured to contribute to the
pack keep and for sharing the social condition. The social tendency of pack was calculated utilizing the
subsequent formula. Fig. 2 demonstrates the flowchart of COA.

Yp;t
i ¼

Cp;t
Ncþ1
2

; Nc is odd

Cp;t
Nc
2 þ1ð Þ;i
2

; Otherwise

8><
>: (14)

Figure 2: Flowchart of COA
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where Nc refers the amount of coyotes, Yp;t
i signifies the social tendency of pth pack from tth time and C implies

the coyotes’ arranged social condition. According to the birth and death (an essential 2 biological event of life),
the birth of a novel coyote was calculated dependent upon the subsequent:

Bp;t
i ¼

Xp;t
r1;i; rj � Prs þ Pra or i ¼ i1

Xp;t
r2;i; ri ,Prs or i ¼ i2

Ri; Otherwise

8<
: (15)

where i1 and i2 denotes the 2 arbitrary dimensional, r1 and r2 implies the 2 coyotes arbitrarily chosen in
pth pack, ri denotes the arbitrary number created from range zero and one, Pra indicates the connection
probabilities and Prs stands for the scatter probabilities. Pra and Prs refers the computed as:

Prs ¼ 1

D
(16)

Pra ¼ 1� Prs
2

(17)

During all the iterations, every cth coyote from the pth pack upgrades their social conditions utilizing the
subsequent formula [18]:

X p;tþ1
c ¼ X p;t

c þ r1� r1 þ r2� r2; Fp;tþ1
c ,Fp;t

c
X p;t
c ; Otherwise

�
(18)

where σ1 and σ2 defines the alpha and pack influence correspondingly. It can be determined as:

r1 ¼ alphap;t � X p;t
r1 (19)

r2 ¼ Yp;t � X p;t
r2 (20)

where alphap,t refers the alpha coyotes. Fp;t
c demonstrates the social condition costs (main purpose). It can be

computed as:

Fp;tþ1
c ¼ f ðX p;t

c Þ (21)

At last, an optimum coyote was chosen dependent upon the social condition costs as optimum result
attained of this issue.

4 Experimental Validation

The performance validation of the OSAE-SSCEEG technique takes place using two benchmark datasets
namely Sleep-EDF-2013 and Sleep-EDF-2018 datasets. They contain a set of sample EEG recordings under
five class labels. Tab. 1 and Fig. 3 provide a detailed classification result analysis of the OSAE-SSCEEG
technique on the test Sleep-EDF-2013 dataset. The results demonstrated that the OSAE-SSCEEG
technique has effectually identified all sleep stages. For instance, the OSAE-SSCEEG technique has
classified the instances into ‘W’ class with the PREN, RECL, ACCY, and FSCORE of 0.987, 0.9827, 0.9898,
and 0.9848 respectively. Furthermore, the OSAE-SSCEEG method has classified the instances into
‘REM’ class with the PREN, RECL, ACCY, and FSCORE of 0.9547, 0.94, 0.9862, and 0.9473 correspondingly.

Fig. 4 showcases the ROC analysis of the OSAE-SSCEEG approach on Sleep-EDF-2013 Dataset. The
figure outperformed that the OSAE-SSCEEG system has attained improved outcomes with the minimal ROC
of 97.9295.
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Table 1: Result analysis of OSAE-SSCEEG technique on sleep-EDF-2013 dataset

Classes Precision Recall Accuracy F-Score

W 0.987 0.9827 0.9898 0.9848

N1 0.9072 0.9212 0.9808 0.9142

N2 0.9726 0.9826 0.984 0.9776

N3 0.9267 0.9008 0.9887 0.9136

REM 0.9547 0.94 0.9862 0.9473

Average 0.9496 0.9455 0.9859 0.9475

Figure 3: Result analysis of OSAE-SSCEEG technique on sleep-EDF-2013 dataset

Figure 4: ROC analysis of OSAE-SSCEEG technique on sleep-EDF-2013 dataset
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Tab. 2 and Fig. 5 offer a detailed classification outcome analysis of the OSAE-SSCEEG approach on the
test Sleep-EDF-2018 dataset. The results exhibited that the OSAE-SSCEEG method has effectively
identified all sleep stages. For instance, the OSAE-SSCEEG technique has classified the instances into
‘W’ class with the PREN, RECL, ACCY, and FSCORE of 0.9723, 0.9571, 0.9867, and
0.9647 correspondingly. Furthermore, the OSAE-SSCEEG algorithm has classified the instances into
‘REM’ class with the PREN, RECL, ACCY, and FSCORE of 0.9595, 0.9475, 0.9830, and
0.9534 correspondingly.

Fig. 6 portrays the ROC analysis of the OSAE-SSCEEG system on Sleep-EDF-2018 Dataset. The figure
stated that the OSAE-SSCEEG algorithm has obtained improved outcomes with the minimum ROC of
99.9137.

A comparative classification result analysis of the OSAE-SSCEEG technique with the existing ASS with
temporal convolutional neural network (ASSC-TCNN) technique on the test sleep-EDF-2013 dataset is
shown in Tab. 3. The experimental results exhibited that the OSAE-SSCEEG technique has gained
improved outcomes over the ASSC-TCNN technique. For instance, under W class, the OSAE-SSCEEG
technique has obtained increased PREN, RECL, and FSCORE of 0.9870, 0.9827, and 0.9848 whereas the
ASSC-TCNN technique has attained reduced PREN, RECL, and FSCORE of 0.9150, 0.9340, and
0.9240 respectively. Besides, under REM class, the OSAE-SSCEEG approach has gained higher PREN,

Table 2: Result analysis of OSAE-SSCEEG technique on sleep-EDF-2018 Dataset

Methods Precision Recall Accuracy F-Score

W 0.9723 0.9571 0.9867 0.9647

N1 0.8004 0.878 0.9772 0.8374

N2 0.9911 0.9582 0.9786 0.9743

N3 0.8701 0.9521 0.9742 0.9092

REM 0.9595 0.9475 0.9830 0.9534

Average 0.9187 0.9386 0.9799 0.9278

Figure 5: Result analysis of OSAE-SSCEEG technique on sleep-EDF-2018 dataset
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RECL, and FSCORE of 0.9547, 0.9400, and 0.9473 but the ASSC-TCNN algorithm has obtained lower PREN,
RECL, and FSCORE of 0.8080, 0.8230, and 0.8160 correspondingly.

A comparative classification outcome analysis of the OSAE-SSCEEG algorithm with the present ASSC-
TCNN approach on the test sleep-EDF-20138 dataset is illustrated in Tab. 4. The experimental outcomes
displayed that the OSAE-SSCEEG methodology has attained increased outcomes over the ASSC-TCNN
algorithm. For instance, under W class, the OSAE-SSCEEG approach has obtained increased PREN,
RECL, and FSCORE of 0.9723, 0.9571, and 0.9647 whereas the ASSC-TCNN system has attained reduced
PREN, RECL, and FSCORE of 0.9230, 0.8880, and 0.9050 correspondingly. In addition, under REM class,
the OSAE-SSCEEG technique has achieved improved PREN, RECL, and FSCORE of 0.9595, 0.9475, and
0.9534 whereas the ASSC-TCNN methodology has attained decreased PREN, RECL, and FSCORE of
0.8010, 0.8960, and 0.8460 correspondingly.

Table 3: Comparative analysis of OSAE-SSCEEG technique on sleep-EDF-2013 dataset

Measures Classes W N1 N2 N3 REM

Precision ASSC-TCNN 0.9150 0.5290 0.8360 0.7390 0.8080

OSAE-SSCEEG 0.9870 0.9072 0.9726 0.9267 0.9547

Recall ASSC-TCNN 0.9340 0.4410 0.8570 0.7390 0.8230

OSAE-SSCEEG 0.9827 0.9212 0.9826 0.9008 0.9400

F-Score ASSC-TCNN 0.9240 0.4810 0.8460 0.7380 0.8160

OSAE-SSCEEG 0.9848 0.9142 0.9776 0.9136 0.9473

Figure 6: ROC analysis of OSAE-SSCEEG technique on sleep-EDF-2018 dataset
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For showcasing the enhanced performance outcome of the OSAE-SSCEEG technique, a comparative
ACCY analysis is made in Tab. 5 and Fig. 7. The figure reported that the CNN-ASSS0SC and ASSS-TFA
techniques have obtained lower ACCY values of 78.90% and 74.80% respectively. Eventually, the ASSS-
SSDL, ASSS-RSC, and ASSC-TCNN techniques have demonstrated moderate ACCY values of 84.26%,
82%, and 82.46% respectively. However, the OSAE-SSCEEG technique has gained maximum
performance with ACCY of 98.59%. Therefore, it is concluded that the OSAE-SSCEEG technique has
accomplished effective sleep stage classification performance.

Table 4: Comparative analysis of OSAE-SSCEEG technique on sleep-EDF-2018 dataset

Measures Classes W N1 N2 N3 REM

Precision ASSC-TCNN 0.9230 0.5500 0.8780 0.8670 0.8010

OSAE-SSCEEG 0.9723 0.8004 0.9911 0.8701 0.9595

Recall ASSC-TCNN 0.8880 0.4050 0.8890 0.8550 0.8960

OSAE-SSCEEG 0.9571 0.8780 0.9582 0.9521 0.9475

F-Score ASSC-TCNN 0.9050 0.4660 0.8840 0.8610 0.8460

OSAE-SSCEEG 0.9647 0.8374 0.9743 0.9092 0.9534

Table 5: Accuracy analysis of OSAE-SSCEEG technique with existing approaches

Methods Accuracy (%)

ASSS-SSDL 84.26

ASSS-RSC 82.00

CNN-ASSS-SC 78.90

ASSS-TFA 74.80

ASSC-TCNN 82.46

OSAE-SSCEEG 98.59

Figure 7: Accuracy analysis of OSAE-SSCEEG technique with existing approaches
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5 Conclusion

In this study, a new OSAE-SSCEEG technique has been developed to effectually find sleep stage
disorders using the EEG biomedical signals. The OSAE-SSCEEG technique involves several
subprocesses namely min-max data normalization, SAE-SR based classification, and COA based
parameter optimization. The parameter optimization of the SAE-SR technique is carried out by the use of
COA and it leads to boosted classification efficiency. In order to ensure the enhanced performance of the
OSAE-SSCEEG technique, a wide ranging simulation analysis is performed and the obtained results
demonstrate the betterment of the OSAE-SSCEEG technique over the recent methods. Therefore, the
OSAE-SSCEEG technique has the ability to accomplish improved sleep stage classification performance.
In future, hybrid DL models can be included to enhance the efficiency of the OSAE-SSCEEG technique.
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