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Abstract: The current pandemic highlights the significance and impact of air pol-
lution on individuals. When it comes to climate sustainability, air pollution is a
major challenge. Because of the distinctive nature, unpredictability, and great
changeability in the reality of toxins and particulates, detecting air quality is a
puzzling task. Simultaneously, the ability to predict or classify and monitor air
quality is becoming increasingly important, particularly in urban areas, due to
the well documented negative impact of air pollution on resident’s health and
the environment. To better comprehend the current condition of air quality, this
research proposes predicting air pollution levels from real-time data. This study
proposes the use of deep learning techniques to forecast air pollution levels.
Layers, activation functions, and a number of epochs were used to create the sug-
gested Long Short-Term Memory (LSTM) network based neural layer design. The
use of proposed Deep Learning as a structure for high-accuracy air quality predic-
tion is investigated in this research and obtained better accuracy of nearly 82% com-
pared to earlier records. Determining the Air Quality Index (AQI) and danger levels
would assist the government in finding appropriate ways to authorize approaches to
reduce pollutants and keep inhabitants informed about the findings.

Keywords: LSTM; epochs; deep learning; air quality index; particulates; neural
networks

1 Introduction

It is due of air that we are living today. Every month, we breathe roughly 1 million times without
realizing the consequences of the air pollution we inhale. Over 93 percent of the world’s population is
exposed to dangerous air pollution chemicals such as Nitrogen Oxides (NOx), Carbon Oxides (COx),
Sulphur Oxides (SOx), Particulate Matter (PM), Ozone (O3), and Ammonia (NH3) on a daily basis.
Indoor air pollution is also much worse than outdoor pollution. Everyday products contain toxic compounds.

Noise, land, water, and air pollution are all major pollutants that influence humans and other living
things. Among the several types of pollution, air pollution is the most serious. Natural disasters,
automobiles, industries, crop fires, dust storms, man-made smokes such as burning of wood, plastics,
natural gas, and coal, deforestation, population, and other factors all contribute to air pollution in India
and is typically lower in summer than in the winter. Air pollution increases the risk of a variety of health
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problems, including arrhythmia, ischemia, heart failure, and stroke and so understanding and monitoring air
pollution is critical for our well-being. The government employs the Air Quality Index (AQI) concept to
forecast air pollutant levels and inform citizens.

AQI is a tool that displays the current state of air quality in six categories based on ambient concentration
levels of air contaminants. Good, satisfactory, moderate, poor, very poor, and severe are the six
classifications. An increase in the AQI level implies that there is a chance of breathing polluted air, which
can have serious health consequences. The AQI is calculated using eight primary pollutants: Particulate
Matter less than 2.5 microns (PM2.5), Particulate Matter less than 10 microns (PM10), Nitrogen Dioxide
(NO2), Sulfur Dioxide (SO2), Carbon Monoxide (CO), O3, NH3, and Lead (Pb). “When we have high
moisture then the aerosols in the air starts to absorb water vapors and swell thereby leads to low visibility
and that is how the smog are created”, said by Sachin Ghude, Scientist, Indian Institute of Tropical
Meteorology (IITM), which operates System of Air Quality Weather Forecasting and Research (SAFAR),
so it is very important to forecast air pollutants for better life.

Many air pollutant studies involve knowledge of environmental and computer technology, which is time
consuming, and many statistical methods such as multiple linear regression [1], auto regressive moving
average method and generalized line regression [2] are used for air quality predictions [3]. When
compared to traditional methods such as support vector machine [4] and random forest, a commonly used
air pollution prediction method in environmental or atmospheric research performed better [5–7]. In
making atmospheric decisions, accurate forecasting in air quality measurement is critical [8]. Air
pollutants are also highly dependent on regional and seasonal fluctuations, making it difficult to anticipate
Air Quality (AQ) and necessitating simultaneous monitoring of time and space.

Currently, the rising technology Artificial Intelligence (AI) is being employed in air pollution prediction,
with advanced artificial intelligence approaches achieving improved results. Also AI founds to be the future
promising technology that serves faster with more accuracy in short span of time without human
intervention. Advanced AI creates great impact in several applications and improves people’s lives by
performing most typical tasks. Deep Recurrent Neural Network (DRNN) is utilized in predicting fine
PM2.5 [9]. Hybrid model spatiotemporal forecasting of PM2.5 is employed by long term prediction [10]
and air pollutant concentration is predicted by combining other traditional methods [11,12]. Extraction of
spatiotemporal characteristics improves the air pollution prediction model [13–16]. Aggregated Long
Short Term Memory (LSTM) is also employed for air quality prediction [17]. Some methods provide
average air pollutant concentration and to overcome the issue LSTM with Recurrent Neural Network
(RNN) and Wireless Sensor Network (WSN) is employed [18]. Bayesian model [19] and bi-directional
LSTM model [20] also helps to predict air quality and found to be better compared to traditional methods.

To forecast air pollution concentrations, this research proposes a deep learning model based on LSTM.
Meteorological observations are obtained from a multi-site network of monitoring stations, and missing
values are rebuilt and forecast values fine-tuned to make considerable improvements. The proposed
model’s accuracy was improved in an experimental situation by using a real-time air pollution dataset. In
addition, the suggested Deep Learning (DL) model provides accurate assessment of AQI when compared
to existing methodologies, and a greater number of features were compared for air quality forecasts and
accuracy in the proposed DL method, so the public is warned.

2 Methodology

The suggested method begins with the selection of a data gathering region from local and near stations,
collection of data from National Air Quality Index (NAQI), Central Pollution Control Board (CPCB), Tamil
Nadu Pollution Control Board (TNPCB) and KAGGLE followed by pre-processing of data such as data
division, manipulating missing data and normalization. The pre-processed data is classified using LSTM
to anticipate air pollution with pinpoint accuracy. The methodology’s flow is depicted in Fig. 1:
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2.1 Selection of Area

The research’s study area was gathered from Air Quality Monitoring Stations (AQMS) in the states listed
in Tab. 1. For data gathering, active stations were segregated. These study sites were chosen based on the
availability of CPCB air quality data, satellite images, and the fact that the areas chosen were the most
polluted, trafficked, and prone to industrial development activities. Some states have inactive AQMS and
so they are identified first before selecting the sites. States having active air monitoring stations details are
isolated. For the planned job, the network was trained using AQMS from various states across the
country. The proposed paper focus on overall air pollution prediction of the country which can further be
narrowed to particular state or city area. In our study nearly 21 states are selected for experiment.

Selection of
area(Local and

near station data)

Data collection
(NAQI, CPCB,

TNPCB, KAGGLE)

Data pre-processing
(Data division, missing data
manipulation, normalization)

Feature 
classification

(LSTM)

Forecasting 
air pollution & 

analysis

Figure 1: Process of methodology

Table 1: List of air quality monitoring stations taken for study

S. NO. Station ID State TOTAL number of AQMS Active AQMS

1 AP001 Andhra 05 01

2 AS001 Assam 01 01

3 BR001 Bihar 10 06

4 CH001 Chandigarh 01 01

5 DL001 Delhi 38 37

6 GJ001 Gujarat 06 01

7 HR001 Haryana 29 29

8 JH001 Jharkhand 01 01

9 KA001 Karnataka 20 10

10 KL001 Kerala 08 02

11 MP001 Madhya Pradesh 16 01

12 MH001 Maharashtra 22 10

13 ML001 Meghalaya 01 01

14 MZ001 Mizoram 01 01

15 OD001 Odisha 02 02

16 PB001 Punjab 08 01

17 RJ001 Rajasthan 10 03

18 TN001 Tamil Nadu 05 05

19 TG001 Telangana 06 06

20 UP001 Uttar Pradesh 26 04

21 WB001 West Bengal 14 07
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2.2 Data Collection

The features to be collected from the specific site are processed once the study area has been established.
It is critical to comprehend the data in order to recognize the features. As a result, self-reviewing data is
required, and it is assessed for all of the chosen states or cities. Fig. 2 shows a flow diagram of the data
selection process.

For the available number of daily Air Quality Index data per city, about 37000 records for each station
are taken on an hourly basis for the specified study areas from 2016 to 2020. The data was collected for three
seasons: summer, rainy season, and winter. Before preprocessing, data collected from the KAGGLE website
is rigorously scrutinized. Tab. 2 lists the features that have been identified for the proposed work. It is vital to
comprehend the government-mandated averaging monitoring hours and minimal ambient concentration of
air pollution levels.

Understanding 
Input Data

Self reviewing 
for collected  

data

Data analysis 
for available 

records

Calculate 
cities with 
records

Identify the 
features

Figure 2: Process of data selection

Table 2: List of features taken for study

S.
No.

Name of the air pollutant
(features)

Symbol Unit Ambient concentration level of air
pollutant

Monitoring
time

Industrial,
residential,
rural & other area

Sensitive
area

1 Particulate matter less than
2.5

PM2.5 µg/m3 60 60 24 h

2 Particulate matter less than
10

PM10 µg/m3 100 100 24 h

3 Nitrogen oxide NO µg/m3 80 80 24 h

4 Nitrogen dioxide NO2 µg/m3 80 80 24 h

5 Nitrogen oxides NOx µg/m3 80 80 24 h

6 Ammonia NH3 µg/m3 400 400 24 h

7 Carbon monoxide CO mg/m3 4
2

4
2

01 h
08 h

8 Sulphur dioxide SO2 µg/m3 80 80 24 h

9 Ozone O3 µg/m3 180
100

180
100

01 h
08 h

10 Benzene C6H6 ng/m3 5 5 08 h

11 Toluene C7H8 ng/m3 5 5 08 h

12 Xylene C8H10 ng/m3 5 5 08 h

Note: *AQI is measured by following units, 1. micrograms per cubic meter (µg/m3), 2. parts per million (ppm) or parts per billion (ppb), 3. microns or
micrometer.
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2.3 Data Preprocessing

Once the necessary data has been gathered, it is standardized to eliminate the effects of missing numbers.
Fig. 3 shows the stages involved in normalizing. Missing data is critical in preprocessing and has a significant
influence on its own, thus diagnosing missing values with adequate data is critical. For these reasons,
unknown values other than numbers are deleted from input data before transformation for complex
numbers with a special number called Not a Number (NaN).

2.4 Feature Classification

For training and testing purposes, we divided the input data into two portions. Nearly 70% of the
37000 records gathered are used for training, and 30% are used for testing. Ground truth parameters are
collected during training, and the network is trained using the Stochastic Gradient Descent with
Momentum (SGDM) optimizer. In comparison to other current algorithms, this best approach finds the
model parameters that best fit the expected and actual outputs, calculates faster, and converges better with
longer training time. Before training LSTM categorization, soft max is employed for activation layer
during input data testing.

2.5 Forecasting Air Pollution and Analysis

Finally, the survey data is analyzed using methods from the Statistical Package for Social Sciences
(SPSS). This SPSS software suite was used to conduct a detailed analysis of the data collected. The
measurements done often includes mean, median, Standard Deviation (SD), Mean Absolute Percentage
Error (MAPE), Mean Square Error (MSE), Mean Absolute Error (MAE), Root Mean Squared Error
(RMSE) and Mean Squared Error (MSE) helps to predict the performance level of classifier which
enables to conclude AQI.

3 AQI Prediction Model Based on LSTM

Internal memory is used by the basic RNN to process the future variable sequence of inputs. Fig. 4
depicts the basic architecture of a basic RNN. Because the original RNN in our proposed model for
training the dataset may not perform well for long-term reliance because it includes simple tanh in every
repeating module, we employ LSTM, which is an expanded version of RNN, to overcome this issue.

Input
data

Identify missing data's

Omit NaN values

Replace NaN values for standardization

Data transform

end

Figure 3: Input data preprocessing
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3.1 LSTM Networks

In comparison to simple RNN, the LSTM network is capable of performing long-term dependencies,
which was first described by Hochreiter and Schmidhuber in 1997. It allows avoiding the long-term
reliance problem. The core idea behind LSTM is as follows:

The key feature that goes horizontally through the diagram at the top is cell state. It’s similar to a
conveyor belt, but with a few more interactions. This cell state can be added or withdrawn based on the
information and is regulated accordingly using a three-gate structure. As shown in Fig. 5 this regulation
consists of a rð Þ sigmoid neural net layer and a (x) point-wise multiplication operation. The main purpose
of this sigmoid layer is to output values that are either zero (to signal “allow nothing through”) or one (to
indicate “let everything through”).

Output
(Y)

Input
(X)

h1

h2

h3

h4

Hidden
Layers

(hn)

Figure 4: Basic RNN architecture

Figure 5: LSTM concept
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3.2 LSTM Step by Step Process

Initially, the input data, as well as the input data concentration sequence before and after transformation,
are defined. For sequence to label classification, layer array is created which includes sequence input layer,
LSTM layer, fully connected layer, soft max layer and classification output layer. Sequence input layer
represents total number of input features taken for study and the classes required for algorithm as decided
is specified by fully connected layer. The basic block diagram of LSTM classification and regression is
shown in Fig. 6:

First the gender of the subject is analyzed for the given input xt and the output value ht. The sigmoid
layer checks ht−1 and xt and accordingly gives the output of number between 0 and 1 for each numbers in
the cell state Ct−1 as per Eq. (1). The new candidate value vector is created by tanh.

ft ¼ r Wf : ht�1;Xt½ � þ bf
� �

(1)

Next Ct is added to the new state followed by adding gender of the subject to the cell state as given in Eq. (2):

~Ct ¼ tanh Wc: ht�1;Xt½ � þ bcð Þ (2)

Now old cell state is updated Ct−1 into cell state Ct. Later forgetting of previous information is performed
by multiplying ft with old state and adding it with Ct as shown in Eq. (3):

Ct ¼ r ft � Ct�1 þ it � ~Ct

� �
(3)

Finally the output is decided from the cell state Ct.

The LSTM starts with the details of the input data that will be given to the network, and this choice is
made by a sigmoid layer dubbed the “forget gate layer” (ht−1 and xt), which produces a number between
00 and 11 for each cell state (Ct−1). The ‘input gate layer’ analyses the new information that needs to be
stored in the cell state and determines which values need to be changed. The tanh layer follows the input
gate, creating a vector of new added values Ct−1, which is then concatenated to provide an update to the
cell state. We usually set the input values to tanh between −11 and 11 and multiply with the output
sigmoid gate to only consider a certain section of the state [21].

4 Results and Discussion

4.1 Data Preprocessing

Data collected contains some unusual or missing data and so this impact may create side effects on the
whole records and so data cleaning is very important before data preprocessing. There are numerous frequent
methods to replace the missing values such as mean-median of previous or next value of current data R
interpolation. Data acquisition frequently involves aberrant or missing data, which might have unforeseen
repercussions for the full set of records. As a result, prior to data preparation, data cleaning is essential.
Missing data is removed and relevant gaps are filled in using command tools. R-interpolation,

Input 
sequence

LSTM
Fully 

connected 
layer

Soft 

Max
Classification 

output

Regression 
output

Figure 6: LSTM classification and regression
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mean-median of the previous or next value of the current data is all common ways for substituting missing
values. The normalized input data is shown in Tabs. 3 and 4.

4.2 Feature Validation

Statistical Validation of Extracted Features is done before classification, each piece of data that is used as
an input must be evaluated for its importance. Tab. 5 shows the proposed characteristics and their
accompanying metrics following validation. Number of samples (N), Standard Deviation (SD), Standard
Error (SE), degree of freedom (df), Mean Square (MS), (measure of test accuracy) F1 Score, and
significant are among the evaluation measures. The data was tested for the normality using Shapiro
Walik Test and it was found that all the data was normally distributed and its significance of air
pollutants is less than 0.05.

Table 3: Data normalization of input data (for first 10 records) for 6 input features

Records PM2.5 PM10 NO NO2 NOx NH3

1 0.3554 0.1725 −0.6568 −0.3862 −0.6529 −0.5783

2 0.2999 0.2324 −0.6650 −0.1468 −0.5655 −0.6045

3 0.4879 0.3147 −0.4204 0.0644 −0.3470 −0.4479

4 0.0454 −0.0959 −0.6055 −0.0566 −0.4973 −0.5367

5 0.1946 0.0455 −0.4832 −0.2687 −0.5105 −0.4872

6 0.1466 0.0457 −0.5079 −0.4006 −0.5752 −0.5646

7 0.2215 0.0286 −0.5129 −0.4389 −0.5932 −0.5646

8 0.5084 0.3789 −0.3696 −0.1385 −0.4070 −0.4354

9 0.4587 0.2516 −0.6783 −0.3510 −0.6516 −0.3615

10 0.4137 0.1790 −0.5386 −0.1041 −0.4793 −0.3586

Table 4: Data normalization of input data (for first 10 records) for next 6 input features

Records CO SO2 O3 C6H6 C7H8 C8H10

1 −0.5471 0.5741 4.5372 −0.2235 −0.1189 −0.4130

2 −0.5352 1.8856 4.0719 −0.2223 −0.0495 −0.4098

3 −0.5531 2.6276 3.8005 −0.2178 −0.0648 −0.4036

4 −0.5650 0.9949 5.0719 −0.2255 −0.1897 −0.4114

5 −0.5233 0.0492 3.7007 −0.2229 −0.2046 −0.4098

6 −0.5471 0.4432 4.1033 −0.2261 −0.2615 −0.4130

7 −0.5590 0.4241 4.3786 −0.2255 −0.2936 −0.4161

8 −0.5590 1.0363 4.6163 −0.2203 −0.2965 −0.4114

9 −0.5293 0.1455 3.9447 −0.2216 −0.2472 −0.4161

10 −0.5114 −0.0302 3.8294 −0.2165 −0.2611 −0.4083
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Table 5: Comparison of proposed features vs. metrics for evaluation

Features N Mean SD SE df MS F1 Score Sig

PM2.5 36587 63.3840 58.0911 0.3037 36586 640.922 3.121E4 0.0

PM10 29191 111.084 75.4643 0.4417 29190 1419.749 1.758E4 0.0

NO 37935 16.2983 22.2567 0.1143 37934 397.838 1.861E3 0.0

NO2 37935 29.7610 23.2389 0.1193 37934 417.193 2.235E3 0.0

NOX 36754 33.0347 31.8394 0.1661 36753 786.841 2.121E3 0.0

NH3 27967 19.9223 16.5008 0.0987 27966 236.746 840.481 0.0

CO 37726 01.0531 01.6292 0.0084 37725 002.395 816.846 0.0

SO2 37877 10.7421 09.9434 0.0510 37876 093.935 398.950 0.0

O3 36879 33.3362 21.3029 0.1109 63878 411.616 757.173 0.0

C6H6 36059 03.9360 18.3308 0.0965 36058 335.656 008.793 0.0

C7H8 31554 09.3520 23.0653 0.1298 31553 527.082 060.004 0.0

C8H10 17765 02.9701 06.6244 0.0497 17764 042.887 083.475 0.0

One-way Analysis of Variant (ANOVA) was used to validate the input features. It can be used for further
processing if the significant value is less than 0.05. Following validation, it was determined that all of the
input features used in the study were significant, implying that all of the input characteristics used in the
proposed study can be used for further classification using machine learning and deep learning algorithms.

4.3 Feature Classification

All of the significant features that have been validated using SPSS tools are used for classification. The
corresponding sequence of air pollutant PM2.5 for a given set of time T is defined as X, and these values are
filled with record means to get PM2.5 concentration sequence �X, and afterwards these data sequences are
translated into supervised learning format. Because of its lengthy temporal dependency problem, the
simple RNN cannot cope with large amounts of data. To overcome this, we use LSTM, which takes a
lagging observation t−1 as an input variable and uses it to forecast the current time step T. The modified
data set is represented by a �X, while the output variable is represented by a �Y. These sequences are then
used to forecast individual PM2.5 series, and the process is repeated for all of the other features in the
proposed study. Finally, SPSS tools are used to compare the prediction outcomes, and the performance of
the classifier is evaluated using various attributes such as root mean squared error, mean, median,
standard deviation, and so on. Using these assessment markers, LSTM is found to be superior to other
models in processing time series data, indicating that the current model is useful in AQI prediction. Fig. 7
depicts the steps involved in defining the LSTM algorithm prior to network training.

LSTM begins with initialization of sequence of input layers needed, fully connected layer, soft-max
layer and classification layer. Then after training options are given which includes initial learning rate,
(Ridge Regression) L2 regularization, drop periods, drop factors, epochs needed, batch size and SGDM.
Once relevant initialization is completed then the input data’s are converted to array format and later on
input and ground truth are compared in activation layer. Finally the output is predicted based on the
metrics such as accuracy, precision, error rate, sensitivity, specificity, F1score.

With proper initialization of training options the network is trained for classification. Defining LSTM
layers includes input sequence (fully connected layer), LSTM 120 (soft-max) and LSTM 60
(classification layer). Initialization of learning rate (0.1), L2 regularization (0.0001), schedule (piecewise),
drop factor (0.1), drop period (100), maximum epochs (500), mini batch size (128), and shuffling for
every epoch plots are some of the learning rate of training options.
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Each epoch is trained using 200 iterations, and it was discovered that the mini-batch loss and iterations
are inversely proportional, with the batch loss reducing as the number of iterations grows. Tab. 6 shows the
network’s initial stage of training.

LSTM Layers

Training Options

LSTM 

Output Prediction

Figure 7: LSTM processing steps before network training

Table 6: Network training of epoch 1 to 3

Epoch Iteration Time elapsed
(hh:mm:ss)

Mini-batch accuracy Mini-batch loss Base learning rate

1 1 00:00:04 21.09% 1.7951 0.1000

50 00:00:44 57.03% 0.9743 0.1000

100 00:01:14 61.72% 0.9100 0.1000

150 00:01:45 65.63% 0.7632 0.1000

200 00:02:15 65.63% 0.8067 0.1000

2 250 00:02:44 71.88% 0.7116 0.1000

300 00:03:14 64.84% 0.7304 0.1000

350 00:03:44 64.06% 0.8772 0.1000

400 00:04:13 64.06% 0.8426 0.1000

450 00:04:42 67.97% 0.6993 0.1000

3 500 00:05:17 67.97% 0.7930 0.1000

550 00:05:58 77.34% 0.6215 0.1000

600 00:06:29 68.75% 0.7011 0.1000

650 00:07:01 74.22% 0.6566 0.1000

655 00:07:04 74.22% 0.6626 0.1000
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The accuracy and other characteristics are assessed for various epochs after the network has been trained
for the above configurations constructed according to the suggested LSTM model. Fig. 8a through Fig. 8h
illustrate the relevant network training plots.

Figure 8: (a) Accuracy vs. iteration at 45 s (b) Accuracy vs. iteration at 3 min (c) Accuracy vs. iteration at
22 min (d) Accuracy vs. iteration at 85 min (e) Accuracy vs. iteration at 281 min (f) Accuracy vs. iteration at
573 min 59 (g) Accuracy vs. iteration at 875 min (h) Accuracy vs. iteration at 2900
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Over or under fitting can create to classification issues in a training network, hence regularisation is
crucial. In machine learning, regularisation is used to solve this problem, and in deep learning, dropout
regularisation is used to prevent over-fitting and under-fitting by removing random neurons from hidden
layers. For large data sets hold-out validation works good compared to cross-out validation.

In general, having too many epochs might lead to the model overfitting the training data. It signifies that
the model memorises rather than learns the data. The accuracy of validation data is checked for each epoch or
iteration to see if it over-fits or not. The number of epoch determines how the network’s weights are changed.
As the number of epochs grows, so do the number of times the neural network’s weights are modified, and
the border shifts from underfitting to optimal to overfitting.

For better performance, training data is shuffled for every epochs. As CPU is the available source mini
batch size can be implemented that represents short sequences. Once all the desired configuration is inserted
the network starts training. For every epoch and iterations the accuracy level and corresponding error rate is
plotted. During run time the behaviour of network is analyzed by its accuracy level and error rate.

4.4 Algorithm Analysis

A 64-bit operating system AMD A4-5000 APU with Radeon (TM) HD graphics with 1.50 GHz and
8:00 GB RAM is utilized in conjunction with MATLAB 2019a for modeling, processing, comparisons
and visualizing the experimental numbers and findings through various deep learning algorithms such as
Support Vector Machine (SVM), Neural Network (NN), K-Nearest Neighbor (KNN), Naive Bayes (NB),
Ensemble (EN) and LSTM.

4.4.1 LSTM Performance for Various Input Features
The performance of the LSTM classifier is examined using a variety of methods, one of which is shown

in Tab. 7. The 12 input features of the planned study are compared to various computations in this section.
When compared to other features, the error rate of PM10 was determined to be lower.

Table 7: Input features vs. computations

Input features Accuracy Error rate Sensitivity Specificity Precision F1 score

PM2.5 0.7930 0.2070 0.5283 0.9432 0.5703 0.5300

PM10 0.8085 0.1915 0.6772 0.9480 0.6150 0.6370

NOx 0.6575 0.3425 0.2430 0.8940 0.2150 0.2280

NO 0.5220 0.4780 0.2075 0.8646 0.7311 0.1852

NO2 0.6400 0.3600 0.2495 0.8875 0.2909 0.2464

NH3 0.5600 0.4400 0.1895 0.6854 0.1807 0.1684

CO 0.6285 0.3715 0.2381 0.8901 0.2078 0.2208

SO2 0.6110 0.3890 0.2135 0.8702 0.2061 0.1986

O3 0.6055 0.3945 0.2343 0.8870 0.2053 0.2143

C6H6 0.5485 0.4515 0.2056 0.8650 0.1801 0.1914

C7H8 0.5230 0.4770 0.1771 0.8445 0.1543 0.1574

C8H10 0.3660 0.6340 0.1427 0.7340 0.1285 0.1230
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4.4.2 LSTM Performance for Various Computations
Fig. 9 shows how the accuracy level of each feature is assessed. For each of the 12 input features, various

other metrics like as error rate, sensitivity, specificity, accuracy, and F1score were determined individually. It
was found that accuracy is high for PM10 and low for Xylene.

4.4.3 Algorithm Comparison with Proposed Work
Fig. 10 depicts the accuracy level of several approaches used, with the LSTM method proving to be the

most accurate. Six different algorithms were taken for comparison for the same set of inputs.

As a result, various measures were examined using the LSTM approach, as shown in Tab. 8. The error
rate found is minimum for the proposed LSTM method and subsequently accuracy is better compared to
other methods.

Figure 9: Accuracy level comparison of all input features

Figure 10: Accuracy level for various algorithms
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4.5 Limitations of Study and Future Work

The study’s shortcoming was that the computation time was prolonged. The proposed study also has the
disadvantage of not monitoring air pollutant concentrations in conjunction with other AQMS around or
adjacent to it. Normally, both physical and chemical features of aerosols are used to predict air quality,
however biological components and qualities are limited in this case. To increase the measurement level,
future work can be expanded by including more air contaminants and additional data such as satellite
images and industrial emissions into the atmosphere. To further understand the consequences of air
pollution and human action, the article can be expanded by looking at specific states in relation to the
current pandemic, as well as the situation before and after lockdown. Also, harmful air pollutants can be
projected in advance for specific sites such as homes or roads, and the same can be combined with
Internet of Things (IoT) and updated in real time in cloud computing for the benefit of people.

5 Conclusions

Based on historical air pollutant concentration, meteorological and time stamp data, this study provides
an LSTM algorithm for predicting air pollutants in various sites. For predicting 12 major air contaminants,
fine-grained air quality data is taken from active AQMS in 21 states across the country, India. Using the same
dataset, six other models, including the proposed LSTM model, are evaluated, and the trials show that the
suggested LSTM outperforms other techniques. By classifying air quality data and calculating dirty pixels
using an LSTM classifier, the suggested work assists in obtaining specific information and permits precise
knowledge of current pollutant levels in real environments of many sites. The classifier outputs the air
pollutant level with higher compilation and efficiency than earlier approaches by comparing ground
readings and data obtained from specific areas through private agencies, as well as suitable network
training. The proposed approach delivers the best accuracy 82.4 percent of air pollution measurements for
approximately 12 major air pollutants, according to the findings. This air quality measurement aids the
environmental board in notifying the public and diverting traffic to low-polluting routes or areas, as well
as taking appropriate measures such as tree planting, by anticipating air pollutants in advance.
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Table 8: Algorithm comparison of accuracy, sensitivity, specificity, precision and F1 score

Algorithm Accuracy Error rate Sensitivity Specificity Precision F1 score

SVM (Cubic) 41.25% 0.5875 0.3997 0.8890 0.7013 0.3983

NN (Bilayered) 56.20% 0.4380 0.3941 0.8850 0.7330 0.4511

KNN (Weighted) 57.54% 0.4246 0.3976 0.8880 0.7576 0.4546

NB (Optimizable) 74.48% 0.2552 0.7103 0.9416 0.6097 0.6264

EN (Boosted) 76.80% 0.232 0.6800 0.9427 0.7901 0.7232

LSTM (Standard) 82.40% 0.1760 0.6137 0.9512 0.5759 0.5843
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