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Abstract: A cyber physical energy system (CPES) involves a combination of pro-
cessing, network, and physical processes. The smart grid plays a vital role in the
CPES model where information technology (IT) can be related to the physical
system. At the same time, the machine learning (ML) models find useful for the
smart grids integrated into the CPES for effective decision making. Also, the
smart grids using ML and deep learning (DL) models are anticipated to lessen
the requirement of placing many power plants for electricity utilization. In this
aspect, this study designs optimal multi-head attention based bidirectional long
short term memory (OMHA-MBLSTM) technique for smart grid stability predic-
tion in CPES. The proposed OMHA-MBLSTM technique involves three subpro-
cesses such as pre-processing, prediction, and hyperparameter optimization. The
OMHA-MBLSTM technique employs min-max normalization as a pre-proces-
sing step. Besides, the MBLSTM model is applied for the prediction of stability
level of the smart grids in CPES. At the same time, the moth swarm algorithm
(MHA) is utilized for optimally modifying the hyperparameters involved in the
MBLSTM model. To ensure the enhanced outcomes of the OMHA-MBLSTM
technique, a series of simulations were carried out and the results are inspected
under several aspects. The experimental results pointed out the better outcomes
of the OMHA-MBLSTM technique over the recent models.

Keywords: Stability prediction; smart grid; cyber physical energy systems; deep
learning; data analytics; moth swarm algorithm

1 Introduction

In recent years, Digitalization and Automation have become significant topics in the energy sector, as
modern energy system increasingly relies on information and communication technologies (ICT) to
integrate smart controls with hardware framework [1]. In this regard, applications such as smart buildings
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and smart grids have pioneered the interweaving of software and hardware mechanisms, working on distinct
spatial and temporal scales and frequently across the boundary of conventional engineering domain. With the
development of cyber–physical systems (CPS) as a transdisciplinary field, this modern energy system could
be categorized as cyber–physical energy systems (CPES), incorporating the development and related
research within a larger context. A significant factor of the development and research associated with
CPS is to connect the gap between the computer science and traditional engineering domains [2].
Especially, it applies CPES, where the interrelated engineering domain has reliable methods to design
complex and large models. But, with the emergence of renewable and distributed resources and the
incorporation of energy systems across the conventional boundaries of engineering domain, these proven
methodologies are required extension and are being challenged. The integration of ubiquitous amounts of
data and the inclusion of intelligent control strategies that are facilitated by the concept of CPES is
predicted to be a significant facilitator for the predicted transformation of the energy systems [3–5]. Fig. 1
shows the structure of CPS system [6].

There has been comprehensive study on the grid network for the distribution of power over different
locations efficiently. One of these methods is the smart grid that employs ICT for aggregating data
concerning the behavior of consumers to generate a context-aware scheme that could allocate the energy
efficiently. Smart grids utilizing Artificial Intelligence (AI) technique are predicted for reducing the
requirement to deploy additional power stations for electrical energy consumption. Also, the Smart grid
uses renewable resources to be plugged securely into the grid system to appendage the source of
electricity. The cyber-physical smart grids have experienced substantial damage on transformers, power
lines, amongst others; also, cyber-attack and cyberespionage have been reported in real-life incidents.
Such difficulties have driven the researches in defense and cyber-physical attack of the smart grids from
control, information, power, and several more security-related researches, which leads to unified cyber-
physical security perspectives. Smart grids, that could forecast energy consumption is essential need. This

Figure 1: Overview of CPS systems
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could be achieved with the applications of Machine Learning (ML) algorithm [7–9] on the generated data
from the grid system. Smart grids could assist in making the electricity price much cheaper and reducing
pollution [10].

Wei et al. [11] presented a DL-based cyber-physical scheme to mitigate and identify the data corruption
in the problem of preserving the transient stability of Wide Area Monitoring Systems (WAMS). The
presented method executes the DL method for analyzing the real-world data measurement from the
geographically distributed Phasor Measurement Unit (PMU) and leverages the physical coherence in the
electrical energy system to detect and probe the corruption of information. In [12], a NN system-based
fault detection method is employed to track and detect fault data injection attacks on the cooperative
adaptive cruise control system of a platoon of interconnected vehicles in real time. A DSS method has
been proposed for reducing the severity and probability of subsequent accidents.

In [13], many advanced ML methods like, SVM, KNN, LR, NB, NN, and DT classifiers, were installed
to predict the SG stability. The SG data set utilized in this work is open-source data gathered from UC Irvine
(UCI) ML source. Jafari et al. [14] proposed a new stability state forecaster based cascaded FFNN method.
The presented strategy focuses on identifying anomalies as a result of physical or cyber disruptions as an
earlier indication of instability. The presented method uses cascaded connection for increasing the
predictive accuracy. The Polak-Ribiére formula and conjugate gradient backpropagation are exploited for
training procedures. In [15], ML based edge computation could identify the seriousness of the warning,
detect the network region of interest and ignite the performance of the transient condition perdition. The
transient state prediction forecasts the incoming failure in real time when the timing window permits
potential protective actuation.

Haija et al. [16] proposed a novel wide-ranging detection method that applies ML framework to classify
stability records in smart grid systems. Especially, seven ML frameworks are examined, involving DT,
optimized SVM, NB, LR, KNN, LDC, and ensemble boosted classifiers (EBC). Singh et al. [17]
introduced a methodology and architecture to develop a cyber-physical anomaly detection system
(CPADS) that employs synchrophasor properties and measurements of networking packets for detecting
communication failure attacks and data integrity on control signals and measurement in CRAS. The
presented model employs a rules-based model for selecting appropriate input feature, employs decision
tree (DT) algorithms and variational mode decomposition (VMD) for developing various classification
system, and perform event detection with rules-based decision logic.

This study designs optimal multi-head attention based bidirectional long short term memory (OMHA-
MBLSTM) technique for smart grid stability prediction in CPES. The proposed OMHA-MBLSTM
technique involves three subprocesses such as min-max normalization based pre-processing, prediction,
and hyperparameter optimization. Moreover, the MBLSTM model is applied for the prediction of stability
level of the smart grids in CPES. Furthermore, moth swarm algorithm (MHA) is utilized for optimally
modifying the hyperparameters involved in the MBLSTM model. For ensuring the improved performance
of the OMHA-MBLSTM technique, a series of simulations were carried out and the results are inspected
under several aspects.

2 The Proposed Model

In this study, an effective OMHA-MBLSTM technique has been developed to predict the stability level
of the smart grids in the CPES environment. The proposed OMHA-MBLSTM technique involves three
subprocesses (as shown in Fig. 2) as min-max normalization based pre-processing, MBLSTM based
prediction, and MHA based hyperparameter optimization. The design of MHA helps to appropriately
elect the hyperparameters and it leads to enhanced predictive outcomes.
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Figure 2: Working process of OMHA-MBLSTM technique

2.1 Pre-processing

First, the electricity grid dataset from different power generating units is aggregated. The dataset is then
normalized using min-max normalization. During this process, the minimum and maximum values of the
data are obtained and replaced by using Eq. (1).

�L ¼ l �minðX Þ
maxðX Þ �minðX Þ ðnewminðX Þ � newmaxðX ÞÞ þ newminðX Þ (1)

where X denotes the parameter that exists in the data, min(X) and max(X) represents the lower and upper
levels of the attribute values, �L represents the upgraded values of entries, l implies the earlier value in the
data and newminðX Þ and newmaxðX Þ indicates the value of minimum and maximum limits correspondingly.

2.2 Prediction Using MBLSTM Model

Next to the pre-processing stage, theMBLSTMmodel is utilized to perform the stability prediction process
[18]. The RNN is a distinct structure of NN in MLP. In RNN splits weight and is particularly appropriate to
domain of order analysis like language translation as well as semantic understanding. The hidden layer Ht

at time step t is not only based on the existing input as in preceding hidden layer that is estimated as:

Ht ¼ f ðXtW þ Ht�1U þ aÞ (2)

where f refers to the activation function and α signifies the bias. The output Ot at the time step t has
calculated as:

Ot ¼ gðHtS þ bÞ (3)

where g stands for the activation function and β is a bias. To lengthy series, it is a vital issue with RNN, for
instance, vanishing gradients. Amongst every solution to vanishing gradients, the LSTM is most optimum.
The LSTM has candidate memory cell and 3 gates: output, forget, and input gates. The forget gate Ft, input
gate It, and output gate Pt at time step t are calculated correspondingly as:

Ft ¼ rðXtWx;f þ Ht�1Wh;f þ bf Þ (4)

It ¼ rðXtWx;i þ Ht�1Wh;i þ biÞ (5)

Pt ¼ rðXtWx;0 þ Ht�1Wh;0 þ boÞ (6)

where Wχ,f and Wh,f denotes the weights of LSTM in input-forget gate and in hidden layer to forget gate
correspondingly. Wx,i and Wh,i refers to the association weights under the input-input gate and the hidden
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layer to the input gate correspondingly. Wx,0 and Wh,0 signifies the connect weights under the input-output
gates and the hidden layer to the output gate correspondingly. bf, bi, and bo signifies the bias of
forgetting, input, as well as output gates correspondingly. σ represents the activation function. The
candidate memory cell has estimated as:

�C ¼ tanh ðXtWx;c þ Ht�1Wh;c þ bcÞ (7)

where Wx,c and Wh,c defines the weight of LSTM under input to candidate memory and the hidden layer to
candidate memory correspondingly, and bc refers to the bias. The memory cell at time step t has measured as:

Ct ¼ Ft � Ct�1 þ It � �C (8)

where ⊗ determined as element-wise multiplication. The hidden layer is upgraded as:

Ht ¼ It � tanh ðCtÞ (9)

The preceding RNN has forwarded. The output at time step t is only based on prior input and hidden
layer. Moreover, the output can be useful to last input as well as hidden layer. The forward hidden layer
at time step t has evaluated as:

Hf
t ¼ rðXtW

f
x;h þ Hf

t�1W
f
h;h þ bfhÞ (10)

but the backward hidden layer gas measured as:

Hb
t ¼ rðXtW

b
x;h þ Hb

tþ1W
b
h;h þ bbhÞ (11)

The output at time step t is calculated as:

Ot ¼ ½Hf
t ; Hb

t �Wh;0 þ bo (12)

Attention is process to enhance the outcome of RNN based techniques, and the computation of attention
has mostly separated into 3 stages. A 1st stage is for utilizing the attention function F for scoring query as
well as key to obtaining si. The 2 most common attention functions were additive attention as well as dot-
product attention [19]; during this case, it can utilize the former. The 2nd stage is to utilize softmax function
for normalizing the score outcome si, for obtaining the weight ai. The 3rd stage is for calculating attention
that is weighted average of every value as well as weight ai. The Multi-head attention is enhanced by the
standard attention process, thus all heads are removed the feature of query and key from various
subspaces. Specifically, these features derive in Q and K that are projections of query as well as key from
the subspaces. The operation was implemented when all heads and entire of h times required that carried
out. It can be stated that under the multi-head attention method, the attention function is scaled dot-
product function that is similar to the classical attention process, apart from regulating scaling factor.
During the experiment, h requires that always debugged for determining the most useful value to tasks.
Eventually, the outcomes that were returned from all heads were concatenated and linearly changed to
attain multi-head attention. At last, it can be sent the vector in the preceding layer to densely connected
layer. It can be utilized ReLu function as activation function for completing the non-linear conversion.
Finally the densely connected layer, it is execute softmax operation on the output of preceding layer, and
lastly attains classification outcomes.

2.3 Hyperparameter Tuning Using MHA

To enhance the predictive outcomes of the MBLSTM model, the MHA is employed. The nighttime
performance of moths is simulated to MHA has established in [20]. During this technique, the
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exploration and exploitation balance examine a separation of candidate solutions developing the populations.
As if other meta-heuristics, it can be initialized a population:

xij ¼ rand � ðuj � ljÞ þ lj; 8i 2 f; 2; ng; j 2 f; 2; dg (13)

where u and l refers the upper as well as lower limits of search space, xi indicates the candidate solution, n
denotes the population size, d stands for the problem dimensional, and rand implies the arbitrary value taken
in uniform distribution. For generating the pathfinders crossover it can be essential for calculating the
dispersal degree and variation coefficient at iteration t:

rtj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

np

Xnp

i¼1
ðxtij � Pt

jÞ2
s

Pt
j

(14)

lt ¼ 1

d

Xd
j¼1

rtj (15)

where np represents the amount of pathfinders, and

Pt
j ¼

1

np

Xnp
i¼1

xiij (16)

During the MHA crossover points were individuals with minimal dispersal values dependent upon:

j 2 cp if rtj � lt (17)

After that only nc∈ cp crossover point was employed for generating novel sub-trial pathfinder vectors
vp
!¼ ½vp1; vp2; . . . ; vpnc � under the novel pathfinder vp!¼ ½vp1; vp2; . . . ; vpnc � as follows:

vtp
!¼! xtr1 þ Ltp1 � ð xtr2

�!� xtr3
�!Þ þ Ltp2 � ð xtr4

�!� xtr5
�!Þ

8r1 6¼ r2 6¼ r3 6¼ r4 6¼ r5 6¼ p 2 f1; 2; . . . ; npg (18)

where Lpl and Lp2 implies the independent variable calculated in the Lévy α-stable distribution. The group of
indexes r suppose that only chosen in the pathfinder solution, and individuals places were upgraded utilizing
the mutated variable removed in the sub-trail vector based on subsequent formula:

V t
pj ¼

vrpj if j 2 cp

xtpj if j =2 cp

(
(19)

Lastly, the MHA executes a chosen approach among the trial as well as original pathfinders determined
as:

xtþ1
p

��! ¼ xtp
!
i if f ð V t

p

�!Þ � f ðxtp
!Þ

vtp
!

otherwise

8<
: (20)

The probability of choosing the following pathfinder was determined as:

pp ¼ fitpPnp
p¼1 fitp

(21)
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That utilizes the luminescence intensity computed as subsequent formula:

fitp ¼
1

1þ fp
if fp � 0

1þ jfpj otherwise

8<
: (22)

In the pathfinder, nf those were chosen as prospectors; this number is dynamically changed as under
the subsequent formula:

nf ¼ round ðn� npÞ � 1� t

T

� �� �
(23)

With T being the maximal iteration number. For simulating prospector moth moving from spiral manner
nearby pathfinder (their natural counterpart), the MHA utilizes the subsequent determined:

xtþ1
i ¼ jxti � xtpj � eh � cos2phþ xtp

8p 2 f1; 2; . . . ; npg; i 2 fnp þ 1; np þ 2; . . . ; nf g (24)

where h 2 ½r; 1� signifies the arbitrary number employed for giving the spiral procedure to prospector path,
but r = −1 − t/T⋅

The onlooker is a moth with minimum luminescent intensity moving near the shiniest source of light;
during the MHA, the onlooker's stage was employed for intensifying the exploitation of promissory spots of
search spaces. The onlooker group is more separated based on 2 movement rules: Gaussian walks, and
associative learning process with immediate memory. At the beginning, the onlooker in the actual
iteration was attained as:

xtþ1
i ¼ xti þ e1 þ ½e2 � besttg � e3 � xti�; 8i 2 f; 2; � � � ; nog (25)

where ɛ2 and ɛ3 defines the uniformly distributed arbitrary numbers, bestg refers the global optimum
candidate solutions, no = round(nu/2) represents the amount of onlookers which executes a Gaussian
movement, nu stands for the amount of onlookers, and ɛ1 signifies the normal arbitrary number computed as:

e1 	 randomðsizeðdÞÞ 
 NðbesttÞðxti � besttgÞÞ (26)

The performance of moths regarding associative learning as well as short-term memory is upgraded
based on:

xtþ1
i ¼ xti þ 0:001 � Gþ 1� g

G

� �
� e2 � ðbesdp � xtiÞ þ

2g

G

� �
� e3 � ðbesttp � xtiÞ; 8i 2 f1; 2; . . . ; nmg (27)

with nm = nu − no being the amount of onlookers which executes associative learning and short-term memory,
1 − g/G refers to the cognitive factor, 2g/G signifies the social issue, bestp signifies the optimum light source
under the pathfinder group and G 	 Nðxti � xmini ; xmaxi � xtiÞ.

3 Performance Validation

This section examines the predictive outcome of the OMHA-MBLSTM technique over the other
techniques. Tab. 1 provides a brief results analysis of the OMHA-MBLSTM technique with recent
methods under training and testing processes. Fig. 3 investigates the comparative training accuracy and
testing accuracy of the OMHA-MBLSTM technique. The results show that the RNN model has
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showcased poor outcomes with lower training accuracy and testing accuracy. Followed by, the GRU and
LSTM models have obtained slightly improved training accuracy and testing accuracy. In line with, the
MLSTM and MHA-BLSTM models have accomplished near optimal training accuracy and testing
accuracy. However, the OMHA-MBLSTM technique has outperformed the other DL models with the
increased training accuracy and testing accuracy of 0.9967 and 0.9971 respectively.

Fig. 4 examines the comparative training loss and testing loss of the OMHA-MBLSTM technique. The
figure reported that the RNN model has demonstrated worse performance poor with the maximum training
loss and testing loss. At the same time, the GRU and LSTM models have tried to attain certainly reduced
training loss and testing loss. Meanwhile, the MLSTM and MHA-BLSTM models have resulted in
moderately reduced training loss and testing loss. However, the OMHA-MBLSTM technique has
surpassed the other DL models with the least training loss and testing loss of 0.0120 and 0.0107 respectively.

Fig. 5 illustrates the ROC analysis of the MHA-MBLSTMmodel for the stability prediction of the smart
grid. The results revealed that the MHA-MBLSTM technique can accomplish improved stability prediction
outcomes with the increased ROC of 99.9221.

Fig. 6 exemplifies the ROC analysis of the OMHA-MBLSTM model for the stability prediction of the
smart grid. The results discovered that the OMHA-MBLSTM technique has demonstrated better stability
prediction outcomes with the maximum ROC of 99.9958. Tab. 2 offers a brief comparative result analysis
[21] of the OMHA-MBLSTM technique. The results reported that the OMHA-MBLSTM technique has

Table 1: Results Analysis of OMHA-MBLSTM technique

Methods Training accuracy Training loss Testing accuracy Testing loss

GRU Model 0.9717 0.0600 0.9730 0.0600

RNN Model 0.9666 0.0800 0.9660 0.0800

LSTM Model 0.9730 0.0600 0.9713 0.0600

MLSTM Model 0.9907 0.0200 0.9907 0.0200

MHA-MBLSTM 0.9952 0.0150 0.9962 0.0110

OMHA-MBLSTM 0.9967 0.0120 0.9971 0.0107

Figure 3: Training and testing accuracy analysis of OMHA-MBLSTM technique
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showcased enhanced outcomes over the other methods. For instance, the OMHA-MBLSTM technique has
identified the instances into Stable class with the precn, recl, and F1score of 0.9823, 1.0000, and
0.9963 respectively. Moreover, the OMHA-MBLSTM technique has identified the instances into Fault
class with the precn, recl, and F1score of 1.0000, 0.9967 and 0.9952 respectively.

Figure 4: Training and testing loss analysis of OMHA-MBLSTM technique

Figure 5: ROC analysis of MHA-MBLSTM technique
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Tab. 3 provides an average prediction result analysis of the OMHA-MBLSTM technique with recent
methods [21]. Fig. 7 displays a brief precn analysis of the OMHA-MBLSTM technique with existing
techniques. The results showcased that the GRU, RNN, and LSTM models have reached to least precn if
96.59%, 96.20%, and 96.26% respectively. Though the MLSTM and MHA-MBLSTM techniques have
resulted in competitive precn of 98.53% and 98.92%, the OMHA-MBLSTM technique has demonstrated
better outcome with the precn of 99.12%.

Figure 6: ROC analysis of OMHA-MBLSTM technique

Table 2: Comparative classification results analysis of OMHA-MBLSTM technique

Methods Classes Precision Recall F1-Score

GRU Model Stable 0.9318 1.0000 0.9638

Fault 1.0000 0.9609 0.9811

RNN Model Stable 0.9239 1.0000 0.9529

Fault 1.0000 0.9518 0.9726

LSTM Model Stable 0.9328 0.9906 0.9634

Fault 0.9923 0.9640 0.9819

MLSTM Model Stable 0.9706 1.0000 0.9922

Fault 1.0000 0.9926 0.9910

MHA-MBLSTM Stable 0.9784 1.0000 0.9951

Fault 1.0000 0.9956 0.9935

OMHA-MBLSTM Stable 0.9823 1.0000 0.9963

Fault 1.0000 0.9967 0.9952
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Fig. 8 offers a comprehensive recl analysis of the OMHA-MBLSTM technique with existing techniques. The
figure revealed that the GRU, RNN, and LSTMmodels have obtained lower recl if 96.59%, 96.20%, and 96.26%
respectively. Although the MLSTM and MHA-MBLSTM techniques have attained reasonable recl of 98.53%
and 98.92%, the OMHA-MBLSTM technique has achieved improved outcome with the recl of 99.12%.

Table 3: Average prediction results analysis of OMHA-MBLSTM

Methods Precision Recall Fl Score

GRU Model 96.59 98.05 97.25

RNN Model 96.20 97.59 96.28

LSTM Model 96.26 97.73 97.27

MLSTM Model 98.53 99.63 99.16

MHA-MBLSTM 98.92 99.78 99.43

OMHA-MBLSTM 99.12 99.84 99.58

Figure 7: Comparative precn analysis of OMHA-MBLSTM technique

Figure 8: Comparative recl analysis of OMHA-MBLSTM technique
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Finally, Fig. 9 reports an extensive F1score analysis of the OMHA-MBLSTM technique with existing
techniques. The results indicated that the GRU, RNN, and LSTM models have demonstrated ineffective
F1score if 96.59%, 96.20%, and 96.26% respectively. Though the MLSTM and MHA-MBLSTM
techniques have exhibited near optimal F1score of 98.53% and 98.92%, the OMHA-MBLSTM technique
has demonstrated better outcome with the F1score of 99.12%. From the abovementioned results and
discussion, it can be confirmed that the OMHA-MBLSTM technique has gained maximum stability
prediction performance over the other techniques.

Figure 9: Comparative F1score analysis of OMHA-MBLSTM technique

4 Conclusion

In this study, an effective OMHA-MBLSTM technique has been developed to predict the stability level of
the smart grids in the CPES environment. The proposed OMHA-MBLSTM technique involves three
subprocesses such as min-max normalization based pre-processing, MBLSTM based prediction, and MHA
based hyperparameter optimization. The design of MHA helps to appropriately elect the hyperparameters and
it leads to enhanced predictive outcomes. For ensuring the improved performance of the OMHA-MBLSTM
technique, a series of simulations were carried out and the results are inspected under several aspects. The
experimental results pointed out the better outcomes of the OMHA-MBLSTM technique over the recent
models. Therefore, the OMHA-MBLSTM technique can be used as an efficient tool for stability prediction in
smart grids. In future, the predictive outcome can be improved by the utilization of hybrid DL models.
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