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Abstract: In project management, effective cost estimation is one of the most cru-
cial activities to efficiently manage resources by predicting the required cost to
fulfill a given task. However, finding the best estimation results in software devel-
opment is challenging. Thus, accurate estimation of software development efforts
is always a concern for many companies. In this paper, we proposed a novel soft-
ware development effort estimation model based both on constructive cost model
II (COCOMO II) and the artificial neural network (ANN). An artificial neural net-
work enhances the COCOMO model, and the value of the baseline effort constant
A is calibrated to use it in the proposed model equation. Three state-of-the-art
publicly available datasets are used for experiments. The backpropagation feed-
forward procedure used a training set by iteratively processing and training a
neural network. The proposed model is tested on the test set. The estimated effort
is compared with the actual effort value. Experimental results show that the effort
estimated by the proposed model is very close to the real effort, thus enhanced the
reliability and improving the software effort estimation accuracy.

Keywords: Software cost estimation; neural network; backpropagation; forward
neural networks; software effort estimation; artificial neural network

1 Introduction

Effort estimation is the most critical activity in project management to efficiently manage resources
through predicting the amount of effort required to perform a given task [1]. Accurate estimation, which
influences software development management, increases the likelihood of completing software
development tasks quickly and on budget. On the other hand, if the predictions are too low, it will put
time pressure on the development team, resulting in residual errors due to incomplete software
functionality and insufficient testing. Conversely, suppose the predictions are too high. In that case, it will
cause an over-allocation of resources and development staff, which will make a company unable to
obtain a contract due to uncompetitive contract offers. The proposed COCOMO II model used the
COCOMO II 2000 calibrated post-architecture submodel with 5 SF and 17 EM with standard numerical
values [2]. Neural networks are trained using previous data and automatically adjust algorithmic

This work is licensed under a Creative Commons Attribution 4.0 International License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original
work is properly cited.

Computer Systems Science & Engineering
DOI: 10.32604/csse.2023.026018

Article

echT PressScience

mailto:jekim@kongju.ac.kr
http://dx.doi.org/10.32604/csse.2023.026018
http://dx.doi.org/10.32604/csse.2023.026018


parameter values to reduce prediction errors. Most of the models that are developed using neural networks
use backpropagation networks. ANN is encouraged by the characteristics of a biological neural network [3].
Each connecting link that connects one neuron to another is associated with weights. The weights have
information about the input signals, and these weights are multiplied by their corresponding inputs to
solve a particular problem.

Software project management is an essential activity in estimating the cost of software to perform a
specific task. For this reason, studies have focused on presenting models for the relationship between the
size and requirements of the software and its cost. However, the software effort estimating process still
has gaps and problems, and the first phase of the project life cycle has not provided sufficient data.
Finding the best cost estimation results is also a challenging task. The need for improved and accurate
software effort estimation methods is a critical problem that software project management companies face.

In this paper, we proposed a novel software development effort estimation model. The proposed model
will be a mixture of an algorithmic technique Constructive Cost Model II (COCOMO II) [4] and an artificial
intelligence approach Neural Networks (NN). It will improve COCOMO II through ANN, helping project
managers make estimates as accurate as possible for the successful execution of software projects. We
have calibrated the value of baseline effort constant ‘A’ to use it in the proposed model equation. The
proposed model is tested and trained on three publicly available datasets. The proposed model is also
compared with the others state-of-the-art models. The backpropagation feedforward procedure is utilized
with the iteratively processed training set (TS) for neural network training. Finally, the proposed model is
tested on the testing set (VS).

The rest of the paper is organized as follows: Section 2 contains a literature review; Section 3 presents
the proposed model, ca libration of constant ‘A’, model equation, and model architecture. Sections 4 and
5 describe the model algorithm and the details of the dataset. Section 6 discusses the data manipulations
and the implementation of the model. Section 7 presents the results of the experiments and a discussion.
Finally, Section 8 provides a model evaluation and compares the proposed model with other models, and
Section 9 concludes the paper.

2 Literature Review

Several research studies are conducted to measure effort and cost estimation techniques [5–7]. Lawrence
H. Putnam developed the Software Life Cycle Model (SLIM), also known as the Putnam model, and his
original paper was published in 1978 [8]. To estimate the cost of the software, SLIM uses Source Lines
of Code (SLOC). Putnam's life cycle analysis [9] serves as the basis for this model. Code size are the
basic inputs for estimating software costs, and the output is effort [10–12]. Howard Rubin pioneered the
use of ESTIMACS in the 1970s [13]. Initially developed as a Rapid Estimation System (QUEST), it was
later combined with Management and Informatics Services (MACS) to form ESTIMACS. ESTIMACS is
a proprietary model, so no internal details are available. Ricardo Valerdi [14] created the COSYSMO cost
model for construction systems engineering in 2002. It is the most recent addition to the COCOMO
family of cost estimation software models [15]. Barry Boehm and his USC students began work on
COCOMO II research in 1994.

The Delphi technique is a well-known expert technique developed in the 1940s by the Rand Corporation
as a forecasting method for predicting future events [16,17]. Planning poker estimates effort from expert
judgment that was first defined by James Grenning in 2002. By combining the opinions of various
experts, this technique generates an estimate of effort [18]. The origins of neural networks (NN) go back
to the work of Warren McCulloch and Walter Pitts [19]. In 1979, Allan Albrecht developed the function
points (FP) technique, which estimates working hours by counting the number of functions [20]. In 1993,
Gustav Karner introduced the case point technique (UCP), which is based on principles similar to the FP
estimation technique [21]. There are few studies found in the literature which also use COCOMO and
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neural networks. In [22] proposed a Neuro-Fuzzy COCOMO, which uses experts’ interpretation and allows
input of linguistic values. The neural networks approaches are presented in [23–26]. They are different from
our proposed model in many ways, such as the value of the baseline effort constant, the type of activation
function used, and some other distinguishing features pointed out in Section 9.

3 Proposed Artificial Neural Network Model

The proposed model is a blend of COCOMO II and neural networks. The COCOMOmodel is improved
by using the neural network approach. The subject model accommodates COCOMO II by using all of its
Scale Factors and Effort Multipliers as an input to estimate the Effort.

3.1 Calibration of Constant ‘A’

The main problem of COCOMO II is time of development (TDEV) is not appropriate for small projects.
The COCOMO II model is not well performed for small projects. In COCOMO II, most of the extensions are
still experimental and have not been fully calibrated.

Eq. (1) of the COCOMO II is as follows:

PM ¼ Að Þ � Size½ �E �
Y17
i¼1

EMi

E ¼ Bð Þ þ :01ð Þ
X5
j¼1

SFj

B ¼ :91

PM ¼ A� Size½ �
0:91þ0:01�

P5
j¼1

SFj

�
Y17
i¼1

EMi (1)

In COCOMO II.2000, the default value of A is 2.94, but for the current scenario, the value of constant A
is calibrated. For calibrating the constant A, at least 5 data points from the projects are recommended to use
[2], so we have used 7 data points from NASA projects in the NASA 93 dataset for accurate estimation of
results. Tab. 1 shows seven projects that have five attributes. In the first column (PMactual), the actual Effort
of the projects in person months is listed. In the second column (EstimatesUnadjusted), the effort estimates
are calculated against each corresponding project without using the value of constant A. In the third column
ln(PMactual), natural logs (ln–log to the base e) of the actual effort are taken. In fourth column ln
(EstimatesUnadjusted), natural logs of the unadjusted estimates is taken. Finally, the difference between
ln(PMactual) and ln(EstimatesUnadjusted) is determined in the fifth column.

Table 1: Units for the calibration of constant A

PM actual Estimates unadjusted ln (PM actual) ln (Estimates unadjusted) Difference

117.6 29.43 4.77 3.38 1.39

117.6 27.91 4.77 3.33 1.44

31.2 8.48 3.44 2.14 1.3

36 9.05 3.58 2.20 1.38

25.2 10.75 3.23 2.37 0.86

8.4 2.35 2.13 0.85 1.28

10.8 3.78 2.38 1.33 1.05
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After that, the average of the differences is obtained by:

Average of the Differences ¼ 1:39þ 1:44þ 1:3þ 1:38þ 0:86þ 1:28þ 1:05

7

¼ 1:242857143

And finally, the constant A is determined after calculating the anti-log (ex) of average of differences
by:

A ¼ e1:242857143

¼ 3:46550076457289

After rounding off the figure, we get the value of 3.47. Hence, instead of using A = 2.94, a locally
calibrated constant A = 3.47 is used in the proposed model.

3.2 Model Equation

The proposed model accommodates the equation of the COCOMO II model in exponential form, so the
natural log (ln) is taken on both sides of Eq. (1) to convert it into linear form. The equation is simplified as
stated below:

ln PMð Þ ¼ ln½A� ðSizeÞ0:91þ0:01�
P5

j¼1
SFj �

Y17
i¼1

EMi�

ln PMð Þ ¼ ln Að Þ þ ln Sizeð Þ0:91þ0:01�
P5

j¼1
SFj þ ln

Y17
i¼1

EMi

 !

ln PMð Þ ¼ ln Að Þ þ 0:91þ 0:01
X5
j¼1

SFj

" #
ln Sizeð Þ þ ln

Y17
i¼1

EMi

 !

ln PMð Þ ¼ ln Að Þ þ ln
Y17
i¼1

EMi

 !
þ 0:91þ 0:01

X5
j¼1

SFj

" #
ln Sizeð Þ

lnðPMÞ ¼ lnðAÞ þ lnðEM1Þ þ lnðEM2Þ þ lnðEM3Þ þ lnðEM4Þ þ lnðEM5Þ þ lnðEM6Þ þ lnðEM7Þ þ lnðEM8Þ
þ lnðEM9Þ þ lnðEM10Þ þ lnðEM11Þ þ lnðEM12Þ þ lnðEM13Þ þ lnðEM14Þ þ lnðEM15Þ þ lnðEM16Þ
þ lnðEM17Þ þ 0:91þ 0:01ðSF1Þ þ 0:01ðSF2Þ þ 0:01ðSF3Þ þ 0:01ðSF4Þ þ 0:01ðSF5Þ½ � lnðSizeÞ

ln PMð Þ ¼ ln Að Þ þ ln EM1ð Þ þ � � � þ ln EM17ð Þ þ 0:91þ 0:01 SF1ð Þ þ � � � þ 0:01 SF5ð Þ½ � ln Sizeð Þ
If we ignore the constants, i.e., ln(A) and value of B, which is 0.91, from the above equation and use

them as biases in the neural network, the result is Eq. (2).

ln PMð Þ ¼ ln EM1ð Þ þ � � � þ ln EM17ð Þ þ 0:01 SF1ð Þ þ � � � þ 0:01 SF5ð Þ½ � ln Sizeð Þ (2)

The parameters in equation two will be given as inputs to the neural network. Thus, the resulting Eq. (3)
is shown below:

CPM ¼ b1 þWEM1 � I1 þ � � � þWEM17 � I17½ � þ b2 þ I18 þ � � � þ I22ð Þ � WSFi þ ln Sizeð Þf g½ � (3)

1312 CSSE, 2023, vol.44, no.2



where,

CPM ¼ ln PMð Þ;
I1 ¼ ln EM1ð Þ; I2 ¼ ln EM2ð Þ; � � � ; I17 ¼ ln EM17ð Þ;
I18 ¼ 0:01 SF1ð Þ; I19 ¼ 0:01 SF19ð Þ; � � � ; I22 ¼ 0:01 SF22ð Þ;
biasb1 ¼ ln Að Þ;
biasb2 ¼ 0:91;

WEM1 to WEM17 weights for I1 to I17 and WSF18 + ln (size) to WSF22 + ln (size) weights for I18 to
I22. So, here we have the generic Eqs. (4)–(6).

CEM ¼ b1 þ
X17

i¼1
Iið Þ WEMið Þ (4)

CSF ¼ b2 þ
X22

i¼18
Iið ÞðWSFi þ lnðSizeÞÞ (5)

CPM ¼ CEM �WPð Þ þ CSF �Wq

� �
(6)

WP and Wq are the weights for CEM and CSF.

3.3 Model Architecture

The proposed model will get a total of 24 inputs. The neural network model will accommodate
COCOMO II to use all of its parameters as an input. There are two biases17 EMs, and 5 SFs. Fig. 1
shows the first part of the proposed model.

Figure 1: Inputs for CEM
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It shows that there are 18 inputs, I1 to I17 and one bias in the input layer, which will contribute to
obtaining the value of CEM in the hidden layer. All of these inputs are preprocessed. EMs are given as
input after taking the natural log – ln (log to the base e) and bias b1 is assigned the value of
multiplicative constant A after taking its natural log ln(A). WEM1 to WEM17 are the weights associated
with each connection link. Now, the second part of the proposed model is presented in Fig. 2.

Fig. 2 shows six inputs, I18 to I22 and one bias, which will contribute to obtaining the value of CSF in
the hidden layer. All of these inputs are preprocessed. SFs is given as input after multiplying by 0.01, and bias
b2 is given the value of B, which is 0.91. The weights associated with each connection link are WSF18 + ln
(size) to WSF22 + ln (size). The size is taken to determine the very initial weights of the SFs. Now, the third
portion of the proposed model is shown. Fig. 3 shows two neurons in the hidden layer CEM and CSF,
providing input signals to the output layer CPM. CEM and CSF will contribute to getting the value of
CPM in the output layer. WP and Wq are the weights associated with each connection link. CPM will
provide effort as an output in the form of ln(PM) and ln of effort in person-months. The generic
architecture is depicted in Fig. 4, through which the complete picture of the proposed model is shown

4 Proposed Artificial Neural Network Model Algorithm

This section provides an algorithm for training neural networks. The backpropagation feedforward
procedure is employed for this purpose. The algorithm for training, computing weights for the proposed
network, and testing is as follows:

i) Initialize a network.
ii) Assign initial values to weights: WEM = 1, WSF = 0, WP = 1, Wq= 1.
iii) Assign values to biases: b1 = 1.244154594, b2 = 0.91
iv) Set Learning Rate: l_rate = 0.1

Figure 2: Inputs for CSF

Figure 3: Inputs for CPM
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v) Set the activations for the input units: Ii = TSj where i = 1 to 22, TS is the training set, and j is the
jth data-point.

vi) CEM and CSF calculate the net input by summing up their weighted input signals.

CEM ¼ b1 þ
X17
i¼1

Iið ÞðWEMiÞ

CSF ¼ b2 þ
X22
i¼18

Iið Þ WSFi þ ln Sizeð Þð Þ

vii) Apply the sigmoid activation function in CEM and CSF. The sigmoid function is defined as
f xð Þ ¼ 1

1þe�x so,

f CEMð Þ ¼ 1

1þ e�CEM

f CSFð Þ ¼ 1

1þ e�CSF

viii) Multiply the output of the two hidden layer neurons with their weights and calculate the weighted
sum to obtain CPM.

CPM ¼ CEM �WPð Þ þ CSF �Wq

� �
ix) These are forward propagation steps. Now do the following steps of backpropagation in which

error correction terms will be calculated, and then weights will be changed.
x) Calculate error correction term at CPM, CEM, and CSF:

errorCPM ¼ actualeffort
� �� estimatedeffort

� �

Figure 4: The generic architecture of the proposed model
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error CEM ¼ error CPMð Þ � Wp

� �
error CSF ¼ error CPMð Þ � Wq

� �
xi) Update the weights for the hidden laer:

new Wp ¼ old Wp

� �þ l rateð Þ � error CPMð Þ � CEM valð Þ

new Wq ¼ old Wq

� �þ l rateð Þ � error CPMð Þ � CSF valð Þ
xii) Update weights for input layer:

new WEMi weight ¼ old WEMi weightð Þ þ l rateð Þ � error CEMð Þ � EM valð Þ
new WSFi weight ¼ old WSFi weightð Þ þ l rateð Þ � error CSFð Þ � SF valð Þ

xiii) Update biases:

new b1 ¼ old b1ð Þ þ l rateð Þ � error CEMð Þ
new b2 ¼ old b2ð Þ þ l rateð Þ � error CSFð Þ

xiv) These are the training steps; run the training step using two nested loops. The outer loop will
iterate 140 times, which is the number of data points in TS. The inner loop will iterate
100 times to adjust the weights according to the actual output.

xv) When training is done, the latest updated weights will be used to test the network.
xvi) Test the network over 28 data points in Testing Set (VS).

5 Datasets Detail

Three publicly available datasets are used to test and train the proposed model. These three datasets are
NASA 93 dataset, COCOMO 81 dataset, and COCOMO SDR dataset. These data sets are taken from the
tera-PROMISE repository [27], an update to the older PROMISE repository for software engineering data.

The NASA 93 dataset contains 93 different NASA projects. This dataset initially has 26 attributes, but it
is refined for the current scenario. After refinement, it contains a total of 24 attributes: 5 SFs and 17 EMs in
6 categories: very low (vl), low (l), nominal (n), high (h), very high (vh), extra high (xh); software size, and
the actual effort.

The COCOMO 81 dataset contains 63 projects and 26 attributes and is refined for the current scenario.
After refinement, it contains 24 attributes: 5 scale factors, 17 cost drivers, size (KDSI), and actual effort.

COCOMO SDR dataset contains 12 projects. This dataset initially has 24 attributes which are taken as it
is in the current scenario. The attributes are 5 SFs, 17 EMs, size, and actual effort.

The dataset is split into 83 and 17; the 83% for network training and the remaining 17% to test the
proposed network.

6 Dataset Manipulation and Model Implementation

Three publicly available datasets NASA 93, COCOMO 81, and COCOMO SDR, are used. The data of
93 projects, 63 projects, and 12 projects, respectively. These projects are merged into a single Comma-
Separated Values file (CSV) consisting of 168 data points.
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In the validation, two sets of inputs, EM and SF, are given to the model. EMs is given as input after
taking the natural log – ln (log to the base e) and bias b1 is assigned the value of multiplicative constant
A after taking its natural log, ln(A). SFs are given as input after multiplying by 0.01, and bias b2 is
assigned the value of B, 0.91. The natural log of columns ‘Size’ and ‘Effort’ is also taken. After that, the
dataset is divided into Training Set (TS) and Testing Set (VS), with 80% and 20% ratios to get more
prediction accuracy. Then, the first 28 rows are used for testing the model, and last, the 140 records are
used for model training. The model is implemented through Python programming language [28–30] –

version Python 3.6.0 with the open data science platform Anaconda [31] - version 4.3.1. For coding, an
open-source web application Jupyter Notebook [32], is used, which is an interactive computational
environment. The implementation is done on Microsoft Windows 7 with a 64-bit operating system. The
structure of the coding is based on the object-oriented programming paradigm (OOP) [33,34].

7 Experimental Results and Discussion

The backpropagation feedforward procedure is used for neural network training. First, training samples
Training Set (TS) is processed iteratively to predict the Effort. There are 140 data points in TS and each data
point/row is iterated 100 times. The estimated effort (EE) is then compared with the actual effort (AE) value.
The error correction term is computed by taking the difference of AE and EE, and then the weights are
modified. The weights for each training sample are updated to minimize the difference between EE and
the AE. Tabs. 2 and 3 describe how supervised learning is performed on the network. After adjusting its
weights, it tries to be close to the actual project effort (only two rows that are row 3 and row 90, with all
of their 100 iterations are given as an example).

Table 2: Model training using 3rd data-point in TS

Row-iteration Estimated effort (EE) Actual effort (AE)

3-1 4.164183359855469 5.135798437050262

3-2 4.5895434843791145 5.135798437050262

3-3 4.851958921058856 5.135798437050262

3-4 4.995734880373085 5.135798437050262

3-5 5.068684797807907 5.135798437050262

3-6 5.104126172720889 5.135798437050262

3-7 5.120963105456953 5.135798437050262

3-8 5.1288743404725246 5.135798437050262

3-41 5.1357984370501875 5.135798437050262

3-42 5.1357984370502265 5.135798437050262

3-43 5.135798437050245 5.135798437050262

3-100 5.135798437050262 5.135798437050262

CSSE, 2023, vol.44, no.2 1317



The proposed model is tested over the Test Set (VS), consisting of 17% of the dataset. There are 28 data
points and data for 28 different projects in the testing set. After its training, the proposed model is tested in the
testing set. It predicted the effort for the projects. Fig. 5 shows the results of the estimated effort (EE) for
software development and the comparison of the actual effort (AE). The EE is very close to the AE,
which validates the correctness of the proposed model. The comparison of the estimated effort and the
actual effort shows that the proposed model worked well.

Table 3: Model training using 90th data-point in Ts

Row-iteration Estimated effort (EE) Actual effort (AE)

90-1 5.306299976278044 4.3694478524670215

90-2 4.790033789260188 4.3694478524670215

90-3 4.578902357879022 4.3694478524670215

90-4 4.477947265795703 4.3694478524670215

90-5 4.426688551335039 4.3694478524670215

90-40 4.369447852487965 4.3694478524670215

90-41 4.369447852478285 4.3694478524670215

90-42 4.36944785247308 4.3694478524670215

90-43 4.369447852470279 4.3694478524670215

90-44 4.369447852468774 4.3694478524670215

90-45 4.369447852467964 4.3694478524670215

90-46 4.369447852467529 4.3694478524670215

90-98 4.3694478524670215 4.3694478524670215

90-99 4.3694478524670215 4.3694478524670215

90-100 4.3694478524670215 4.3694478524670215

Figure 5: Comparison of AE vs. EE on the VS-bar chart
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8 Model Evaluation and Comparison

Model evaluation means comparing the correctness of effort predicted by the proposed model with the
actual effort. The proposed model is assessed by the most common and widely accepted evaluation criteria
MRE and MMRE [35]. The MRE equation is below:

MREi ¼ jActual Efforti � Estimated Effortij
Actual Efforti

In the above equation, actual effort is taken from the dataset. The estimated effort is predicted by the
proposed model and ith data point. The value of MRE will be calculated for all of the data points i for
whom the effort is predicted. Tab. 4 shows the calculated value of MRE for all data points in the testing set.

The MMRE is defined as follows:

MMRE ¼ 1

N

XN
i¼1

MREi

In the above equation, N is 28 - the data points for which the MRE is calculated. Thus, MMRE provides
the average of MRE over N data points.

MMRE ¼ 1

28

X28
i¼1

MREi

Table 4: MRE values for the test set (VS) using the proposed model

Project ID MRE Project ID MRE

1 0.005241464655474636 15 0.0030182053532733784

2 0.0013185220913872152 16 0.04232661785236418

3 0.001625754202836821 17 0.010212451040776222

4 5.812997797554588e-05 18 0.008015791932008612

5 9.732745029817676e-08 19 0.0005192196438099061

6 0.00032169403576853687 20 0.0005212766005645652

7 0.002723642043291597 21 5.022702866358668e-05

8 0.0763127060078051 22 0.03778261218039063

9 0.017448754738918184 23 0.016443095010737825

10 0.0016182127192698361 24 0.004090885986264755

11 0.00016961361534335032 25 0.023888374065464783

12 0.0005331322423800579 26 0.002446755570925697

13 0.04890447905843074 27 0.0013019474529705497

14 0.015068617590837812 28 0.02888482767325606
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MMRE ¼ 1

28
� 0:3508471076986405ð Þ

MMRE ¼ 0:01253025384638001785714285714286

Fig. 6 illustrate the comparison of EE and AE with a bar chart. Therefore, it represents that the proposed
model gives improved results than COCOMO II. The results shows that proposed model is more efficient
than the COCOMO II model.

The MRE of the first 7 data points is calculated separately for the proposed model with COCOMO II.
Fig. 7 illustrates the comparison of MRE values for the first 7 data points in the Testing Set (VS) for both the
proposed model and COCOMO II. The lower the MRE, the better the results. The proposed model results are
better than COCOMO II. Therefore, proposed model is better and more efficient than the COCOMO II.

Figure 6: AE vs. Effort estimated by the proposed model and COCOMO-II-bar chart

Figure 7: Comparison of MRE values using the proposed model and COCOMO-II grafh

1320 CSSE, 2023, vol.44, no.2



MMRE for Proposed Model ¼ 1

7

X7
i¼1

MREi

MMRE for Proposed Model ¼ 1

7
� 0:01128930433418465012676ð Þ

MMRE for Proposed Model ¼ 0:00161275776202637858953714285714

MMRE for COCOMO II Model ¼ 1

7

X7
i¼1

MREi

MMRE for COCOMO II Model ¼ 1

7
� 0:463827188462809952ð Þ

MMRE for COCOMO II Model ¼ 0:06626102692325856457142857142857

The MMRE for the proposed model is 0.002, which is less than the MMRE for the COCOMO II model,
which is 0.066, so it can be said that the proposed model gives better results than COCOMO II because the
lower the MMRE, the better the predictions.

There are few studies found in the literature that used Neuro-Fuzzy COCOMO, NN for cost estimation
[36,37] and cost estimation for web projects [38,39]. Fig. 8 shows MMRE results compared to other state-of-
the-art models on the COCOMO 81 dataset. The results are also compared with neural network techniques.
The significance of the BRE [40] values is shown to be massive for RBNN [41] and BPNN [42], even when
the predicted and real values are small. The proposed model MMRE value is the smallest compared to
previous state-of-the-art models BPNN, RBNN, COCOMO, and DANN [43]. The lowest MMRE
indicates that proposed model estimation is better as compared to other models. Therefore, results
indicated that the proposed model is more efficient than the others RBNN, BPNN, COCOMO and DANN.

The distinguishing features of the proposed model as compared to others are given below.

� It uses COCOMO II.2000 calibrated values for Post-Architecture SFs and EMs.

� Its baseline effort constants and baseline schedule constants are A = 2.94, B = 0.91 and C = 3.67,
D = 0.28, respectively.
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Figure 8: Comparison of MMRE values with other models
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� It uses the sigmoid function only in the hidden layer.

� It preprocesses the values of EMs and SFs by taking the natural log of EMs and multiplying SFs by
0.01 before using them as inputs.

� It calibrated the value of constant A (which is originally 2.94, and after calibration, it became 3.47)
because calibration is an essential task that needs to be done to obtain an accurate estimation.

� Dataset is divided into the ratio of 83:17 for training and testing.

� It uses bias-1 and bias-2 as b1 = 1.244154594 and b2 = 0.91 respectively.

� The proposed model has the ability to learn and a fixed number of EM and SF parameters that need to
be learned.

9 Conclusion and Future Work

Effort estimation is the most critical activity in project management to manage resources efficiently by
predicting the required amount of Effort to fulfill a given task. In this paper, we proposed a novel software
development effort estimation model, designed using the COCOMO post-architecture model and artificial
neural network (ANN). A prevalent and most widely used COCOMO model is enhanced by using the
Neural Networks approach. We have calibrated the value of baseline effort constant A to use it in the
model equation. Three publicly available datasets are used for testing and training the model. The
backpropagation feedforward procedure is used by iteratively processing a set of training samples to train
the network. After that, the proposed model is tested over the Testing Set (VS), and the estimated Effort
is compared with the actual effort value. The experimental results show that the effort estimated by the
proposed model is significantly closer to the actual effort than the COCOMO model and enhances the
reliability with an improvement in software development effort estimation accuracy. The MMRE results
indicate that the proposed model is better than COCOMO, BPNN, RBNN and DANN. Overall, the
experimental results show that the proposed model outperforms for software effort estimation compared
to other models.

In the future, we will improve the accuracy of the proposed model to provide a more accurate estimate of
effort with some other machine learning approaches. We will also test the proposed model in various other
software projects.

Funding Statement: This work was supported by the Technology development Program of MSS [No.
S3033853].

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] M. Ruhe, R. Jeffery and I. Wieczorek, “Cost estimation for web applications,” in 25th Int. Conf. on Software

Engineering, Portland, USA, pp. 285–294, 2003.

[2] B. W. Boehm, “COCOMO II overview,” in 14th Int. COCOMO Forum, Los Angeles, USA, pp. 1–20, 1999.

[3] A. K. Jain, J. Mao and K. M. Mohiuddin, “Artificial neural networks: A tutorial,” Computer, vol. 29, no. 3, pp.
31–44, 1996.

[4] B. Boehm, B. Clark, E. Horowitz, C. Westland, R. Madachy et al., “Cost models for future software life cycle
processes: COCOMO 2.0,” Annals of Software Engineering, vol. 1, no. 12, pp. 57–94, 1995.

[5] B. Boehm, C. Abts and S. Chulani, “Software development cost estimation approaches—a survey,” Annals of
Software Engineering, vol. 10, no. 1, pp. 177–205, 2000.

[6] M. Jorgensen and M. Shepperd, “A systematic review of software development cost estimation studies,” IEEE
Transactions on Software Engineering, vol. 22, no. 1, pp. 33–53, 2006.

1322 CSSE, 2023, vol.44, no.2



[7] J. Wen, S. Li, Z. Li, Y. Hu and C. Huang, “Systematic literature review of machine learning based software
development effort estimation models,” Information and Software Technology, vol. 51, no. 1, pp. 41–59, 2021.

[8] L. H. Putnam, “A general empirical solution to the macro software sizing and estimating problem,” IEEE
Transactions on Software Engineering, vol. 4, no. 7, pp. 345–361, 1978.

[9] B. W. Boehm, “Software engineering economics,” IEEE Transactions on Software Engineering, vol. 10, no. 1, pp.
4–21, 1984.

[10] S. Kumari and S. Pushkar, “Comparison and analysis of different software cost estimation methods,”
International Journal of Advanced Computer Science and Application, vol. 4, no. 1, pp. 153–157, 2013.

[11] A. Arifoglu, “A methodology for software cost estimation,” ACM SIGSOFT Software Engineering Notes, vol. 18,
no. 2, pp. 96–105, 1993.

[12] F. J. Heemstra, “Software cost estimation. Information and software technology,” Applied Software Measurement,
vol. 34, no. 10, pp. 627–639, 1992.

[13] H. A. Rubin, “Macro-estimation of software development parameters: the estimacs system,” in SOFTFAIR Conf.
on Software Development Tools, Techniques and Alternatives, Washington DC, USA, pp. 109–118, 1983.

[14] R. Valerdi, “The constructive systems engineering cost model (COSYSMO),” Ph.D. dissertation, University of
Southern California, USA, 2005.

[15] V. K. Yadav, “Software cost estimation: Process, methods and tools,” Global Sci-Tech, vol. 9, no. 3, pp. 138–147,
2017.

[16] N. Dalkey and O. Helmer, “An experimental application of the DELPHI method to the use of experts,”
Management Science, vol. 9, no. 3, pp. 458–467, 1963.

[17] R. Balasubramanian and A. Deepti, “Delphi technique–a review,” International Journal of Public Health
Dentistry, vol. 3, no. 2, pp. 26, 2012.

[18] K. Molokken-Ostvold and N. C. Haugen, “Combining estimates with planning poker–an empirical study,” in
2007 Australian Software Engineering Conf., Melbourne, Australia, pp. 349–358, 2007.

[19] W. S. Mcuulloch and W. Pitts, “A logical calculus of the ideas immanent in nervous activity,” The Bulletin of
Mathematical Biophysics, vol. 5, no. 4, pp. 115–133, 1943.

[20] A. J. Albrecht and J. E. Gaffney, “Software function, source lines of code, and development effort prediction: A
software science validation,” IEEE Transactions on Software Engineering, vol. 9, no. 6, pp. 639–648, 1983.

[21] R. K. Clemmons, “Project estimation with use case points,” The Journal of Defense Software Engineering, vol.
19, no. 2, pp. 18–22, 2006.

[22] X. Huang, D. Ho, J. Ren and L. F. Capretz, “Improving the COCOMO model using a neuro-fuzzy approach,”
Applied Soft Computing, vol. 7, no. 1, pp. 29–40, 2007.

[23] O. M. Tailor, A. M. Kumar and M. P. Rijwani, “A new high performance neural network model for software effort
estimation,” International Journal of Innovative Science, Engineering & Technology, vol. 1, no. 3, pp. 400–405,
2014.

[24] N. Tadayon, “Neural network approach for software cost estimation,” in Int. Conf. on Information Technology:
Coding and Computing (ITCC’05), Las Vegas, USA, pp. 815–818, 2005.

[25] A. Kaushik, A. K. Soni and R. Soni, “A simple neural network approach to software cost estimation,” Global
Journal of Computer Science and Technology, vol. 13, no. 1, pp. 23–30, 1969.

[26] I. Attarzadeh, “Proposing a new software cost estimation model based on artificial neural networks,” in 2010 2nd
Int. Conf. on Computer Engineering and Technology, Chengdu, China, pp. 487–491, 2010.

[27] Repository for SE Research Data. http://openscience.us/repo/.

[28] G. Van, “Python programming language,” inUSENIX Annual Technical Conf., Santa Clara, USA, pp. 1–36, 2007.

[29] W. Chun, “Welcome to python,” in Core Python Programming, 1st ed., vol. 1. Hoboken, USA: Prentice Hall, pp.
1–23, 2001.

[30] M. Lutz, “System tools,” in Programming Python: Powerful Object-Oriented Programming, 1st ed., vol. 1.
Bejing, China: Reilly Media, pp. 73–100, 2010.

[31] Open data science platform, Anaconda. https://www.anaconda.com/.

CSSE, 2023, vol.44, no.2 1323

http://openscience.us/repo/
https://www.anaconda.com/


[32] IPython Interactive Computing, The Jupyter Notebook. https://ipython.org/notebook.html.

[33] P. Wegner, “Concepts and paradigms of object-oriented programming,” ACM Sigplan Oops Messenger, vol. 1, no.
1, pp. 7–87, 1990.

[34] B. Stroustrup, “What is object-oriented programming?,” IEEE Software, vol. 5, no. 3, pp. 10–20, 1988.

[35] M. Shepperd and S. MacDonell, “Evaluating prediction systems in software project estimation,” Information and
Software Technology, vol. 54, no. 8, pp. 820–827, 2012.

[36] J. Rashid and M. W. Nisar, “How to improve a software quality assurance in software development-a survey,”
International Journal of Computer Science and Information Security, vol. 14, no. 8, pp. 99–108, 2016.

[37] N. Rankovic, D. Rankovic, M. Ivanovic and L. Lazic, “A new approach to software effort estimation using
different artificial neural network architectures and taguchi orthogonal arrays,” IEEE Access, vol. 9, no. 2, pp.
26926–26936, 2021.

[38] S. Fedushko, T. Perace, Y. Syerov and O. Trach, “Development of methods for the strategic management of web
projects,” Sustainability, vol. 12, no. 2, pp. 1–18, 2021.

[39] D. K. Saini, “Fuzzy and mathematical effort estimation models for web applications,” Applied Computing
Journal, vol. 1, no. 1, pp. 10–24, 2021.

[40] S. Bilgaiyan, S. Sagnika, S. Mishra and M. Das, “A systematic review on software cost estimation in agile
software development,” Journal of Engineering Science and Technology Review, vol. 10, no. 4, pp. 51–64, 2017.

[41] N. Karunanithi, D. Whitley and Y. K. Malaiya, “Using neural networks in reliability prediction,” IEEE Software,
vol. 9, no. 4, pp. 53–59, 1992.

[42] M. Buscema, “Artificial neural networks and complex social systems models,” Substance Use and Misuse, vol.
33, no. 2, pp. 233–270, 1988.

[43] N. K. Alhammad, E. Alzaghoul, F. A. Alzaghoul and M. Akour, “Evolutionary neural network classifiers for
software effort estimation,” International Journal of Computer Aided Engineering and Technology, vol. 12,
no. 4, pp. 495–512, 2020.

1324 CSSE, 2023, vol.44, no.2

https://ipython.org/notebook.html

	An Artificial Neural Network-Based Model for Effective Software Development Effort Estimation
	Introduction
	Literature Review
	Proposed Artificial Neural Network Model
	Proposed Artificial Neural Network Model Algorithm
	Datasets Detail
	Dataset Manipulation and Model Implementation
	Experimental Results and Discussion
	Model Evaluation and Comparison
	Conclusion and Future Work
	References


