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Abstract: The Extended Exponentially Weighted Moving Average (extended
EWMA) control chart is one of the control charts and can be used to quickly
detect a small shift. The performance of control charts can be evaluated with
the average run length (ARL). Due to the deriving explicit formulas for the
ARL on a two-sided extended EWMA control chart for trend autoregressive or
trend AR(p) model has not been reported previously. The aim of this study is
to derive the explicit formulas for the ARL on a two-sided extended EWMA con-
trol chart for the trend AR(p) model as well as the trend AR(1) and trend AR(2)
models with exponential white noise. The analytical solution accuracy was
obtained with the extended EWMA control chart and was compared to the numer-
ical integral equation (NIE) method. The results show that the ARL obtained by
the explicit formula and the NIE method is hardly different, but the explicit for-
mula can help decrease the computational (CPU) time. Furthermore, this is also
expanded to comparative performance with the Exponentially Weighted Moving
Average (EWMA) control chart. The performance of the extended EWMA control
chart is better than the EWMA control chart for all situations, both the trend AR
(1) and trend AR(2) models. Finally, the analytical solution of ARL is applied to
real-world data in the health field, such as COVID-19 data in the United Kingdom
and Sweden, to demonstrate the efficacy of the proposed method.

Keywords: Average run length; explicit formula; extended EWMA chart; trend
autoregressive model

1 Introduction

The Control chart is one of the statistical process control instruments and has been applied in many fields
such as finance, economics, industry, health, and medicine (see [1–5]). The concept of the control chart was
initially introduced in 1931 by Shewhart [6]. The Shewhart control chart is more efficient in detecting large
shifts in the processes. Next, the cumulative sum (CUSUM) [7] and the exponentially weighted moving
average (EWMA) [8] control charts show that both are effective in detecting small shifts. After that, the
EWMA control chart has been improved by many researchers, such as the modified exponentially
weighted moving average (Modified EWMA) control chart that was originally presented by Patel et al.
[9] and developed by Khan et al. [10]. These are effective in detecting small shifts quickly for
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observations with both autocorrelation and independently normal distribution. The extended exponentially
weighted moving average (extended EWMA) control chart was proposed by Neveed et al. [11], and it is
a good performance control chart for detecting small shifts in the monitored process.

The average run length (ARL) [12] can be used to evaluate the efficiency of control charts. It is divided
into two states. For example, ARL0 is the expected number of observations before an in-control process is
taken to signal to be out of control and should be large, whereas ARL1 is the expected number of
observations taken from out of control and should be as small as possible. Previous research has shown
that the ARL can be computed using various techniques. For instance, Areepong et al. [13] proposed the
ARL by using the Martingale approach on the EWMA chart for exponential distribution. Chananet et al.
[14] developed the ARL of the EWMA and CUSUM charts with a Markov chain approach based on the
zero-inflated negative binomial (ZINB) model. Zhang et al. [15] proposed the ARL of a multivariate
EWMA chart with Monte Carlo simulation. Karoon et al. [16] developed the numerical integral equation
(NIE) method for evaluating the ARL on the extended EWMA chart for the AR(p) process.

There is a body of literature on evaluating the ARL with explicit formulas. Suriyakat et al. [17] derived
the explicit formula for the ARL on the trend exponential AR(1) process in the EWMA chart. Phanyaem et al.
[18] derived the ARL for the ARMA process via the explicit formula and the NIE method of the EWMA
chart. Petcharat [19] analyzed the ARL by using the explicit formula on the EWMA chart for a seasonal
moving average model of order q with exponential white noise. Sukparungsee et al. [20] solved the
explicit formula of the ARL for the AR(p) model on the EWMA chart. Sunthornwat et al. [21] found the
explicit formula and the optimal parameters to evaluate the ARL for a long-memory ARFIMA process on
the EWMA chart. Recently, Supharakonsakun et al. [22] presented the exact solution of the ARL on the
modified EWMA chart for the MA(1) process. Saghir et al. [23] proposed a modified EWMA chart that
deduce the existing chart from its special cases. Aslam et al. [24] improved the Bayesian Modified
EWMA location chart and its applications in the mechanical and sport industry. Phanthuna et al. [25]
derived the explicit formula for the ARL on a modified EWMA chart for the trend stationary AR(1)
model and a two-sided modified EWMA chart under the observations of AR(1) process [26]. Besides, the
outbreak of COVID-19 has become a major problem facing humans all around the world. There are
many literatures about control chart with the application to COVID-19 situation, such as Areepong et al.
[27] derived by using quantile functions to monitor COVID-19 outbreaks via the EWMA chart based on
the first hitting time of the total number of COVID-19 cases. Inkelas et al. [28] developed control charts
at the country and city/neighborhood level within one state (California) to illustrate their potential value
for decision-makers. However, the derivation of the explicit formula for the ARL on a two-sided
Extended EWMA control chart for the trend AR(p) model has not been reported previously. Hence, the
aim of this study is to derive the explicit formula of the ARL on a two-sided Extended EWMA control
chart for the trend AR(p) model as well as the trend AR(1) and trend AR(2) models. The explicit formula
for the ARL was compared with the NIE method for benchmarking. Furthermore, the explicit formulas
capability for deriving the ARL on a two-sided Extended EWMA control chart was compared with the
EWMA control chart for both simulated data and real-world data in the health field about COVID-
19 data and compared.

2 Materials and Methods

2.1 Exponentially Weighted Moving Average (EWMA) Control Chart

The EWMA control chart was initially proposed by Roberts [8]. It is usually used to monitor and detect
small shifts in the process. The EWMA statistic can be expressed as follows:

Zt ¼ ð1� kÞZt�1 þ kXt; t ¼ 1; 2; . . . (1)
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where Xt is a process with mean, λ is an exponential smoothing parameter with λ∈ (0, 1] and Z0 is the initial
value of the EWMA statistic, Z0 = u. The upper control limit (UCL) and the lower control limit (LCL) are

UCL ¼ lþ Lr

ffiffiffiffiffiffiffiffiffiffiffi
k

2� k

r
and LCL ¼ l� Lr

ffiffiffiffiffiffiffiffiffiffiffi
k

2� k

r
(2)

where L is a suitable control limit width, μ is a process mean and σ is a process standard deviation.

The stopping time is given by

sa;h ¼ infft � 0 : Zt , a; Zt . hg (3)

where h is UCL and a is LCL.

2.2 Extended Exponentially Weighted Moving Average (Extended EWMA) Control Chart

The extended EWMA control chart was proposed by Neveed et al. [11]. It is developed from the EWMA
control chart. That is a good performance control chart for detecting small shifts in the monitored process.
The extended EWMA statistic can be expressed as follows:

Et ¼ k1Xt � k2Xt�1 þ ð1� k1 þ k2ÞEt�1; t ¼ 1; 2; . . . (4)

where Xt is a process with mean, λ1 and λ2 are exponential smoothing parameters with λ1∈ (0, 1) and λ2∈ (0,
λ1), E0 is the initial value of the extended EWMA statistic, E0 = u . The upper and lower control limits (UCL
and LCL) are

UCL ¼ l0 þ Qr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21 þ k22 � 2k1k2ð1� k1 þ k2Þ

2ðk1 � k2Þ � ðk1 � k2Þ2
s

and LCL ¼ l0 � Qr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21 þ k22 � 2k1k2ð1� k1 þ k2Þ

2ðk1 � k2Þ � ðk1 � k2Þ2
s

(5)

where Q is a suitable control limit width, μ is a process mean and σ is a process standard deviation.

The stopping time is given by

sa;b ¼ infft � 0 : Et , a; Et . bg (6)

where b is UCL and a is LCL.

3 Analytical Solution of ARL on a Two-Sided Extended EWMA Chart for the Trend AR(p) Model

The observations equation for the autoregressive with trend or the trend AR(p) model in the case of
exponential while noise is defined as

Xt ¼ gþ ct þ f1Xt�1 þ f2Xt�2 þ � � � þ fpXt�p þ et or Xt ¼ gþ ct þ
Xp
i¼1

fiXt�i þ et (7)

where η is a suitable constant, γ is a slop, fi is an autoregressive coefficient at i = 1, 2, …, p such that |fp| <
1 and ɛt is white noise sequence of exponential (ɛt∼ Exp(α)). The probability density function of ɛt is given
by f ðxÞ ¼ 1

a e
�x

a where x ≥ 0. The extended EWMA statistics Et can be written as

Et ¼ k1ðgþ ct þ
Xp
i¼1

fiXt�i þ etÞ � k2Xt�1 þ ð1� k1 þ k2ÞEt�1
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Et ¼ k1gþ k1ct þ k1
Xp
i¼1

fiXt�i þ k1et � k2Xt�1 þ ð1� k1 þ k2ÞEt�1

Et ¼ k1gþ k1ct þ ð1� k1 þ k2ÞEt�1 þ ðk1f1 � k2ÞXt�1 þ k1
Xp
i¼2

fiXt�i þ k1et: (8)

If a and b are the lower and upper control limits of Et for in-control process, then a < Et < b.

Consequently, the extended EWMA statistics Et can be written as

a � Et � b

a, k1gþ k1ct þ ð1� k1 þ k2Þuþ ðk1f1 � k2ÞXt�1 þ k1
Xp
i¼2

fiXt�i þ k1et , b

a� k1g� k1ct � ð1� k1 þ k2Þu� ðk1f1 � k2ÞXt�1 � k1Xp
i¼2

fiXt�i, k1et , b� k1g� k1ct � ð1� k1 þ k2Þu� ðk1f1 � k2ÞXt�1 � k1
Xp
i¼2

fiXt�i

a� k1g� k1ct � ð1� k1 þ k2Þu� ðk1f1 � k2ÞXt�1 � k1
Pp
i¼2

fiXt�i

k1
, et ,

b� k1g� k1ct � ð1� k1 þ k2Þu� ðk1f1 � k2ÞXt�1 � k1
Pp
i¼2

fiXt�i

k1

a� ð1� k1 þ k2Þu� ðk1f1 � k2ÞXt�1

k1
�
Xp
i¼2

fiXt�i � g� ct, et ,

b� ð1� k1 þ k2Þu� ðk1f1 � k2ÞXt�1

k1
�
Xp
i¼2

fiXt�i � g� ct:

Let LE(u) denote the ARL on a two-sided extended EWMA control chart for the trend AR(p) model. The
function LE(u) can be derived by Fredholm integral equation of the second kind [29], LE(u) is defined as
follows:

LEðuÞ ¼ 1þ
Z

LðE1Þf ðe1Þde1 (9)

So, the function LE(u) is obtained as follows:

LEðuÞ ¼ 1þ
Zb�ð1�k1þk2Þu�ðk1f1�k2ÞXt�1

k1
�
Pp
i¼2

fiXt�i�g�ct

a�ð1�k1þk2Þu�ðk1f1�k2ÞXt�1
k1

�
Pp
i¼2

fiXt�i�g�ct

L

k1gþ k1ct þ ð1� k1 þ k2Þu
þðk1f1 � k2ÞXt�1 þ k1

Pp
i¼2

fiXt�i

þk1y

0
BB@

1
CCAf ðyÞdy: (10)
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Next step, Eq. (10) is changed by the variable of integration, and then LE(u) is obtained as:

LEðuÞ ¼ 1þ 1

k1

Zb
a

LðkÞf k � ð1� k1 þ k2Þu� ðk1f1 � k2ÞXt�1

k1
�
Xp
i¼2

fiXt�i � g� ct

 !
dk: (11)

If ɛt∼ Exp(α), then

LEðuÞ ¼ 1þ e
ð1�k1þk2Þuþðk1f1�k2ÞXt�1

k1a
þ

Pp
i¼2

fiXt�iþgþct

a

k1a

Zb
a

LðkÞe� k
k1adk: (12)

when HðuÞ ¼ e
ð1�k1þk2Þuþðk1f1�k2ÞXt�1

k1a
þ

Pp
i¼2

fiXt�iþgþct

a , K ¼ Rb
a
LðkÞe� k

k1adk.

Consequently,

LEðuÞ ¼ 1þ HðuÞ
k1a

K: (13)

Consider the constant K and take turn L(k) with Eq. (13),

K ¼ �k1aðe�
b

k1a � e�
a

k1aÞ

1þ 1

k1 � k2
� e

ðk1f1�k2ÞXt�1
k1a

þ

Pp
i¼2

fiXt�iþgþct

a � ðe�
ðk1�k2Þb

k1a � e�
ðk1�k2Þa

k1a Þ

: (14)

Substituting constant K form Eq. (14) into Eq. (13), then LE(u) can be written as

LEðuÞ ¼ 1� ðk1 � k2Þe
ð1�k1þk2Þu

k1a � ðe� b
k1a � e�

a
k1aÞ

ðk1 � k2Þe
� ðk1f1�k2ÞXt�1

k1a
þ

Pp
i¼2

fiXt�iþgþct

a

8<
:

9=
;

þ ðe�
ðk1�k2Þb

k1a � e�
ðk1�k2Þa

k1a Þ

: (15)

Finally, the solution of Eq. (15) is the explicit formula of ARL on a two-sided extended EWMA control
chart for the trend AR(p) model. The process is in-control with the exponential parameter α = α0, whereas the
process is out-of-control with the exponential parameter α = α1, and then α1 = (1 + δ)α0 where α1 > α0 and δ is
the shift size.

4 NIE Method of ARL on a Two-Sided Extended EWMA Chart for the Trend AR(p) Model

The NIE method is one of the techniques that is used to approximate the ARL on a two-sided Extended
EWMA chart for the trend AR(p) model. Let LN(u) be the estimated value of the ARL with the m linear
equation systems by using the composite midpoint quadrature rule [16].

The ARL approximating NIE method on a two-sided extended EWMA chart is evaluated as follows:

Zb
a

LðkÞf ðkÞdk �
Xm
j¼1

wjf ðxjÞ (16)
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The system of m linear equation is showed as:

Lm�1 ¼ 1m�1 þ Rm�mLm�1 or ðIm � Rm�mÞLm�1 ¼ 1m�1 or Lm�1 ¼ ðIm � Rm�mÞ�11m�1

Lm�1 ¼ ðIm � Rm�mÞ�11m�1; Lm�1 ¼ ½LNIEðx1Þ; LNIEðx2Þ; . . . ; LNIEðxmÞ�T ;
Im ¼ diagð1; 1; . . . ; 1Þ and 1m�1 ¼ ½1; 1; . . . ; 1�T :

Let Rm×m be a matrix, the definition of the m to mth element of the matrix R is given by

½Rij� � 1

k1
wjf

xj � ð1� k1 þ k2Þxi � ðk1f1 � k2ÞXt�1

k1
�
Xp
i¼2

fiXt�i � g� ct

 !

So, the solution of numerical integral equation can be explained as

LNðuÞ ¼ 1þ 1

k1

Xm
j¼1

wjLðxjÞf xj � ð1� k1 þ k2Þu� ðk1f1 � k2ÞXt�1

k1
�
Xp
i¼2

fiXt�i � g� ct

 !
(17)

where xj is a set of the division point on the interval [a, b] as xj ¼ j� 1
2

� �
wj þ a; j ¼ 1; 2; . . . ; m, wj is a

weight of the composite midpoint formula wj ¼ b�a
m .

5 Existence and Uniqueness of ARL

By using the Banach's Fixed-Point Theorem, the ARL solution demonstrates that the integral equation
for explicit formulas exists only once. Let T be an operation in the class of all continuous functions.

TðLEðuÞÞ ¼ 1þ 1

k1

Zb
a

LðkÞf k � ð1� k1 þ k2Þu� ðk1f1 � k2ÞXt�1

k1
�
Xp
i¼2

fiXt�i � g� ct

 !
dk (18)

If an operator T is a contraction, then the fixed-point equation T(LE(u)) = LE(u) has a unique solution. To
show that Eq. (18) exists and has a unique solution, theorem can be used as follows below.

Theorem 1 Banach's Fixed-point Theorem: Let X be a complete metric space and T:X→ X be a
contraction mapping with contraction constant r∈ [0, 1) such that ‖T(L1) − T(L2)‖ ≤ r‖L1 − L2‖,
8L1; L2 2 X . Then there exists a unique L( ⋅ )∈ X such that T(LE(u)) = LE(u), i.e., a unique fixed-point in X .

Proof: Let T defined in Eq. (18) is a contraction mapping for L1, L2∈ u[a, b], such that ‖T(L1) − T
(L2)‖ ≤ r‖L1 − L2‖, 8L1; L2 2 u½a; b� with r∈ [0, 1) under the norm kLk1 ¼ sup

u2½a;b�
jLðuÞj, so

kTðL1Þ � TðL2Þk1 ¼ sup
u2½a;b�

1

k1a
e
ð1�k1þk2Þuþðk1f1�k2ÞXt�1

k1a
þ

Pp
i¼2

fiXt�iþgþct

a

Zb
a

ðL1ðkÞ � L2ðkÞÞe�
b

k1adk

��������

��������
� sup

u2½a;b�
kL1 � L2k 1

k1a
e
ð1�k1þk2Þuþðk1f1�k2ÞXt�1

k1a
þ

Pp
i¼2

fiXt�iþgþct

a � ð�k1aÞðe�
b

k1a � e�
a

k1aÞ

��������

��������
¼ kL1 � L2k1 sup

u2½a;b�
e
ð1�k1þk2Þuþðk1f1�k2ÞXt�1

k1a
þ

Pp
i¼2

fiXt�iþgþct

a

��������

��������
e�

a
k1a � e�

b
k1a

��� ��� � rkL1 � L2k1
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6 Comparing the ARL Results

According to Eq. (17), the ARL of the NIE method is approximated by division points m = 1,000 nodes.
The solution of the NIE method is compared to the explicit formula for the trend AR(p) model on the
extended EWMA chart by using the computation time (CPU time) and the absolute percentage relative
error (APRE) [30], which can be computed as

APREð%Þ ¼ jLEðuÞ � LN ðuÞj
LEðuÞ � 100 (19)

The speed test results were computed by the CPU time (PC System: windows10, 64-bit, Intel® Core™
i5-8250U 1.60, 1.80 GHz, RAM 4 GB) in seconds. In addition, the numerical results were computed by
MATHEMATICA. The initial parameter value was studied at ARL0 = 370 on a two-sided extended
EWMA chart for the trend AR(p) model namely the trend AR(1) and trend AR(2) models with
exponential white noise and given λ1 = 0.05, λ2 = 0.01. The in-control process was presented a parameter
value as α = α0 with shift size (δ = 0). On the other hand, the out-of-control process was presented
parameter values as α1 = (1 + δ)α0 with shift sizes (δ = 0.001, 0.003, 0.005, 0.010, 0.030, 0.050, 0.100,
0.500, 1.000). Moreover, the coefficient parameters of the process (f1 = 0.1, − 0.1) and (f1 = 0.1, f2 =
0.1, − 0.1) were used for the trend AR(1) model, and the trend AR(2) model, respectively. The process
has determined that slope γ equals 0.1.

The performance comparisons of the explicit formula (as Eq. (15)) and NIE method (as Eq. (17)) are
explained with ARL. In Tabs. 1 and 2, the ARL values derived from the explicit formula can help
decrease the CPU time. The analytical results agree with NIE approximations with an APRE(%) less than
0.0000043% and 0.0000035%, and then the CPU time of approximately 8.8–10.5 and 9.3–11.5 s, for the
trend AR(1) and trend AR(2) models, respectively, whereas the CPU time of the explicit formulas is less
than 0.1 s, as well as the trend AR(1) and trend AR(2) models

Table 1: Comparing ARL values on the extended EWMA control chart for the trend AR(1) model using explicit
formulas against the NIE method given λ1 = 0.05, λ2 = 0.01, η = 0, a = 0, γ = 0.1 for ARL0 = 370

Shift size (δ) f1 = 0.1 f1 ¼ �0:1

Explicit (L(u))
(CPU time)

NIE (LNIE(u))
(CPU time)

APRE(%) Explicit (L(u))
(CPU time)

NIE (LNIE(u))
(CPU time)

APRE(%)

0.000 370.0028282
(<0.1)

370.0028124
(9.985)

0.0000043 370.0022007
(<0.1)

370.0021940
(8.907)

0.0000018

0.001 222.6285267
(<0.1)

222.6285189
(9.672)

0.0000035 207.5881058
(<0.1)

207.5881027
(8.828)

0.0000015

0.003 124.2572117
(<0.1)

124.2572081
(8.906)

0.0000030 110.8824977
(<0.1)

110.8824963
(8.797)

0.0000013

0.005 86.39599653
(<0.1)

86.39599417
(9.781)

0.0000027 75.85371836
(<0.1)

75.85371747
(10.468)

0.0000012

0.010 49.34352289
(<0.1)

49.34352166
(9.266)

0.0000025 42.66567897
(<0.1)

42.66567851
(9.750)

0.0000011

0.030 18.74823467
(<0.1)

18.74823426
(9.000)

0.0000022 16.04073087
(<0.1)

16.04073071
(8.953)

0.0000010

(Continued)
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Table 1 (continued)

Shift size (δ) f1 = 0.1 f1 ¼ �0:1

Explicit (L(u))
(CPU time)

NIE (LNIE(u))
(CPU time)

APRE(%) Explicit (L(u))
(CPU time)

NIE (LNIE(u))
(CPU time)

APRE(%)

0.050 11.91320517
(<0.1)

11.91320493
(8.828)

0.0000020 10.18682847
(<0.1)

10.18682838
(9.016)

0.0000009

0.100 6.606133419
(<0.1)

6.606133309
(9.125)

0.0000017 5.666575969
(<0.1)

5.666575929
(9.750)

0.0000007

0.500 2.217555232
(<0.1)

2.217555219
(9.546)

0.0000006 1.959621512
(<0.1)

1.959621508
(10.516)

0.0000002

1.000 1.640867750
(<0.1)

1.640867746
(9.874)

0.0000002 1.485839866
(<0.1)

1.485839865
(9.953)

0.0000001

Note: For f1 = 0.1 (b = 0.0375271), f1 = −0.1 (b = 0.025024741).

Table 2: Comparing ARL values on the extended EWMA control chart for the trend AR(2) model using explicit
formulas against the NIE method given λ1 = 0.05, λ2 = 0.01, η = 0, a = 0, γ = 0.1 for ARL0 = 370

Shift size (δ) f1 = f2 = 0.1 f1 ¼ 0:1 f2 ¼ �0:1

Explicit (L(u))
(CPU time)

NIE (LNIE(u))
(CPU time)

APRE(%) Explicit (L(u))
(CPU time)

NIE (LNIE(u))
(CPU time)

APRE(%)

0.000 370.0047719
(<0.1)

370.0047589
(9.532)

0.0000035 370.0047133
(<0.1)

370.0047008
(9.734)

0.0000034

0.001 218.9666453
(<0.1)

218.966639
(10.266)

0.0000029 218.1789684
(<0.1)

218.1789624
(9.312)

0.0000027

0.003 120.8909144
(<0.1)

120.8909115
(11.140)

0.0000024 120.1764142
(<0.1)

120.1764114
(9.782)

0.0000023

0.005 83.71006657
(<0.1)

83.71006468
(10.438)

0.0000023 83.14282505
(<0.1)

83.14282326
(11.126)

0.0000022

0.010 47.62257905
(<0.1)

47.62257806
(9.952)

0.0000021 47.26085617
(<0.1)

47.26085524
(10.453)

0.0000020

0.030 18.04477709
(<0.1)

18.04477677
(11.547)

0.0000018 17.89740758
(<0.1)

17.89740727
(9.735)

0.0000017

0.050 11.46428946
(<0.1)

11.46428927
(11.047)

0.0000017 11.37026579
(<0.1)

11.37026561
(10.531)

0.0000016

0.100 6.362069199
(<0.1)

6.362069111
(9.969)

0.0000014 6.310913041
(<0.1)

6.310912957
(10.564)

0.0000013

0.500 2.150983712
(<0.1)

2.150983702
(9.547)

0.0000005 2.136969812
(<0.1)

2.136969802
(9.453)

0.0000004

1.000 1.600855788
(<0.1)

1.600855785
(9.968)

0.0000002 1.592424578
(<0.1)

1.592424575
(10.297)

0.0000002

Note: For f1 = f2 = 0.1 (b = 0.034250633), f1 = 0.1, f2 = −0.1 (b = 0.033562842).
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7 Performance Comparing the ARL Results

The relative mean index (RMI) [31] is used to test the performance of a two-sided extended EWMA
control chart on different bound control limits [a, b] and the comparative performance of the ARL under
various λ conditions. The RMI can be computed as

RMI ¼ 1

n

Xn
i¼1

ARLiðcÞ � ARLiðsÞ
ARLiðsÞ

� �
(20)

where ARLi(c) is the ARL of the control chart for the shift size of row i, ARLi(s) is the smallest ARL of all of
the control chart for the shift size of row i. The control chart's RMI value was the lowest, indicating that the
control chart had the best performance at change detection.

For Tabs. 3 and 4, the ARL results with λ1 = 0.05, λ2 = 0.01, γ = 0.1, η = 0 and ARL0 = 370 show that the
performance of a two-sided extended EWMA control chart under various bound control limits [a, b], that were
compared for, a = 0, 0.01, 0.03, 0.05 andf1 = 0.2, − 0.2( as the trend AR(1) model) andf1 = 0.2, f2 = 0.2, − 0.2
(as the trend AR(2) model). The RMI values of the lower bound a = 0.05 are 0. The lower bound is higher
indicated that the extended EWMA chart is more efficient for detecting shifts both two models.

Table 3: Comparing ARL values on the extended EWMA control chart for the trend AR(1) model with difference
control bounds given λ1 = 0.05, λ2 = 0.01, η= 0, γ= 0.1 for ARL0 = 370

f1 Shift size a = 0 a = 0.01 a = 0.03 a = 0.05

0.2 0.000 (b = 0.04599636)
370

(b = 0.05638784)
370

(b = 0.07717333)
370

(b = 0.09796482)
370

0.001 231.650 215.150 180.897 146.963

0.003 132.865 117.512 89.966 67.222

0.005 93.365 81.082 60.171 43.907

0.010 53.871 46.024 33.302 23.919

0.030 20.616 17.507 12.640 9.174

0.050 13.106 11.188 8.197 6.071

0.100 7.252 6.292 4.786 3.706

0.500 2.391 2.231 1.965 1.756

1.000 1.744 1.681 1.569 1.476

RMI 0.784 0.584 0.253 0

(b = 0.02044937) (b = 0.03062317) (b = 0.05097111) (b = 0.0713209)

−0.2 0.000 370 370 370 370

0.001 200.983 183.627 149.271 117.348

0.003 105.355 91.864 68.568 50.183

0.005 71.594 61.491 44.788 32.225

0.010 40.025 33.970 24.335 17.375

0.030 14.987 12.722 9.207 6.727

0.050 9.517 8.145 6.019 4.519

0.100 5.302 4.633 3.588 2.841

0.500 1.860 1.760 1.594 1.464

1.000 1.426 1.389 1.325 1.271

RMI 0.793 0.588 0.250 0
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Besides, a two-sided extended EWMA control chart under various conditions (λ2 = 0.01, 0.02, 0.04) are
compared to the EWMA control chart (λ2 = 0) at λ1 = 0.05, 0.10, γ = 0.1, η = 0, a = 0.05 and ARL0 = 370 for
f1 = 0.3 (as the trend AR(1) model) and f1 = f2 = 0.3 (as the trend AR(2) model). The lower and upper
control limits of the EWMA and extended EWMA control charts for the trend AR(1) and trend AR(2)
models are obtained in Tabs. 5 and 6. The results in Tabs. 7 and 8 show that the RMI value of λ1 =
0.05 is equal to 0. The exponential smoothing parameter of 0.05 is recommended. In addition, the RMI
results show that the extended EWMA chart with λ2 = 0.04(EEWMA0.04), (RMI = 0) had fewer RMI
values than the extended EWMA chart with either λ2 = 0.01(EEWMA0.01) or λ2 = 0.02(EEWMA0.02)
and the EWMA(λ2 = 0) control chart for all situations, both the trend AR(1) and the trend AR(2) models.

Table 4: Comparing ARL values on the extended EWMA control chart for the trend AR(2) model with difference
control bounds given λ1 = 0.05, λ2 = 0.01, η = 0, γ= 0.1, f1 = 0.2 for ARL0 = 370

f2 Shift size a = 0 a = 0.01 a = 0.03 a = 0.05

0.2 0.000 (b = 0.042397)
370

(b = 0.05275771)
370

(b = 0.07348127)
370

(b = 0.09421014)
370

0.001 227.892 211.209 176.806 142.998

0.003 129.210 114.050 86.999 64.802

0.005 90.386 78.367 57.992 42.221

0.010 51.924 44.313 32.010 22.963

0.030 19.810 16.818 12.140 8.814

0.050 12.591 10.749 7.880 5.844

0.100 6.974 6.054 4.613 3.580

0.500 2.317 2.166 1.913 1.715

1.000 1.700 1.640 1.535 1.447

RMI 0.787 0.586 0.254 0

(b = 0.04070613) (b = 0.05105241) (b = 0.07174692) (b = 0.09244642)

−0.2 0.000 370 370 370 370

0.001 226.072 209.328 174.880 141.146

0.003 127.489 112.431 85.623 63.687

0.005 88.995 77.106 56.987 41.447

0.010 51.022 43.523 31.416 22.525

0.030 19.438 16.500 11.911 8.650

0.050 12.353 10.548 7.735 5.739

0.100 6.845 5.944 4.534 3.522

0.500 2.282 2.135 1.889 1.696

1.000 1.680 1.621 1.519 1.434

RMI 0.788 0.586 0.254 0
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Table 5: Lower control limit and upper control limit of the EWMA and the extended EWMA control charts
for the trend AR(1) model given η = 0, γ = 0.1, ϕ1 = 0.3 for ARL0 = 370

λ1 EWMA (λ2 = 0) Extended EWMA

λ2 = 0.01 �2 ¼ 0:02 �2 ¼ 0:04

a h a b a b a b

0.05 0.05 0.1406020 0.05 0.10884124 0.05 0.08858456 0.05 0.06682472

0.10 0.05 0.2401663 0.05 0.20085810 0.05 0.17053690 0.05 0.12804540

Table 6: Lower control limit and upper control limit of the EWMA and the extended EWMA control charts
for the trend AR(2) model given η = 0, γ = 0.1, ϕ1 = ϕ2 = 0.3 for ARL0 = 370

λ1 EWMA (λ2 = 0) Extended EWMA

λ2 = 0.01 �2 ¼ 0:02 �2 ¼ 0:04

a h a b a b a b

0.05 0.05 0.1342092 0.05 0.1047736 0.05 0.08594707 0.05 0.06568533

0.10 0.05 0.2260982 0.05 0.1899824 0.05 0.16200730 0.05 0.12265030

Table 7: Comparing ARL values on the EWMA and the extended EWMA control charts for the trend AR(1)
model given η = 0, γ = 0.1, a = 0.05, ϕ1 = 0.3 for ARL0 = 370

λ1 Shift size (δ) EWMA (λ2 = 0) Extended EWMA

λ2 = 0.01 �2 ¼ 0:02 �2 ¼ 0:04

0.05 0.000 370 370 370 370

0.001 206.213 158.863 135.905 108.374

0.003 109.835 74.781 60.584 45.468

0.005 75.160 49.233 39.305 29.076

0.010 42.422 26.969 21.320 15.653

0.030 16.237 10.324 8.202 6.100

0.050 10.488 6.797 5.457 4.126

0.100 6.049 4.103 3.368 2.628

0.500 2.375 1.881 1.649 1.400

1.000 1.860 1.561 1.402 1.229

RMI (λ1) 0 0 0 0

RMI (λ2) 1.133 0.504 0.257 0

0.10 0.000 370 370 370 370

0.001 260.799 228.889 208.561 182.362

0.003 164.213 130.260 111.791 90.978

0.005 120.038 91.303 76.646 60.892
(Continued)
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Table 7 (continued)

λ1 Shift size (δ) EWMA (λ2 = 0) Extended EWMA

λ2 = 0.01 �2 ¼ 0:02 �2 ¼ 0:04

0.010 72.088 52.625 43.301 33.700

0.030 28.412 20.265 16.515 12.749

0.050 18.095 12.981 10.619 8.240

0.100 9.939 7.309 6.061 4.778

0.500 3.111 2.576 2.272 1.918

1.000 2.196 1.919 1.743 1.523

RMI (λ1) 0.467 0.624 0.674 0.745

RMI (λ2) 0.791 0.405 0.21 0

Table 8: Comparing ARL values on the EWMA and the extended EWMA control charts for the trend AR(2)
model given η = 0, γ = 0.1, a = 0.05, ϕ1 = ϕ2 = 0.3 for ARL0 = 370

λ1 Shift size (δ) EWMA �2 ¼ 0) Extended EWMA

λ2 = 0.01 �2 ¼ 0:02 �2 ¼ 0:04

0.05 0.000 370 370 370 370

0.001 194.938 154.309 133.141 106.664

0.003 100.661 71.834 58.977 44.594

0.005 68.169 47.146 38.200 28.495

0.010 38.149 25.769 20.700 15.336

0.030 14.584 9.871 7.970 5.983

0.050 9.462 6.511 5.310 4.051

0.100 5.518 3.947 3.286 2.587

0.500 2.255 1.833 1.621 1.386

1.000 1.793 1.528 1.382 1.219

RMI (λ1) 0 0 0 0

RMI (λ2) 0.853 0.475 0.248 0

0.10 0.000 370 370 370 370

0.001 248.774 221.608 203.526 179.223

0.003 150.619 123.403 107.551 88.683

0.005 108.242 85.787 73.372 59.201

0.010 63.899 49.071 41.271 32.694

0.030 24.929 18.824 15.710 12.359

0.050 15.911 12.074 10.111 7.992

0.100 8.827 6.832 5.787 4.642
(Continued)
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The results indicate that the performances of the control charts were, in ascending order, the extended
EWMAwith λ2 = 0.04, extended EWMAwith λ2 = 0.02, extended EWMAwith λ2 = 0.01 and EWMA control
charts, as illustrated in Figs. 1 and 2.

Table 8 (continued)

λ1 Shift size (δ) EWMA �2 ¼ 0) Extended EWMA

λ2 = 0.01 �2 ¼ 0:02 �2 ¼ 0:04

0.500 2.900 2.463 2.199 1.877

1.000 2.091 1.855 1.698 1.497

RMI (λ1) 0.448 0.593 0.649 0.729

RMI (λ2) 0.672 0.364 0.194 0

Figure 1: ARL values on the EWMA and the extended EWMA control charts for the trend AR(1) model
with ARL0 = 370; (a) λ1 = 0.05 and (b) λ1 = 0.10

Figure 2: ARL values on the EWMA and the extended EWMA control charts for the trend AR(2) model
with ARL0 = 370; (a) λ1 = 0.05 and (b) λ1 = 0.10
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8 Application to Real Data

The ARL was constructed using explicit formulas on a two-sided extended EWMA control chart with
ARL0 = 370 for λ1 = 0.05 and various λ2 = 0.01, 0.02, 0.04, and its performance was compared with the
EWMA (λ2 = 0) control chart using data on the number of COVID-19 patients in hospitals per million
people in the United Kingdom and Sweden. The observations were made daily from June 26th to
September 10th, 2021 and from January 24th to April 20th, 2021, respectively. This data is a stationary
time series by looking at the autocorrelation function (ACF) and partial autocorrelation function (PACF).
The dataset for the trend AR(1) model was assigned as the significance of the mean and standard
deviation were 79.32026 and 27.69376, respectively. The trend AR(p) model in Eq. (7), the observations
of the trend AR(1) model was defined as Xt = (0.810841)t + (0.964959)Xt−1 + ɛt and the error was
exponential white noise (α0 = 1.684939). Meanwhile, the observations of the trend AR(2) model was
defined as Xt = (0.592171)t + (0.744252)Xt−1 + (0.219693)Xt−2 + ɛt and the error was exponential white
noise (α0 = 0.544925). The RMI results show that the extended EWMA with λ2 = 0.04 chart reduced the
RMI values more than the extended EWMA chart with either λ2 = 0.01 or λ2 = 0.02 and the EWMA
control chart for all situations, both the trend AR(1) and trend AR(2) models. The results in Tab. 9
agree with the simulation results in Tab. 7. Similarly, the results in Tab. 10 agree with the simulation
results in Tab. 8.

Hence, the extended EWMA (λ2 = 0.04) and EWMA (λ2 = 0) control charts were plotted by calculating
Et and Zt for the two datasets when given λ1 = 0.05. Detecting the process with real data of the number of
COVID-19 patients in hospitals per million people in the United Kingdom and Sweden were shown in
Figs. 3 and 4, respectively. In Fig. 3, the ARL of the extended EWMA and EWMA control charts
indicates that, the process was signaled as out-of-control at the 7th and 13th observations, respectively. In

Table 9: Comparing ARL values on the EWMA and the extended EWMA control chart for the trend AR(1)
model with number of COVID-19 patients in hospitals per million people in United Kingdom given λ1 =
0.05, η = 0, a = 0.05, γ = 0.810841, f1 = 0.964959, α = 1.684939 for ARL0 = 370

Shift size (δ) EWMA (λ2 = 0) Extended EWMA

λ2 = 0.01 �2 ¼ 0:02 �2 ¼ 0:04

(h = 0.2275289) ðb ¼ 0:1864128Þ ðb ¼ 0:1555061Þ ðb ¼ 0:1138792Þ
0.000 370 370 370 370

0.001 269.483 223.565 198.024 168.576

0.003 174.783 125.164 103.107 81.180

0.005 129.487 87.194 70.000 53.760

0.010 78.829 49.985 39.232 29.525

0.030 31.274 19.215 14.951 11.191

0.050 19.846 12.335 9.658 7.284

0.100 10.775 6.990 5.578 4.292

0.500 3.238 2.537 2.192 1.823

1.000 2.265 1.915 1.714 1.479

RMI 1.117 0.491 0.240 0
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Fig. 4, the ARL of the extended EWMA and EWMA control charts indicates that the process was signaled as
out-of-control at the 1st and 27th observations, respectively. As a result, a two-sided extended EWMA control
chart can detect shifts faster than the EWMA control chart.

Table 10: Comparing ARL values on the EWMA and the extended EWMA control chart for the trend AR(2)
model with number of COVID-19 patients in hospitals per million people in Sweden given λ1 = 0.05, η = 0, a
= 0.05, γ = 0.592171, f1 = 0.744252, f2 = 0.219693, α = 0.544925 for ARL0 = 370

Shift size (δ) EWMA (λ2 = 0) Extended EWMA

λ2 = 0.01 �2 ¼ 0:02 �2 ¼ 0:04

(h = 0.10722551) ðb ¼ 0:07608989Þ ðb ¼ 0:06214202Þ ðb ¼ 0:052679536Þ
0.000 370 370 370 370

0.001 166.252 84.701 63.958 42.457

0.003 79.672 33.997 24.756 15.968

0.005 52.719 21.615 15.680 10.147

0.010 28.983 11.715 8.556 5.656

0.030 11.079 4.794 3.642 2.597

0.050 7.272 3.378 2.644 1.978

0.100 4.367 2.309 1.890 1.512

0.500 2.016 1.443 1.275 1.128

1.000 1.699 1.318 1.185 1.073

RMI 2.443 0.691 0.334 0

Figure 3: Detecting the number of COVID-19 patients in hospitals in the United Kingdom when given
ARL0 = 370 under the trend AR(1) model on (a) EWMA chart and (b) Extended EWMA chart at λ2 = 0.04.
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9 Discussions and Conclusions

The performances of control charts were evaluated by using ARL. The explicit formulas comprise a good
alternative to the NIE method for constructing the ARL, both the trend AR(1) and trend AR(2) models. The
performance comparison of the ARL using explicit formulas on a two-sided extended EWMA on different
bound control limits [a, b] and the comparative performance of the ARL under various λ conditions is
further tested by using the relative mean index (RMI). The RMI values of the lower bound (a = 0.05) are
0. The extended EWMA control chart has given a higher capability for detecting shifts if the lower bound
has been higher. When the comparative performance of the ARL under various λ1 conditions is examined,
the RMI value with λ1 = 0.05 is equal to 0. So, the exponential smoothing parameter of 0.05 is
recommended. Furthermore, the extended EWMA control chart has a higher efficiency if λ2 is increased.
After that, the extended EWMA control can detect shifts faster than the EWMA control chart when the
datasets were verified by calculating the control charts. Finally, the simulation study and the performance
illustration with real data using data on the number of COVID-19 patients in hospitals per million people
in the United Kingdom and Sweden provided similar results.
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