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Abstract: Smartphone devices particularly Android devices are in use by billions
of people everywhere in the world. Similarly, this increasing rate attracts mobile
botnet attacks which is a network of interconnected nodes operated through the
command and control (C&C) method to expand malicious activities. At present,
mobile botnet attacks launched the Distributed denial of services (DDoS) that
causes to steal of sensitive data, remote access, and spam generation, etc. Conse-
quently, various approaches are defined in the literature to detect mobile botnet
attacks using static or dynamic analysis. In this paper, a novel hybrid model,
the combination of static and dynamic methods that relies on machine learning
to detect android botnet applications is proposed. Furthermore, results are evalu-
ated using machine learning classifiers. The Random Forest (RF) classifier outper-
form as compared to other ML techniques i.e., Naïve Bayes (NB), Support Vector
Machine (SVM), and Simple Logistic (SL). Our proposed framework achieved
97.48% accuracy in the detection of botnet applications. Finally, some future
research directions are highlighted regarding botnet attacks detection for the entire
community.

Keywords: Android botnet; botnet detection; hybrid analysis; machine learning
classifiers; mobile malware

1 Introduction

Currently, smartphone devices have become an inseparable part of human lives by holding every kind of
information. Smartphone devices, especially Android mobiles are very popular due to their affordability, rich
user environment, and appealing applications such as maps, weather forecasting, GPS function, and many
more. According to StatCounter Globalstats report [1], the Android operating system has a 42.26%
worldwide market share which is larger than compared to others as shown in Fig. 1. Furthermore, Statista
[2], reported that Android is the first leading store with 3.8 million applications in the first quarter of 2018.

As a result, the emerging rate of an open-source Android OS was not ignored by malware writers and
mobile botnet attacks grows faster. A mobile botnet consists of a network of bots operated through the
command and control (C&C) method by the botmaster. A botnet attack launched the Distributed Denial
of service (DDoS) attack, steals personal information, gain illegal access to services, send emails, send
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SMS on premium-rate numbers, and infects multiple mobile devices. The first botnet SmsHOw.U was
discovered in September 2010 and till now several mobile botnets are available i.e., Geinimi,
DroidKungFu, GoldDream, NotCompatible, Fakeplay, and Anseverbot, etc [3]. A RottenSystem botnet
[4], was activated in 2016 and till now affected ca. 5 million Android devices in the first quarter of 2018.
Fig. 2 shows the McAfee mobile threat report [5], in the year 2018.

In literature, many methods are used to detect Android malware attacks. These methods are divided into
two types (a) static and (b) dynamic analysis. Static analysis refers to the code analysis while in dynamic
method ensures to analyze the behavior of an application at runtime. Kirubavathi et al. [6], proposed an
Android botnet detection model based on structural analysis with the features of permissions and API
calls. The authors, take a large dataset to perform detection operations and achieved the highest accuracy
with 99% via Support Vector Machine (SVM) classifier. However, dynamic features of android
applications were not discussed. Another researcher [7], introduced the dynamic detection model such as
SMARTbot for android botnet detection. The rich dynamic features such as network traces, DNS queries,
and file activities, etc. are considered. There are some limitations in both types of analysis methods. Static
analysis are incompetent to detect obfuscated code that’s why researches used the dynamic analysis.
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Figure 1: Operating system market share worldwide from January 2018 to July 2018 [1]
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Figure 2: Malware attacks growth rate in the first quarter of 2018 [2]
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Correspondingly, dynamic analysis are not able to deal with native code and do not provide full code
coverage. Hence, in this paper hybrid analysis method is used, that combines static and dynamic analysis
to deal with these challenges effectively.

In short, the main contributions in this paper are as follows:

1. A hybrid analysis model with machine learning techniques to detect android botnet applications
having C&C capabilities is proposed.

2. The most prominent static and dynamic features in the perspective of malware writers that used to
target android applications are investigated. Specifically, C&C methods are used in malicious
code to generate an attack. Furthermore, static and dynamic features such as permissions, API
calls, file operations, and Network traces are extracted, respectively. Besides, frequency analysis
graphs are presented to distinguish botnet and benign applications.

3. To validate results with existing approaches, machine learning (ML) techniques are implemented to
classify C&C-specific applications from benign. Among heterogeneous ML classifiers, Random
Forest (RF) proved as the best classifier with 97.48% accuracy.

4. The proposed hybrid model compares well with other existing approaches that include static and
dynamic techniques of mobile botnet detection [8,9].

5. Finally, some guidelines are provided to avoid threatening hazards.

The rest of the paper is divided into the following parts: Section 2 gives the related work that briefly
describes existing approaches used by researchers to detect botnet applications. Section 3, explains a
proposed learning-based hybrid detection model, features extraction, features selection, and datasets
acquisition. In Section 4, results are discussed and compared with existing botnet detection models. In the
end, Section 5 provides the overall conclusion with future directions.

2 Related Work

Mobile botnets are the new emerging threat for smartphone users. To avoid this hazard, researchers used
static and dynamic analysis with the combination of machine learning algorithms to evaluate results.
However, several studies have been carried out in the detection of mobile botnet attacks using static and
dynamic analysis methods but they did not consider the hybrid method. In this section, a few existing
approaches are discussed.

Yang et al. [10], introduced the multilevel features extraction dynamic method that contains (a) basic
level features (b) traffic level features, and (c) content level features to detect mobile botnet from
applications package kit (APK) files. Together with these features, network traffic that relates to hypertext
transfer protocol (HTTP) is collected from Anubis [11], CopperDroid [12], and Sandroid platforms. For
the experiment, datasets are collected from Baidu app market [13] and Android Drebin project [14] for
normal and malicious applications, respectively. Furthermore, each application is executed for ten to
fifteen minutes to assemble the network traffic. Additionally, a machine learning classifier such as RF is
used to evaluate results and it provides a 93% true positive rate (TPR) in the detection of botnet applications.

Similarly, Girei et al. [15], adopted a dynamic analysis method and proposed a mobile botnet detection
approach named “Logdog” by analyzing the log files. Logdog requires root permissions to start, collect logs,
stop, and then maintain text files of log messages. In addition, for analysis purposes expressions are already
saved in logs that notify the botnet activity if they matched with an existing malicious log. The authors
performed an experiment on actual Android devices. Furthermore, the Android botnet application
“dendroid” is used to communicate with the C&C server via HTTP to send logs.
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In the work of [16], the authors performed network behavior analysis to detect HTTP-based mobile
botnet attacks. A light application “Tpacketcapture” [17] was installed on mobile devices to capture the
network traffic and collect data stored in a connected data repository. Besides, network traffic features
include domain name, source IP address, destination IP address, and URL. Malicious data samples of
botnet families such as Geinimi, AnseverBot, DroidDream, DroidkungFU [18] are collected from the
Genome Malware project [19]. Finally, results are validated via machine learning classifiers such as rule-
based and J48. Hence, the combination of rule-based classifiers and proposed periodic metrics shows
98.60% accuracy in mobile botnet detection. However, rich botnet application datasets having C&C
ability with state-of-the-art mobile botnet applications samples are considered in our paper.

Another study by Al-Dayil et al. [20], presented an Artificial immune system (AIS) with the combination
of user activity to detect Android botnet from social networking sites like Twitter. Furthermore, provide
discrimination between user-generated and bot tweets. The method comprises 4 steps (a) capture tweets
from Twitter (b) relate Twitter activity with user’s activity (c) create a signature for Twitter activity and
(d) match with the existing signatures. In case, if it does not match then assume it is a legitimate tweet
otherwise considered as bots-generated tweets. For the experiment, datasets are collected from Twitter
stream API. Consequently, the AIS detector gives 95% detection accuracy.

Moreover, Hijawi et al. [21], proposed a static analysis framework by considering permissions feature to
detect android botnet. The seven levels of permissions protection scheme are elaborated such as normal,
signature-based, dangerous, and others permissions, etc. Moreover, they used botnet and benign datasets
from ISCX android bot [22], and Google play store [23], conversely for the experiment. Eventually, a
Machine learning classifier (i.e., Random Forest, Naïve Bayes, J48, and Multilayer Perceptron) are used
to verify the proposed method. Between these classifier models, RF shows the best accuracy with 97.3%
by achieving the highest botnet detection rate.

3 Methodology

In this section, a learning-based hybrid detection model is presented that discriminates between benign
and botnet applications of C&C capability. In Fig. 3, a workflow of the proposed model is illustrated. There
are four major modules in this model such as (1) data collection (2) analysis (3) features extraction and
selection and (4) Machine learning module. These modules are briefly discussed in the following
subsections.

3.1 Data Collection Module

The data collection module includes benign and botnet datasets of Android applications which are
collected from different resources i.e., Google play store [23], Virus total [24], Malgenome project [2],
and malware security blog [25]. The botnet dataset comprises 1321 applications from fifteen different
families with C&C ability. In Tab. 1, a summary of the collected datasets is characterized with train and
test datasets. Moreover, in Tab. 2 botnet families with their C&C types, infection vector, samples ratio,
and market source are presented. The botnet variants from the year 2011 to 2018 are described including
Geinimi, Zitmo, and state-of-the-art Android botnet malware such as wireX [26], and Rottensys [27].
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3.2 Analysis Module

In this module, applications analysis in a hybrid manner (static and dynamic) analysis is performed to
classify botnet from benign applications. The analysis module is divided into three types (a) static analysis
(b) dynamic analysis and (c) hybrid analysis. For static analysis, different tools are used such as Androguard
[29], APK inspector [30], to extract static features of Android applications. To disassemble the source code of
apks into the readable format, Androguard [29], is used. Similarly, the Androguard tool can analyze any type
of application whether it is benign or malware by decompiling them. Furthermore, AndroidManifest.xml and
classes.dex files are extracted to obtain permissions, intents, and native code. Correspondingly, dynamic
analysis inspects the behavior of applications at runtime in a protected environment. Dynamic tools such
as i.e., DroidScope [31], Droidbox [32], APK Analyzer [33], are available to test applications.
Correspondingly, Andrubis [34], for hybrid analysis is used in this paper that provides a rich environment
for both static and dynamic analysis.

Figure 3: Proposed hybrid learning-based detection model

Table 1: Summary of datasets

Datasets Category No. of samples Source

Train dataset Benign 575 VirusTotal [25], Malgenome Project [19],
and malware security blog [28]Botnet 1321

Test dataset Benign 575

Botnet 610
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Table 2: Summary of selected malware families

Botnet families Introduced
year

C&C type Market source Infection vector No. of
sample

HTTP SMS DNS Email Official
android
market

Unofficial
android
market

Anserverbot 2011 Install payloads and send
SMS to users to activate
itself

213

DroidDream 2011 It collects information such
as IMEI no. device model
and installs other
applications.

323

Geinimi 2011 It receives commands
server to control the phone
and steal data.

208

PJapps 2011 It is capable to install
applications, sending
messages through C&C.

58

Nickyspy 2011 It steals information such
as GPS and Wi-Fi state.

90

TigerBot 2012 Operate through SMS to
record calls and GPS
location

32

Rootsmart 2012 Silently install other
malware and collect the
device information

26

Zitmo 2012 Steal banking credentials
details of the users and
send it to through SMS

65

MisoSMS 2013 Uses up to 450 unique
email addresses to steal
SMS messages

77

Sandroid 2014 Steal bank account detail
and demand ransom

22

Pletor 2014 It can hack device
resources and demand
ransom to release them

83

NotCompatible.
C

2015 Send spam messages
without user knowledge,
can launch spam
campaigns and brute force
attacks.

74

Android/
Twitoor

2016 It hides, tracks Twitter
accounts, discloses
information, and installs
malicious applications.

3

(Continued)
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3.3 Features Module

The features module plays a vital role in a learning-based system. Hence, it is divided into two parts (a)
features extraction and (b) features selection. A similar method is applied to extract features from benign and
botnet applications through reverse engineering. Furthermore, a Python script is applied on all extracted .xml
and .jason files that contain several static and dynamic features. All extracted files are converted into a
comma-separated value (CSV) file that contains numerous features. In the CSV file, all values are shown
in binary format in which “1” denotes activated and “0” shows deactivated features.

As a result, from the mined set of static and dynamic features, we have divided these features into further
categories. In Tab. 3 static feature set such as (a) permissions (b) metadata (c) intents (d) reflection and (e)
cryptographic functions are discussed. Whereas, in Tab. 4, dynamic features that include (a) network traces
(b) system calls (c) API calls (d) cryptographic operations, and (e) data operations are presented. In this work,
a hybrid features set is considered.

Table 2 (continued)

Botnet families Introduced
year

C&C type Market source Infection vector No. of
sample

HTTP SMS DNS Email Official
android
market

Unofficial
android
market

WireX 2017 It causes a Denial of
Service attack and is found
in more than
300 applications.

16

Rottensys 2018 Causes to drain battery life,
earned the US $115,000 in
just 10 days, and
maliciously install other
applications.

31

Table 3: Extracted static features

Permissions Metadata Intents Cryptographic Reflection/
Obfuscation

Others

INTERNET,
ACCESS_FINE_LOCATION,
ACCESS_NETWORK_STATE,
SEND_SMS, RECIVE_SMS,
ACCESS_WIFI_STATE,
READ_PHONE_STATE,
WRITE_EXTERNAL_STORAGE,
READ_SMS,
ACCESS_COARSE_LOCATION,
INSTALL_SHORTCUT,
READ_LOGS,

Owner,
Issuer,
serial_number,
validity,
application_name,
fingerprints

intent_filter,
broadcast_receivers

uses_crypo uses_reflection,
uses_dynamic_coe,
uses_native_code,
java_packages

valid_manifest,
valid_zipfile,
valid_androguard_zipfile
call
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3.4 Machine Learning Module

Machine learning techniques are used to classify malware binaries from benign and to conduct results
with the lowest error rate. In this study, five ML classifiers i.e., Random Forest, Naïve Bayes, Multi-layer
perceptron, J48, and Simple Logistics. During classification, results are evaluated by 10 fold cross-
validation method that has numerous metrics including area under the curve (AUC), receiver operating
characteristic (ROC), recall, and precision. The ROC curve comparatively analyzes the True Positive Rate
(TPR) and False Positive Rate (FPR) while on the other hand, AUC conforms to the highest detected value.

In binary classification, labeled data MijFif g Ntr i ¼ 1, is defined. In this case, M is a variable relates to
malware family and Mi 2 0; 1f g and Fi is an array that contains values of features or P predictors as,
Fi ¼ fi1; : : :; fiPð Þ. However, Fi have 82 hybrid features that contain permissions, API calls, Data
operations, cryptographic operations, and network features. Additionally, a machine learning tool WEKA
[35] is applied to rank features that help us in the feature selection process. The types of famous attribute
selection algorithms include such as correlation-based, information gain, learner-based, and a principal
component. However, in this study, InfoGainAttributeEval [36], is used to calculate the information gain
score of extracted features. Furthermore, the information gain score evaluates the worth of each attribute
as it is called entropy. For an experiment, it helps us to select features from the extracted ones.

4 Results and Discussions

This section describes experimental results from the analysis of benign and malicious datasets. In the
first instance, features and their trends among botnet and benign applications are compared by
considering static and dynamic features, individually. The datasets are divided into (a) train and (b) test
datasets. In which a test dataset helps to validate the proposed hybrid analysis model. Furthermore, test
results are validated through a machine learning tool such as WEKA [35].

4.1 Observed Static Features among Botnet and Benign Applications

In this subsection, the frequently used static features are discussed. The usage rate of the below-
mentioned features are surprisingly high in botnet applications as compared to benign.

Table 4: Extracted dynamic features

Network API calls Cryptographic
operations

Data
operations

Others

open_conn,
Host,
Path,
Port,
Socket,
Connect,
Read_network,
Write_netwotk,
Network_leaks,
dns_queries,
http_conversations,
unknown_tcp_conversations,
unknown_udp_conversations

getCellLocation,
getContent,
getWifiState,
getConnectionInfo,
getActiveNetworkInfo,
getLastKnownLocation,
getLine1Number,
getInputStream,
getSimSerialNumber,
getSubscriberId,
getDeviceSoftwareVersion,
getDefault,

Crpto_op,
Cp_traffic

File_read,
File_write,
File_leaks,

sendTextMessage,
sent_sms,
received_sms,
started_services,
exec,
execute,
TAINT_IMEI
TAINT_IMSI
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4.1.1 Permissions
In Fig. 4, permissions that are frequently in the practice of botnet attackers are compared with benign

applications. The permissions used by botnet applications are INTERNET, ACCESS_NETWORK_STATE,
and READ_PHONE_STATE shows 100%, 88%, and 86% rates, respectively. In contrast, these permissions
in benign applications are utilized at a fewer rate with 85%, 53%, and 22%, exclusively. These permissions
required a network connection to launch an attack through C&C. In addition, the attacker tries to detect the
current phone state that helps to start conciliation with cell phones. Besides, other permissions such as
READ_LOGS, READ_SMS, SEND_SMS, RECEIVE_SMS, and READ_CONTACTS are also observed.
Botnets having C&C mechanism are used in SEND_SMS permission to send messages at premium-rate
numbers with 61%. In comparison, only 1.3% of SEND_SMS permission is used in benign applications.
Similarly, another permission READ_CONTACTS indicates 67% usage in botnet whereas only 8% in
benign applications. Furthermore, INTSALL_SHORTCUTS and ACCESS_COARSE_LOCATION
permissions are used at a very low rate in botnet as well as in benign applications with 5%, 23%, and 1%,
17%, individually.

4.1.2 API Calls Graph
In Fig. 5, API calls are analyzed, because botnet not only relies on permissions to generate an attack.

Most commonly used API calls are getDeviceId ( ), getSubcriberId ( ) and getActiveNetworkInfo, with
71%, 70%, and 67% ratios, separately in malicious applications. Conversely, benign applications utilize
these API calls with only 10%, 1%, and 31% ratios, individually. This information is required to get
identification and the current network state of devices and send it to a remote server. Moreover,
getCellLocation ( ) and getDefault ( ) are used to track users’ active locations to exploit them. The above-
mentioned API calls are in the practice of botnet applications with 16% and 17% while benign
applications only used them with 0.3% and 0.6%, respectively. The API calls such as getLine1Number ( )
and getSimSerialnumber ( ) are equally used by a botnet and benign application with 3% ratio.
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Figure 4: Usage of permissions analysis in a botnet and benign applications
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4.2 Observed Dynamic Features among Botnet and Benign Applications

In dynamic features selection, results show the rising trend of botnet applications with the features array
such as network traces and file operations.

4.2.1 Network Traces
In Fig. 6, the most commonly used network traces features in botnet applications are detected. The

open_conn and con_attempt features try to establish a connection via TCP and UDP conversations. The
observed frequency of described network traces is 8865 and 5397 in botnet applications. In opposite,
benign applications have a 4628 and 383 times usage rate, respectively. Similarly, botnet having a C&C
mechanism causes network_leaks with the frequency of 862, conversely, in benign applications, its
occurrence is 164 times. In addition, http_conversations that create a connection between browser and web
servers are observed. It contains information about data, source and destination address, and time stamp.
The http_consversations ratio in benign and botnet applications has an average of 5.6% and 5.3%, individually.
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Figure 5: Usage of API calls analysis in a botnet and benign applications
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4.2.2 File Operations Graph
Figs. 7–9 depict the results of file operations. In which file_write, file_read, and file_leaks are

extensively are in the practice of malware authors.

In Fig. 7, the top applications in the context of file_read operations are observed. Botnet applications
cause to read files and steal sensitive data [37]. Furthermore, file_read in botnet applications is
surprisingly high in the opposite of benign with an average of 766 and 11 times, identically.

Fig. 8, depicts file_leaks operation in the top 20 botnet and benign applications. Botnet applications
cause file_leaks in which sensitive data such as device information, account login details are stolen by
botnet authors. The average rate of file_leaks in botnet and benign applications are 244 and 44 times,
individually. In the File_write operation botnet writers additionally add some malicious content in files
and automatically write multiple files in data storage that causes to use of excessive memory.

In Fig. 9, the top 131 applications used the aforementioned features extensively to perform harmful
operations. The usage rate of file_write operations in a botnet and benign applications are more than
1600 and 1200 times, individually. The average rate of file_write in benign and botnet applications is
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281 and 59 times, respectively. Moreover, file_write in some applications are above 1000 and 200 times, in
botnet and benign applications, separately. In file operations, botnet applications use the file_write to write
malicious binaries in external storage.

4.2.3 Crypto Operations Statistics
In Cryptographic operations, the encrypted code is used to secure communication between users and

other details such as bank account logins. While on the other hand, Android botnet authors used
cryptographic operations to hide malicious code and make this code to undetectable from applications.
Likewise, malware writers used encrypted malicious code to evade from detection mechanisms. In
Fig. 10, crypto_operations in a botnet and benign applications are observed. It shows that
crypto_operations are in more practice of botnet applications as compared to benign applications. Botnet
applications initiate twenty-two crypto operations, while benign applications used it only fifteen times.
The average rate of cryptographic operations in botnet and benign applications are 2011 and 276 times,
respectively.
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Figure 10: Crypto operations analysis in a botnet and benign applications
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4.3 Effectiveness & Performance

The performance of machine learning classifiers is measured in terms of true positive rate (TPR), false-
positive rate (FPR), Recall, Precision, F-Measures, and Accuracy, whereas for effective testing, 10 fold cross-
validation method is selected. The empirical results are presented in Tabs. 5–7.

In Tab. 5, the static analysis results of different machine learning classifiers with their evaluation
parameters are described. Among the aforementioned classifiers, Naïve Bayes gives the lowest accuracy
at 89.78%, while RF proves as the best classifier with an accuracy of 89.78%.

Tab. 6, demonstrates the dynamic detection rate of android botnet applications with various machine
learning classifiers. The RF provides maximum accuracy with 95.12% in comparison with other classifiers.

The result of the hybrid analysis is shown in Tab. 7, with a 10-fold cross-validation method. The RF
classifier outperforms, achieved the highest detection rate with 97.48% accuracy and the lowest false
positive rate with 0.034. Moreover, other classifiers such as simple logistic, J48, and multilayer
perceptron have an accuracy of 96%.

Table 5: Static analysis results with 10 fold cross validation

Classifiers TPR FPR Recall Precision F-Measures Accuracy

Naïve Bayes 0.898 0.083 0.898 0.910 0.900 89.78%

Simple Logistic 0.955 0.076 0.955 0.955 0.968 95.48%

Multi-layer Perceptron 0.957 0.068 0.957 0.957 0.957 95.37%

J48 0.954 0.070 0.913 0.954 0.954 95.37%

Random Forest 0.957 0.058 0.957 0.965 0.965 96.56%

Table 6: Dynamic analysis results with 10 fold cross validation

Classifiers TPR FPR Recall Precision F-Measures Accuracy

Naïve Bayes 0.725 0.157 0.725 0.826 0.737 72.53%

Simple Logistic 0.903 0.142 0.903 0.902 0.903 90.29%

Multi-layer Perceptron 0.904 0.148 0.904 0.903 0.903 90.40%

J48 0.939 0.089 0.939 0.939 0.939 93.89%

Random Forest 0.951 0.075 0.951 0.951 0.951 95.12%

Table 7: Hybrid analysis results with 10 fold cross validation

Classifiers TPR FPR Recall Precision F-Measures Accuracy

Naïve Bayes 0.854 0.102 0.854 0.883 0.859 85.42%

Simple Logistic 0.963 0.055 0.963 0.963 0.963 96.48%

Multi-layer Perceptron 0.965 0.051 0.965 0.965 0.965 96.45%

J48 0.967 0.046 0.967 0.967 0.967 96.66%

Random Forest 0.975 0.034 0.975 0.975 0.975 97.48%
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4.4 Comparison with Existing Approaches

In accordance with, our proposed botnet detection model is compared with different existing
approaches. In literature, most researchers only adopted static or dynamic analysis to perform their
experiments. In Fig. 11, the accuracy of our proposed hybrid model is compared with others. For
instance, Da Costa et al. [9], detected botnet applications by implementing a dynamic analysis method,
and wherefore it gives only 92.9% accuracy. Additionally, another researcher [8], follows a static analysis
method with three noticeable static features like permissions, broadcast receivers, and background
services, and provides 95.1% accuracy. However, in this work hybrid method is applied to detect android
botnet applications having C&C ability. In this way, our proposed model shows 97.48% detection
accuracy with prominent features.

5 Conclusion and Future Directions

In this paper, a hybrid learning-based mobile botnet detection model is proposed. The model is divided
into four modules (1) data collection (2) analysis module (3) features module and (4) machine learning
module. In the hybrid analysis, prominent static and dynamic features such as permissions, API calls,
network traces, data operations, etc. respectively, are considered. Furthermore, frequency analysis graphs
indicate that botnet attacks are in the practice of malware writers and make illicit use of multiple features.

Consequently, heterogeneous machine learning classifiers are applied. The Random Forest (RF)
achieved the best accuracy with 97.48% and minimum false positive rate (FPR) with 0.034 in the hybrid
analysis. In future directions, it is recommended to download applications from the trusted app store as
Google play store [23], install appropriate mobile security tools, educate people, and government should
make strict policies about cybersecurity.

Funding Statement: The authors received no specific funding for this study.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] StatcounterGlobalstats, “Operating system market share worldwide,” [Online]. Available: http://gs.statcounter.

com/os-market-share#monthly-201701-201805-bar (accessed May 29, 2018).

[2] Statista, “Number of apps available in leading app stores as of 1st quarter,” [Online]. Available: https://www.
statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/ (accessed May 29, 2018).

[3] R. Nigam, “A timeline of mobile botnets,” [Online]. Available: https://www.virusbulletin.com/virusbulletin/2015/
03/timeline-mobile-botnets (accessed May. 29, 2018).

Anwar et al.[8]

da Costa et al.[9] Proposed Framework

90

95

100

Figure 11: Comparison with existing approaches

928 CSSE, 2022, vol.43, no.3

http://gs.statcounter.com/os-market-share#monthly-201701-201805-bar
http://gs.statcounter.com/os-market-share#monthly-201701-201805-bar
https://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/
https://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/
https://www.virusbulletin.com/virusbulletin/2015/03/timeline-mobile-botnets
https://www.virusbulletin.com/virusbulletin/2015/03/timeline-mobile-botnets


[4] C. Cimpanu, “Chinese crooks assembling massive botnet of nearly 5 million Android devices,” [Online].
Available: https://www.bleepingcomputer.com/news/security/chinese-crooks-assembling-massive-botnet-of-
nearly-5-million-android-devices/ (accessed May 29, 2018).

[5] McAfee, “Mobile Threat Report Q1, 2018,” [Online]. Available: https://www.mcafee.com/enterprise/en-us/assets/
reports/rp-mobile-threat-report-2018.pdf (accessed May 29, 2018).

[6] G. Kirubavathi and R. Anitha, “Structural analysis and detection of android botnets using machine learning
techniques,” International Journal of Information Security, vol. 17, no. 2, pp. 153–167, 2012.

[7] A. Karim, R. Salleh and M. K. Khan, “SMARTbot: A behavioral analysis framework augmented with machine
learning to identify mobile botnet applications,” PloS One, vol. 11, no. 3, pp. e0150077, 2016.

[8] S. Anwar, J. M. Zain, Z. Inayat, R. U. Haq, A. Karim et al., “A static approach towards mobile botnet detection,”
in 3rd Int. Conf. on Electronic Design (ICED), Phuket, Thailand, pp. 563–567, 2016.

[9] V. G. T. da Costa, S. Barbon, R. S. Miani, J. J. P. C. Rodrigues and B. B. Zarpelão, “Detecting mobile botnets
through machine learning and system calls analysis,” in IEEE Int. Conf. on Communications (ICC), Paris,
France, pp. 1–6, 2017.

[10] M. Yang and Q. Wen, “A multi-level feature extraction technique to detect mobile botnet,” in 2nd IEEE Int. Conf.
on Computer and Communications (ICCC), Chengdu, China, pp. 2495–2498, 2016.

[11] Pearltrees, “Anubis-malware analysis for unknown binaries,” [Online]. Available: http://www.pearltrees.com/u/
4051585-malware-analysis-binaries (accessed May 29, 2018).

[12] CopperDroid, [Online]. Available: http://copperdroid.isg.rhul.ac.uk/copperdroid/ (accessed May 29, 2018).

[13] B. A. Store, “One stop store downloading & managing PC apps,” [Online]. Available: http://pcappstore.baidu.
com/en/index.php (accessed May. 29, 2018).

[14] The Drebin Dataset, [Online]. Available: https://www.sec.cs.tu-bs.de/~danarp/drebin/ (accessed May 29, 2018).

[15] D. A. Girei, M. Ali Shah and M. B. Shahid, “An enhanced botnet detection technique for mobile devices using log
analysis,” in 22nd Int. Conf. on Automation and Computing (ICAC), Colchester, UK, pp. 450–455, 2016.

[16] M. Eslahi, M. Yousefi, M. V. Naseri, Y. M. Yussof, N. M. Tahir et al., “Cooperative network behaviour analysis
model for mobile Botnet detection,” IEEE Symp. on Computer Applications & Industrial Electronics (ISCAIE),
Penang, Malaysia, pp. 107–112, 2016.

[17] S. Bojjagani and V. N. Sastry, “Stamba: Security testing for Android mobile banking apps,” in Advances in Signal
Processing and Intelligent Recognition Systems. Cham: Springer, pp. 671–683, 2016.

[18] T. Strazzere and T. Wyatt, “Geinimi trojan technical teardown,” [Online]. Available: https://androidcommunity.
com/wp-content/uploads/2011/01/Geinimi_Trojan_Teardown.pdf (accessed June 2, 2018).

[19] MalGenomeProject, “Android malware genome project,” [Online]. Available: http://www.malgenomeproject.org/
(accessed May 29, 2018).

[20] R. A. Al-Dayil and M. H. Dahshan, “Detecting social media mobile botnets using user activity correlation and
artificial immune system,” in 7th Int. Conf. on Information and Communication Systems (ICICS), Irbid,
Jordan, pp. 109–114, 2016.

[21] W. Hijawi, J. Alqatawna and H. Faris, “Toward a detection framework for Android botnet,” in Int. Conf. on New
Trends in Computing Sciences (ICTCS), Amman, Jordan, pp. 197–202, 2017.

[22] Cybersecurity, “Canadian institute for cybersecurity,” [Online]. Available: http://www.unb.ca/cic/datasets/index.
html (accessed May 29, 2018).

[23] G. Play, “Google play,” [Online]. Available: https://play.google.com/store?hl=en (accessed May 29, 2018).

[24] VirusTotal, [Online]. Available: https://www.virustotal.com/#/home/upload (accessed May 29, 2018).

[25] Malware Security blog, [Online]. Available: http://artemonsecurity.blogspot.com/ (accessed May 29, 2018).

[26] NJCCIC, “WireX,” [Online]. Available: https://www.cyber.nj.gov/threat-profiles/botnet-variants/wirex (accessed
May 29, 2018).

[27] NJCCIC, “RottenSys,” [Online]. Available: https://www.cyber.nj.gov/threat-profiles/android-malware-variants/
rottensys (accessed May 29, 2018).

[28] Contagio Mobile, [Online]. Available: http://contagiominidump.blogspot.com/ (accessed May 29, 2018).

CSSE, 2022, vol.43, no.3 929

https://www.bleepingcomputer.com/news/security/chinese-crooks-assembling-massive-botnet-of-nearly-5-million-android-devices/
https://www.bleepingcomputer.com/news/security/chinese-crooks-assembling-massive-botnet-of-nearly-5-million-android-devices/
https://www.mcafee.com/enterprise/en-us/assets/reports/rp-mobile-threat-report-2018.pdf
https://www.mcafee.com/enterprise/en-us/assets/reports/rp-mobile-threat-report-2018.pdf
http://www.pearltrees.com/u/4051585-malware-analysis-binaries
http://www.pearltrees.com/u/4051585-malware-analysis-binaries
http://copperdroid.isg.rhul.ac.uk/copperdroid/
http://pcappstore.baidu.com/en/index.php
http://pcappstore.baidu.com/en/index.php
https://www.sec.cs.tu-bs.de/~danarp/drebin/
https://androidcommunity.com/wp-content/uploads/2011/01/Geinimi_Trojan_Teardown.pdf
https://androidcommunity.com/wp-content/uploads/2011/01/Geinimi_Trojan_Teardown.pdf
http://www.malgenomeproject.org/
http://www.unb.ca/cic/datasets/index.html
http://www.unb.ca/cic/datasets/index.html
https://play.google.com/store?hl=en
https://www.virustotal.com/#/home/upload
http://artemonsecurity.blogspot.com/
https://www.cyber.nj.gov/threat-profiles/botnet-variants/wirex
https://www.cyber.nj.gov/threat-profiles/android-malware-variants/rottensys
https://www.cyber.nj.gov/threat-profiles/android-malware-variants/rottensys
http://contagiominidump.blogspot.com/


[29] GitHub, “androguard,” [Online]. Available: https://github.com/androguard/androguard/ (accessed May 29, 2018).

[30] GitHub, “apkinspector,” [Online]. Available: https://github.com/honeynet/apkinspector/ (accessed May 29, 2018).

[31] L. K. Yan and H. Yin, “Droidscope: Seamlessly reconstructing the OS and dalvik semantic views for dynamic
android malware analysis,” in 21st USENIX Security Symp. USENIX Security 12, Bellevue, WA, pp. 569–584, 2012.

[32] GitHub, “DroidBox,” [Online]. Available: https://github.com/pjlantz/droidbox (accessed May 29, 2018).

[33] Android, “APK Analyzer,” [Online]. Available: https://developer.android.com/studio/build/apk-analyzer
(accessed May 29, 2018).

[34] K.c. Andrubis, “Scan & analyze Android apks,” [Online]. Available: http://hackpla.net/anubis-scan-android-apks/
(accessed May 29, 2018).

[35] Weka, “Weka 3: Data mining software in Java,” [Online]. Available: https://www.cs.waikato.ac.nz/ml/weka/
(accessed May 29, 2018).

[36] S. Y. Yerima, S. Sezer and G. McWilliams, “Analysis of Bayesian classification-based approaches for Android
malware detection,” IET Information Security, vol. 8, no. 1, pp. 25–36, 2013.

[37] S. Anwar, M. F. Zolkipli, Z. Inayat, J. Odili, M. Ali et al., “Android botnets: A serious threat to Android devices,”
Pertanika Journal of Science & Technology, vol. 26, no. 1, pp. 37–70, 2018.

930 CSSE, 2022, vol.43, no.3

https://github.com/androguard/androguard/
https://github.com/honeynet/apkinspector/
https://github.com/pjlantz/droidbox
https://developer.android.com/studio/build/apk-analyzer
http://hackpla.net/anubis-scan-android-apks/
https://www.cs.waikato.ac.nz/ml/weka/

	A Learning Model to Detect Android C&C Applications Using Hybrid Analysis
	Introduction
	Related Work
	Methodology
	Results and Discussions
	Conclusion and Future Directions
	References


