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Abstract: In the design of hearing aids (HA), the real-time speech-enhancement is
done. The digital hearing aids should provide high signal-to-noise ratio, gain
improvement and should eliminate feedback. In generic hearing aids the perfor-
mance towards different frequencies varies and non uniform. Existing noise can-
cellation and speech separation methods drops the voice magnitude under the
noise environment. The performance of the HA for frequency response is non uni-
form. Existing noise suppression methods reduce the required signal strength also.
So, the performance of uniform sub band analysis is poor when hearing aid is con-
cern. In this paper, a speech separation method using Non-negative Matrix Fac-
torization (NMF) algorithm is proposed for wavelet decomposition. The
Proposed non-uniform filter-bank was validated by parameters like band power,
Signal-to-noise ratio (SNR), Mean Square Error (MSE), Signal to Noise and Dis-
tortion Ratio (SINAD), Spurious-free dynamic range (SFDR), error and time. The
speech recordings before and after separation was evaluated for quality using
objective speech quality measures International Telecommunication Union
-Telecommunication standard ITU-T P.862.

Keywords: Speech separation; wavelet filter; independent component analysis
(ICA); non-negative matrix factorization (NMF); fejer-korovkin (FK); signal-to-
noise ratio (SNR)

1 Introduction

About 500 million people were suffering from hearing loss. Their quality of life can be enhanced by
using Digital Hearing Aid. The hearing aid is used by only 30% of the patients. This percentage can be
increased by designing hearing aid device with low noise and improved sound quality. Obviously, the
cost is the important factor too. The different hearing aids based on placement Behind-The-Ear (BTE)
HA, Receiver-In-Canal (RIC) HA, In-The-Canal (ITC) HA and the In-The-Ear (ITE) HA, have same
structures for collection and sound regeneration. The Main functions of hearing aid are shown in Fig. 1
[1]. In the frequency band, the frequency out of audio range was removed using the low pass and high
pass filter [2]. This type of noise cancellation will enhance the digital hearing aids that could have a
series of advantages such as; high signal-to-noise ratio, higher gain, immune to electromagnetic
interference and feedback elimination [3–5]. The components of the digital hearing aids are microphone,
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an Analog-to-Digital converter (A/D), an amplifier, a Digital Signal Processor (DSP), a Digital-to-Analog
converter (D/A), a speaker, and a battery. The existing HA structure adopts a built-in DSP for voice
processing. In noise removal process sub-band are selected by using reconfigurable filter bank [6,7]. The
Basic hearing aid is given in Fig. 1a Even though the hearing aid manufacturers miniaturized the device,
it lags in battery capacity. The improved listening capacity have increased the cost which not affordable
by all. Speech separation becomes an important element in binaural HA system. Building an analog filter
with multiple stages is difficult when compared to the digital filter [8]. Liu et al. [9] designed a de-
noising filter to remove the mixed impulsive and Gaussian noises. The noise suppression circuit is a
cascaded filter with similar co-efficients. Chandra Sekhar Yadav et al. [10] tested a Wiener filter to
remove the Gaussian noise from the input signal. Abbasa et al. [11] presented the separation of speech
mixtures that are often be referred to as the cocktail party problem. The Independent component analysis
(ICA) and binary time frequency masking is the two source separation techniques which has been
combined to solve the speech separation process [12]. There are several works in literature dedicated for
speech separation process which includes fusion framework [13] and NMF-based Target Source
Separation [14]. Sean Wood et al. [15] presented a hybrid blind source separation algorithm which was a
combination of non-negative matrix factorization (NMF) and generalized cross correlation (GCC) method.

The Hearing aid should recognize the speech signals out of the environmental noise. Some of the noise is
produced by speech babbles, instrumentation noise and other unnecessary sounds. Too much of reverberation
will reduce speech intelligibility and the overall sound quality. If the noise magnitude is more than the voice,
the efficiency of speech processing unit will be poor. So, the alternative method can be developed for noise
reduction in hearing aid. The Noise is removed independently in binaural. Hearing aid (HA), which differs
from the two systems since it processes noise independently. In spite of the advances in Hearing aid (HA)
technology, improving the speech intelligibility is a challenge. In recent years, hearing aids are connected
to android, iPhone Operating System (IOS), and Bluetooth-enabled phones. In most cases the collected
sound is directional. If the noise strength is more compared to the required signal, it’s very difficult to
remove the same. In addition, the frequency response of hearing aids should be uniform throughout the
audio spectrum. The Performance of the HA for frequency response is non uniform. Existing noise
suppression methods reduce the required signal strength also along with noise. So the performance of

Figure 1: (a) Basic digital hearing aid, (b) Block diagram of Digital Hearing aid
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uniform sub band analysis is poor when hearing aid is concern. On the other hand, source separation is one of
the important issues in the Digital Hearing Aid (DHA). The Microphone in the Digital Hearing Aid (DHA)
continuously receives the ‘N’ number of incoming speech signals. The Hearing-impaired people couldn’t
understand the collapsed incoming speech signals.

In this research work, sub band analysis using Fejer-Korovkin (FK) wavelet based decomposition
Methodology is proposed. The Wavelet based de-noising algorithm minimizes the Gaussian noises
present in the input signal. If the number of stages in the filter bank is more, the rejection ratio will be
more. It is better in performance when compared to the existing two stage wavelet filter bank and tree
structured wavelet filter banks. For speech separation Non-negative Matrix Factorization (NMF)
algorithm is used. The Proposed filter bank architecture is compared with other architectures. The
Proposed methods Error and time calculation for different divergence are measured. For evaluation of the
proposed method and existing method, mixed audio sources were used for speech separation. Different
parameters like Signal to Noise Ratio (SNR), Signal to Distortion Ratio (SDR), Signal to Noise and
Distortion Ratio (SINAD), Spurious-free dynamic range (SFDR), Mean Square Error (MSE), and Band
Power were used for evaluation.

2 Foundation of Filter Bank

The Filter bank is an important functional block in digital hearing aids that decomposes the input signal
into different bands [16,17]. The Gain of individual stages can be varied based on the band requirements.

2.1 Wavelet Based Non-Uniform Filter Bank

The Discrete input signal is applied to filter bank to produce a set of sub-band signals [18]. The term
uniform filter bank (UFB) is defined to emphasize that all the sub-band signals are at the same rate.
Shakya et al. [19] The Discrete Wavelet Transform (DWT) for multi-resolution analysis can be viewed as
non-uniform filter bank. In terms of this methodology a low-pass filter corresponds to scaling function
and the subsequent high-pass corresponds to wavelet function [20]. The corresponding non-uniform filter
bank is possible through repetitive application on the low-pass channel [21].

2.2 Two Channel Wavelet Filter Bank

For speech processing two band ortho normal wavelet is used which can be associated with ortho normal
filter bank [22]. Speech processing of hearing aid can be possible using filter bank which has equal
bandwidth and perfect reconstruction features. The connection between discrete and continuous wavelet
bases enhances the design of the filter banks like equal bandwidth, two-channel, Perfect Reconstruction
Quadrature Mirror Filter (PR-QMF) banks [23,24]. Eqs. (1) and (2) represents the ortho-normality state
of wavelet and scaling bases with its relations to the discrete-time filter banks.

(1) In intra- and inter-scales, the wavelets are ortho-normal as,Z
bmnðtÞbm0n0 ðtÞdt ¼ hm�mhn�n0 (1)

(2) The corresponding scaling function of wavelet theory has only intra-scale ortho-normality as,Z
dmnðtÞdmn0dt ¼ hn�n0

where;

dmnðtÞ ¼ 2�m=2dð2�mt � nÞ
(2)
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(3) The corresponding property for all values of m, n, m′, and n′ in wavelet and scaling bases is given in
Eq. (3).Z

bmnðtÞdm0n0 ðtÞdt ¼ 0 (3)

In Eq. (4), ho(n), hl(n) represent the two-band discrete-time Perfect Reconstruction Quadrature Mirror
Filter (PR-QMF) bank with the additional property of H,(eh) = 0 at o = x.

dðtÞ ¼
X
n

h0ðnÞdð2t � nÞ $ dð�Þ ¼
Y1
k¼1

H0ðejx2k Þ

bðtÞ ¼
X
n

h1ðnÞdð2t � nÞ $ bð�Þ ¼ H1ðejx=2Þ
Y1
k¼2

H0ðejx2k Þ
(4)

The wavelet δ(t) and scaling functions β(t) are build to maintain ortho-normality. The filter function
h0(n) and hl(n) have finite duration [25]. The design of a two-band discrete-time para-unitary filter bank
are advantages and is been used for channel diagnolization [26].

2.3 Tree Structured Wavelet Filter Bank

In tree-structured filter banks, the inputs pass through two or more filters and the output is downsampled
[27]. The Eq. (5) defines the analytic wavelets.

wcðtÞ ¼ wrðtÞ þ jwiðtÞ (5)

Here j represents the unit imaginary.

3 Foundation of NMF

Among the wide variety of sound separation algorithms, the unsupervised Non-negative Matrix
Factorization (NMF) dictionary learning algorithm suits well for the delineation of sound mixture [28,29].
The Cost function of Non-negative Matrix Factorization (NMF) will decompose their spectrogram into
two non-negative matrices such as; a dictionary matrix Wfd and a coefficient matrix Hdt. Hence the
product of both the Non-negative Matrix Factorization (NMF) function is ∧ = WH approximates V.
various measures of reconstruction error have been used, several of which generalize to the divergence
Dβ (V|∧), defined by Eq. (6).

Dbð_j^Þ ¼

_
^ � log

_
^ � 1 if b ¼ 1

_ðlog_ � log^Þ þ ð^ � _ÞÞ if b ¼ 0
1

bðb� 1Þ ð_
b � ^b � b ^b�1 ð_ � ^ÞÞ otherwise

8>>><
>>>:

(6)

The Speech regeneration may be the right choice of NMF algorithm which includes the Euclidian
distance (β = 2) [30] and the generalized Kullback-Leibler divergence (β = 1) [31]. The Coefficient
sparsity is used by [32] for Itakura-Saito divergence (β = 0). Hence the normalization will have such kind
of l1 norms that is typically used for coefficient sparsity which is shown by [33]. At the point of
initialization technique, the multiplicative update rules are then defined as W and H. In Eq. (7) and
Eq. (8) the update rules for Dβ (V|∧) are given.

H  H �WTðV � ^b�2Þ
WT ^b�1 þa (7)
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WW � ð^
b�2 � V ÞHT

^b�1HT (8)

where X is the Hadamard product. Fig. 2 represents the left and right input in the case of stereo audio signals
that has been concatenated in time [34] where Fig. 2a shows the single dictionary of spectral atoms which is
used to encode both channels via the two coefficient matrices Hldt and Hrdt shown in Fig. 2b. Speech
emotion recognition was presented in literature [35,36].

4 Proposed Speech Separation with Filter Bank and NMF

The Proposed speech separation method using filter bank and NMF is shown in Fig. 3.

4.1 Sub Band Analysis Filter Bank Using Proposed Fejer-Korovkin Wavelet Filter Bank

The Fejer-Korovkin (FK) wavelet is used to design the proposed filter bank architecture which is shown
in Fig. 4. The speech signals are decomposed using the proposed filter bank into non-uniform sub-bands. The
Architecture of abalysis and synthesis filter is shown in Figs. 4a and 4b.

In Eq. (9) shows the Fejer-Korovkin (FK) wavelet filter that defines kernel Kn which is used to separate
the raw time series into a high frequency (HF) component and a low frequency (LF) component.

KnðnÞ ¼
2sin2ð�=ðnþ 2ÞÞ

nþ 2

cosððnþ 2Þx=2
cosð�=ðnþ 2ÞÞ � cosðnÞ

� �2
; x =2 � �

nþ 2
þ 2Z�:

nþ 2

2
x 2 � �

nþ 2
þ 2Z�:

8>><
>>: (9)

Figure 2: The coefficient of stereo channel with the hearing aid can be represented such that the negative
decomposition of left channels is taken on the combination of Hldt and Hrdt. It shows the non-negative
matrix factorization (NMF) decomposition of a stereo mixture of speech signals. a) The Non-negative
matrix factorization (NMF) dictionary Wfd, with cube root compression applied for clarity, consisting of
atoms that are nonnegative functions of frequency. A subset is shown in detail on the right. b) non-
negative atom coefficients for the left and right channels

Figure 3: Block diagram of proposed speech separation algorithm
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The Kn(ξ) can be simplified and expressed in Eq. (10) and θn(k) can be expressed in Eq. (11) and
Eq. (12).

KnðnÞ ¼ 1þ 2
Xn
k¼1

hnðkÞ cos kx (10)

With

hnðkÞ ¼ 1

2ðnþ 2Þ sinð�=ðnþ 2ÞÞ ðn� k þ 3Þ sin k þ 1

nþ 2
�� ðn ¼ k þ 1Þ sin k � 1

nþ 2
�

� �
(11)

1� hnð1Þ ¼ 1� cosð�=ðnþ 2ÞÞ ¼ Oðn�2Þ (12)

We define the Fejer-Korovkin filters by Eq. (13).

jmn
0ðnÞj2 ¼

1

2�

Z�=2
��=2

Knðn� uÞdu (13)

Then m0
n has degree n + 1 if n is odd and degree n if n is even. γρ( m0

n) = O(1/n).

The filter bank plot of |m0n|2 for n = 2, 4,….12 with following Fig. 5. Hence the Fejer-Korovkin (FK)
kernals K2n E Kp,c

2n for n = 1, 2..6 which decreasing on [0,П] that is noted n all the filters.

The Figs. 6 and 7 show the scaling function and wavelet generated by the Fejer-Korovkin (FK) filter of
length 12.

Figure 4: (a) Proposed analysis filter bank, (b) Proposed synthesis filter bank
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4.2 Source Separation by Non-Negative Matrix Factorization (NMF) Algorithm

The Non-negative Matrix Factorization (NMF) is used for blind source separation which is closely
approximated by a constant frequency with the magnitude spectrogram X of the mixture. The
corresponding audio source is separated into I channels with their corresponding spectrograms Ci, 1 ≤ i ≤
I. This Algorithm is based on vector Bi and a time varying gain Gi of the single speech. In Eq. (14) the
spectrogram Ci is shown.

Ci ¼ BiGi (14)

The Ci is rank one and the low pass characteristics is found in rows Gi. The Separation of Non-negative
Matrix Factorization (NMF) algorithm is improved due to the continuous nature and is shown in Eq. (15).

Figure 5: The fejer-korovkin (FK) filters for n = 2, 4,…, 12

Figure 6: The scaling function generated by the fejer-korovkin filer
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ct ¼ a
X
i

PT
t¼2 ðGði; tÞ � Gði; t � 1ÞÞ2PT

t¼1 G2ði; tÞ (15)

In Eqs. (16)–(20) shows the multiplicative update rules

rcþr ¼ BT1 (16)

rc�r ¼ BT � X

BG
(17)

rcþt ði; tÞ ¼ 4a
Gði; tÞPT

n¼1 G2ði; nÞ (18)

rc�t ði; tÞ ¼ 2a
Gði; t � 1Þ þ Gði; t þ 1ÞPT

n¼1G2ði; nÞ þ 2a

PT
n¼2 ðGði; nÞ � Gði; n� 1ÞÞ2

ðPT
n¼1 G2ði; nÞÞ2

(19)

G G�rc
�
r þrc�t

rcþr þrcþt
(20)

The Eqs. (21)–(23) shows the following numerical stability for normalized Bi and Gi in each iteration to
ensure equal energy.

Ai ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
kGik2
kBik2

s
(21)

Gi  Gi

Ai
(22)

Figure 7: The wavelet function generated by the fejer-korovkin (FK) filer
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Bi  BiAi (23)

Fig. 8 shows the Non-negative Matrix Factorization (NMF) based source separation method where the
separation can be improved by using clustering.

4.3 Clustering Algorithm

The Proposed clustering method can be used to cluster any number of sub clusters. For more
independent sources the clustering can be done using hierarchical clustering. Here two clusters are
created for N number of channels. The clusters m, m∼ ∈ {1, 2} are separated using the vectors a∼, a∼(i)
∈ {1, 2}. The estimated energy E∼

m
∼ of the spectrograms of both clusters are given by

~E~m ¼
X
i

X
k;t

C2
i ðk; tÞd~m~aðiÞ (24)

For uncorrelated sources, the energy is estimated from the mixture signals. Further we assume that one
cluster corresponds to one source, and the other cluster contains the remaining sources. Therefore, we expect
that the first separated source esm1 corresponds to the cluster with lowest energy because the other cluster
corresponds to multiple sources:

m1 ¼ argmin
m
� Em

�
�

(25)

The Process repeats until all channels are clustered into two. The process terminates once the sources are
clustered.

5 Experimental Results

5.1 Analysis of Two Channel Wavelet Filter Bank

Tab. 1 shows the subband analysis of the two channel filter-bank implemented using different wavelets
such as db2, haar, coif1, sym2 and dmey. Various parameters such as Signal-to-noise ratio (SNR), SDR,
Mean Square Error (MSE) and band power are observed.

Figure 8: The signal flow of the proposed non-negative matrix factorization (NMF) separation algorithm

Table 1: Sub band analysis of two channel wavelet filter bank with different wavelet

Wavelet used Separated speech Frequency (Hz) SNR SDR MSE Band-power

db2 B1 2500 −6.8218 −6.8243 0.1187 0.0845

B2 6000 −13.105 −13.106 0.0351 0.0008

haar B1 2500 −6.7904 −6.7929 0.0343 0.0832

B2 6000 −6.7390 −6.7398 0.0343 0.0021

coif1 B1 2500 −6.8221 −6.8251 0.0343 0.0845

B2 6000 −15.946 −15.949 0.0343 0.0008

sym2 B1 2500 −6.8218 −6.8243 0.1187 0.0845
(Continued)
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5.2 Analysis of Tree Structured Wavelet Filter Bank

Tab. 2 shows the subband analysis of the Tree structured wavelet filter bank implemented using different
wavelets. Various parameters are observed.

5.3 Analysis of Proposed Fejer-Korovkin (FK) Wavelet Filter Bank

The Analysis of the proposed filter bank using Fk wavelet is done by evaluating the spectrum of noisy
signal and input Fig. 9a. The Different decomposition stages are presented in Fig. 9b. Tabs. 3–7 presents the
various analysis of the subband filter. The Comparative analysis is presented from Figs. 9(c–f).

Table 1 (continued)

Wavelet used Separated speech Frequency (Hz) SNR SDR MSE Band-power

B2 6000 −13.105 −13.106 0.0351 0.0008

dmey B1 2500 −6.8261 −6.8287 0.0343 0.0845

B2 6000 −20.090 −20.094 0.0343 0.0006

Table 2: Subband analysis of tree structured wavelet filter bank with different wavelet

Wavelet used Separated speech bands Frequency (Hz) Band power SNR MSE

db2 B1 16000 2.2531e-04 -23.4695 0.0104

B2 8000 0.0070 −18.3915 0.0220

B3 4500 0.0422 −16.8541 0.0504

B4 1200 0.0084 −6.5370 0.0098

B5 250 0.0198 −6.4164 0.0206

haar B1 16000 5.3615e-04 −22.2270 0.0107

B2 8000 0.0083 −18.4683 0.0233

B3 4500 0.0358 −14.4176 0.0445

B4 1200 0.0121 −11.4527 0.0133

B5 250 0.0178 −4.7190 0.0196
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(b) Decomposition of Noised speech signal by using Fejerkorovkin (FK) wavelet ‘fk14’

(a) Spectrum of input and noisy speech signal

Figure 9: (Continued)
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(c) Band power, Signal-to-noise ratio (SNR), Signal to Noise and Distortion Ratio (SINAD)
comparison of Subband1 in different wavelet ‘fk14’

(d) Mean Square Error (MSE) and Spurious-free dynamic range (SFDR) comparison of
Subband1 in different wavelet ‘fk14’

Figure 9: (Continued)
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(e) Band power, Signal-to-noise ratio (SNR), Signal to Noise and Distortion Ratio (SINAD)
comparison of Subband2 in different wavelet ‘fk14’

(f) Mean Square Error (MSE) and Spurious-free dynamic range (SFDR) comparison of
Subband2 in different wavelet fk14’

Figure 9: (a) Spectrum of input and noisy speech signal, (b): Decomposition of noised speech signal by
using fejer-korovkin(FK) wavelet ‘fk14’, (c) Band power, signal-to-noise ratio (SNR), signal to noise and
distortion ratio (SINAD) comparison of subband1 in different wavelet ‘fk14’, (d) Mean square error
(MSE) and spurious-free dynamic range (SFDR) comparison of subband1 in different wavelet ‘fk14’, (e)
Band power, signal-to-noise ratio (SNR), signal to noise and distortion ratio (SINAD) comparison of
subband2 in different wavelet ‘fk14’, (f) Mean square error (MSE) and spurious-free dynamic range
(SFDR) comparison of subband2 in different wavelet fk14’
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Table 3: Band power analysis of 8 sub-bands

Wavelet type Band power (dB)

B1 B2 B3 B4 B5 B6 B7 B8

db5 19.8 19.9 19.5 19.7 19.3 19.8 13.0 5.1

db40 19.6 19.9 19.6 19.9 19.6 19.9 14.3 5.0

sym13 19.8 19.9 19.6 19.8 19.7 19.8 13.6 5.0

sym21 19.7 19.9 19.6 19.8 19.6 19.8 14.0 5.0

coif1 19.6 19.9 19.5 19.6 18.6 18.6 11.9 5.4

dmey 19.6 19.9 19.6 19.9 19.6 19.8 14.3 5.0

fk14 19.8 19.9 19.7 19.9 19.6 19.7 13.9 5.0

fk18 19.7 19.8 19.6 19.7 19.5 19.7 14.3 4.9

fk22 19.8 20.0 19.6 19.8 19.7 19.7 14.3 5.0

Table 4: Signal-to-noise ratio (SNR) analysis of 8 sub-bands

Wavelet type SNR (dB)

B1 B2 B3 B4 B5 B6 B7 B8

db5 9.0 18.5 18.5 19.0 13.8 18.2 4.2 6.0

db40 20.2 20.0 20.2 17.1 17.8 18.3 4.2 5.7

sym13 20.8 19.7 19.5 17.9 16.8 18.6 4.2 5.6

sym21 19.6 20.5 18.7 19.6 18.1 17.4 4.0 5.7

coif1 17.9 19.6 18.4 18.9 9.0 8.7 4.9 6.6

dmey 18.1 17.9 20.1 19.6 17.0 18.0 4.3 5.7

fk14 20.9 20.8 20.4 21.0 19.2 20.2 5.6 6.8

fk18 20.9 20.6 20.6 20.6 19.7 19.1 5.3 6.7

fk22 20.9 20.8 20.8 20.3 19.1 20.9 5.0 6.7

Table 5: Mean square error (MSE) analysis of 8 sub-bands

Wavelet type MSE

B1 B2 B3 B4 B5 B6 B7 B8

db5 0.06 0.06 0.06 0.06 0.06 0.06 0.10 0.36

db40 0.06 0.06 0.06 0.06 0.06 0.06 0.09 0.37

sym13 0.06 0.06 0.06 0.06 0.06 0.06 0.09 0.36

sym21 0.06 0.06 0.06 0.06 0.06 0.06 0.09 0.37
(Continued)
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Table 5 (continued)

Wavelet type MSE

B1 B2 B3 B4 B5 B6 B7 B8

coif1 0.06 0.06 0.06 0.06 0.06 0.07 0.12 0.38

dmey 0.06 0.06 0.06 0.06 0.06 0.06 0.09 0.37

fk14 0.06 0.06 0.06 0.06 0.06 0.06 0.08 0.34

fk18 0.06 0.06 0.06 0.06 0.06 0.06 0.09 0.34

fk22 0.06 0.06 0.06 0.06 0.06 0.06 0.09 0.34

Table 6: Signal to noise and distortion ratio (SINAD) analysis of 8 sub-bands

Wavelet type SINAD (dB)

B1 B2 B3 B4 B5 B6 B7 B8

db5 19.0 18.5 18.5 19.0 13.8 18.2 4.2 6.0

db40 20.2 20.0 20.2 17.1 17.8 18.3 4.2 5.7

sym13 20.8 19.7 19.5 17.9 16.8 18.6 4.2 5.6

sym21 19.6 20.5 18.7 19.6 19.2 17.4 4.0 5.7

coif1 17.9 19.6 18.4 18.9 19.0 18.7 4.9 6.6

dmey 18.1 18.0 20.1 19.6 17.0 18.0 4.3 5.7

fk14 20.9 20.7 20.4 20.2 19.2 20.2 5.6 6.8

fk18 20.9 20.6 20.6 20.6 19.7 20.1 5.3 6.7

fk22 20.9 20.8 20.8 20.3 19.2 20.9 5.0 6.7

Table 7: Spurious-free dynamic range (SFDR) analysis of 8 sub-bands

Wavelet type SFDR

B1 B2 B3 B4 B5 B6 B7 B8

db5 1.36 1.03 2.36 1.56 3.94 0.60 7.14 5.36

db40 0.27 0.45 0.57 2.42 2.56 0.64 6.45 1.97

sym13 0.35 1.03 2.00 1.46 4.64 0.58 5.99 5.71

sym21 2.11 1.09 0.69 0.41 1.81 3.12 5.94 5.43

coif1 2.21 0.48 1.95 0.09 4.01 4.10 2.49 5.08

dmey 1.69 1.60 0.79 1.05 0.90 2.76 6.12 5.44

fk14 2.40 1.23 2.38 2.50 2.60 3.81 7.81 6.09

fk18 2.94 1.83 2.38 2.46 2.90 3.15 7.34 5.81

fk22 2.65 1.62 2.42 2.77 2.80 3.12 7.25 5.87
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Figure 10: (a) Mixed audio source (mixednumbers.wav file), (b) Separation of two speech recordings in
mixed audio source by existing independent component analysis (ICA), (c) Separation of Two speech
recordings in mixed audio source by proposed method
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5.4 Independent Component Analysis (ICA)

The Sources in the hearing aid system are statistically independent and the linear mixtures are separated
using Independent component analysis (ICA) and Blind Source Separation (BSS). The Experimental setup
uses two speech signal and noise. It is a microphone which records with proximities a1 and b1 for male and
female voices respectively. Hence they can be source separated using ICA. The linear mixture observed data
is given as x (Eq. (26)).

x ¼ As (26)

where, A is some unknown invertible that mixes the components as A = [a1 b1]. Eq. (27) shows the
estimation of underlying source which will construct a new matrix W as linear transformed data,

ŝ ¼ Wx (27)

The Unmixing matrix has the approximate value of A−1 so that ŝ � s for finding the Independent
component analysis (ICA). The Mixing source is shown in Fig. 10a and the separated audios are shown
in Fig. 10b.

5.5 Analysis of NMF Algorithm for BSS

The Input signals are analyzed using the Non-negative Matrix Factorization (NMF) algorithm and the
source matrix are generated W and H. Error and time calculation of Proposed NMF source separation
algorithm with different divergence are presented in Tab. 8. Perceptual Evaluation of Speech Quality
(PESQ) parameters are analyzed in this work. The performance comparison of the existing and proposed
method is shown in Tab. 9.

Table 8: Error and time calculation of proposed non-negative matrix factorization (NMF) source separation
algorithm with different divergence

S.No Divergence Error Time (S)

1 nmf_kl 8060.38 0.53

2 nmf_kl_ns 7864.43 0.49

3 nmf_kl_loc 39863.18 0.52

4 nmf_kl_con 7864.55 0.50

5 nmf_euc_orth 108743.00 0.66

6 nmf_euc 104976.70 1.41

7 nmf_convex 119376.86 0.44

8 nmf_beta (β = 0) 9870.46 1.59

9 nmf_amari 5856.42 0.79

10 nmf_euc_sparse_es 270814.32 0.45
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The Speech recordings before and after separation are evaluated for quality using objective speech
quality measures such as ITU-T P.862 for objectivity (Tab. 10).

6 Conclusion

The paper presents a new method for speech separation in Hearing aids which provide high signal-to-
noise ratio. TheWavelet based decomposition Methodology using Fejer-Korovkin (FK) algorithm is better in
performance when compared to the existing decomposition in two stage wavelet filter bank and tree
structured wavelet filter bank db. For speech separation Non-negative Matrix Factorization (NMF)
algorithm is used. The proposed methods Error and time calculation for different divergence are
measured. For evaluation of the proposed method and existing method on speech separation mixed audio
sources are used and ITU standard P.862 is utilized for the evaluation. Different parameters like Signal to
Noise Ratio (SNR), Signal to Distortion Ratio (SDR), Signal to Noise and Distortion Ratio (SINAD),
Spurious-free dynamic range (SFDR), Mean Square Error (MSE), and Band Power were used for
evaluation. In future deep learning methods will be proposed for this application. The hardware
implementation will be carried out using new semiconductor devices.

Table 9: Performance comparison of existing and proposed wavelets

Band
power
(dB)

Signal-to-noise
ratio (SNR) (dB)

Mean square
error (MSE)

Signal to noise and
distortion ratio (SINAD)
(dB)

Spurious-free
dynamic range
(SFDR)

db5 5.1379 6.0394 0.3599 6.0394 5.3621

db40 4.9724 5.6697 0.3696 5.6697 1.9688

sym13 5.0347 5.5948 0.3642 5.5948 5.7113

sym21 4.9620 5.6577 0.3727 5.6577 5.4252

coif1 5.4415 6.5812 0.3770 6.5812 5.0758

dmey 4.9639 5.7350 0.3706 5.7350 5.4405

Proposed
fk14

4.9732 6.7527 0.3393 6.7527 6.0928

Proposed
fk18

4.9308 6.7338 0.3409 6.7338 5.8103

Proposed
fk22

4.9805 6.6878 0.3373 6.6878 5.8748

Table 10: PESQ measure based on the ITU standard P.862

Existing wavelet + non-negative matrix factorization (NMF)
separation

Proposed wavelet +
non-negative matrix factorization (NMF)

separation

S.No db5 db40 sym13 sym21 coif1 dmey fk14 fk18 fk22

Source 1 1.5912 1.3339 1.3922 1.4719 0.8961 1.2298 2.8356 2.0573 2.2219

Source 2 2.2007 0.9160 1.6902 1.0330 2.0850 1.7251 1.8767 2.6213 2.7645
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