Computer Systems Science & Engineering K Tech Science Press

DOI: 10.32604/csse.2022.021969
Article

An Efficient Schema Transformation Technique for Data Migration from
Relational to Column-Oriented Databases

Norwini Zaidi', Iskandar Ishak®’, Fatimah Sidi’ and Lilly Suriani Affendey”

!System Development and Engineering Center, Universiti Sains Islam Malaysia, 71800, Negeri Sembilan, Malaysia
2Faculty of Computer Science and Information Technology, Universiti Putra Malaysia, UPM Serdang, 43400, Selangor, Malaysia
*Corresponding Author: Iskandar Ishak. Email: iskandar i@upm.edu.my
Received: 22 July 2021; Accepted: 23 September 2021

Abstract: Data transformation is the core process in migrating database from rela-
tional database to NoSQL database such as column-oriented database. However,
there is no standard guideline for data transformation from relational database to
NoSQL database. A number of schema transformation techniques have been pro-
posed to improve data transformation process and resulted better query processing
time when compared to the relational database query processing time. However,
these approaches produced redundant tables in the resulted schema that in turn
consume large unnecessary storage size and produce high query processing time
due to the generated schema with redundant column families in the transformed
column-oriented database. In this paper, an efficient data transformation technique
from relational database to column-oriented database is proposed. The proposed
schema transformation technique is based on the combination of denormalization
approach, data access pattern and multiple-nested schema. In order to validate the
proposed work, the proposed technique is implemented by transforming data from
MySQL database to MongoDB database. A benchmark transformation technique
is also performed in which the query processing time and the storage size are
compared. Based on the experimental results, the proposed transformation techni-
que showed significant improvement in terms query processing time and storage
space usage due to the reduced number of column families in the column-oriented
database.

Keywords: Data migration; data transformation; column-oriented database;
relational database; big data

1 Introduction

Relational database has been the most popular database to be used by organizations around the world to
manage data [1,2]. However, as data usage in information system becoming more demanding in terms of the
data size, speed and variety, relational databases seems to be lacking in its ability in managing large volume
of data and different types of database schema or flexible schema in which the phenomenon is known as the
Big Data [2—4]. In order to overcome the relational database issues in handling the Big Data, NoSQL
database is developed. NoSQL is a database approach that has unstructured format and allowing data

This work is licensed under a Creative Commons Attribution 4.0 International License, which
@ @ permits unrestricted use, distribution, and reproduction in any medium, provided the original

work is properly cited.

mailto:iskandar_i@upm.edu.my
http://dx.doi.org/10.32604/csse.2022.021969
http://dx.doi.org/10.32604/csse.2022.021969

1176 CSSE, 2022, vol.43, no.3

management operations to be faster than the relational approach [5]. In order to cope with the Big Data
demand, organizations that are using relational database for their operations decided to migrate their
DBMS into NoSQL database. Migration process needs to be done properly to make sure that the new
NoSQL database captures the same structure and the operational tasks run smoothly.

The database migration process is defined as a process to transfer or move data from one database server;
storage types or data formats to another. Commonly, a data migration involves the ETL process or Extract,
Transform, and Load processes [6—9]. This process needs to be performed seamlessly without compromising
the data quality content and the performance of their current operations [10—12].

As shown in Fig. 1, data transformation is among the core process in data migration. According to [13],
data transformation is defined as a process to converting the data structure or data schema from source
database following the new data structure in target database. However, there are no standard guidelines
on how to transform the database schema from relational database and perform data migration to NoSQL
database [8—13]. Database administrators’ (DBA) experiences were used to manage the transformation
process and the migration process to the NoSQL database since there are no definitive guidelines to
perform data transformation between those two databases [13—15].

Data Extraction
Transformation

/ Data ‘ ’ Data Loading

e Extract data e Transform * Load data to
from data from source the target
source data schema database

to target data e Validate the
schema data

i 1

) Schema transformation
from relational database

- to NoSQL database

Source database Target database

Figure 1: Data migration process

Initial challenge of performing data transformation between relational databases to NoSQL database is it
requires the origin database to be analyzed properly in order to produce precise copy of NoSQL database
schema when compared to the original schema. Most of the data transformation approaches had no
problem of producing precise NoSQL database that is similar to its original schema as these approaches
have validation component in which it is compared to the original schema. However, these transformation
approaches produced unnecessary duplication that also created unnecessary storage for the destination
database. Unnecessary duplication also increases query-processing time of the NoSQL databases [14—18].

In this paper, an enhanced data transformation approach that combines the use of multiple-nested
schema and data access pattern is proposed for the purpose of minimizing data duplications and reduces
query processing time. Rowkey design is also considered in the proposed method in order to enhance the
transformation approach.

The rest of this paper is organized as follows: Section 2 highlights the related work on data
transformation approaches. Section 3 discusses the key issues in data transformation approaches including
data size and access time. Section 4 describes our proposed data transformation approach using
the combination of query processing pattern, key design and nested, multiple nested. In this section, the
architecture of the proposed model is also discussed. In Section 5, the experimental results of the
proposed approach are included. Query processing time and storage size are used to evaluate and

CSSE, 2022, vol.43, no.3 1177

compare the performance of the proposed model with the non-multiple nested approach. Finally in Section 6,
contributions of this paper are briefly concluded in this section.

2 Related Works

Based on the literatures, denormalization is a common technique for schema or data transformation of
relational database to NoSQL database [12]. Denormalization is defined as a technique to merge and
duplicate related data to eliminate join relationship between tables into a single table [15,19,20].
Denormalization is used to merge and duplicate related data to eliminate join relationship between tables
into a single table. There are also proposed works that involved the use of intelligent keys or rowkeys to
support denormalization. Unique rowkeys or intelligent keys for identification are determined in the same
NoSQL table [12,15,19-23]. Based on the differences in schema transformation techniques, there are no
standard guidelines to conduct schema transformation and migration from relational database to NoSQL
database [12-16].

An automatic SQL to NoSQL schema transformation technique from MySQL to HBase database is
proposed in [21]. It uses denormalization technique and the NoSQL DDI (denormalization, duplication,
intelligent keys) design principles to aggregate relational tables into NoSQL table. This technique also
used tall-narrow design that allows a table with few columns but many rows to have better query
retrieval. Its schema conversion technique parses the SQL table schema automatically and then converts
the relationships among the tables into several linked lists. After parsing all the tables, the chained length
of all linked list is identified. The row key with the highest cardinality is the combination of all the
primary keys with the longest chained length.

Structured denormalization is another denormalization-based technique in schema transformation from
relational database to NoSQL database [21]. This technique focuses on the work to autonomously
denormalize and re-aggregate SQL tables into NoSQL table and also follow the NoSQL DDI
(denormalization, duplication, intelligent keys) design principles. In this technique, schema analysis is
performed to review all the primary keys of the SQL table. The rowkey in column oriented NoSQL table
is selected from several primary keys and the relationships among the tables in SQL database. After the
rowkey is defined, the migration process aggregates all the columns to the NoSQL table. Schema
conversion technique in [20] improvised the work in [21] by adding a layer called persistence layer
between the application and the NoSQL database for querying. They also built a component called the
Mediator using Relational Database Management System (RBDMS) proxy that allows communication
between the RDBMS server and the application.

There are also approaches that did not focused on using denormalization. One of the approaches is
proposed in [24] by focusing on schema conversion from relational database to NoSQL database using
source data model, target data model, and translation of the source data model into a target data model. In
this technique, the schema of the relational database is the source data model and the column oriented
NoSQL database is the target data model. A data migration algorithm is used for translating the data
source model into the target model. The translation technique generates the target schema called the
translation pattern and generates the data instances to the target database from the source database. The
data conversion process consists of three stages, namely: data extraction to querying a relational database
using SQL commands, data processing that involves transformation of data to the target database format,
and injection process that injects the destination database. The proposed work in [24] also considers data
extraction using existing querying SQL commands; however, without considering data access pattern, the
transformation process produces data redundancy in the NoSQL database. A set of conversion rules has
been proposed in [13] as a guideline for migration process from the relational to the NoSQL database.
The proposed baseline conversion rules are rules on data proximity, column families, data quantity, and

1178 CSSE, 2022, vol.43, no.3

access pattern. The proposed conversion rules help database practitioners to transform the relational database
to the NoSQL database. However, there was no experiment conducted using the proposed conversion rule
guideline and the performance of the transformed NoSQL database is not measured.

Another data migration approach that did not focus on the denormalization is proposed in [25]. In this
approach, an SQL layer called SQLtoKeyNoSQL for transforming the structure of relational database to any
key-oriented NoSQL database such as document store database, key value database, and column-oriented
database. This schema conversion uses layer to map a relational database schema into a canonical model,
which is an intermediate data model between relational database and key-oriented NoSQL database. The
canonical model implements mapping strategies to map NoSQL command and SQL command using
REST API access methods (Get, Put, and Delete) to the NoSQL target schema. This layer has flexible
options for user to choose any targeted key oriented database. This layer also has the ability to manipulate
the relational database in any key oriented NoSQL database for users to manage the data. The SQL to
KeyNoSQL layer has an architecture that consists of seven modules for data migration process. The SQL to
KeyNoSQL layer has an Access Interface that received the SQL instruction and sends it to the SQL Parser
module. The SQL Parser module then performs semantic verifications and sends it to the Query Planner
module for query execution optimizer. The Translate module generates the access method to the Execution
Engine module. The Execution Engine module checks the login information, the target of NoSQL database,
and the table store from the Dictionary module before filtering the data and generates the result to be sent to
the Access Interface. The Communication module then executes requested access method to any key
oriented NoSQL database and the data returned from the NoSQL database are sent back to the Execution
Engine through Buffer. The data migration using the SQL layer focuses on the use of a special layer that
helps understanding the relational database through its metadata before it can be mapped into NoSQL. This
SQL layer also can execute the same SQL command to query the NoSQL database. However, this
technique needs high understanding on relational database data model before a layer or framework can be
developed to execute an existing SQL query for both the relational and the NoSQL databases.

One big issue related to the denormalization approaches (that also includes the use of rowkey design) is,
it merges the related join relationship tables to a single table in column-oriented table to optimize read
performance. It produces unnecessary duplicated data to the targeted column-oriented table [17]. This
also affected query-processing time and its size as duplicated data increases processing time and data
storage size. In order to improve denormalization-based approaches, data access pattern is used to be
analyzed from query logs and indexing in every table of relational database [17]. Denormalization-based
transformation technique that use access pattern in [26] used proposed four steps of data schema
transformation process from relational database to HBase database. The steps are denormalization,
extended table merging, key encoding, and view based on index. In this work, access pattern is reviewed
from query logs to improve HBase schema. In the denormalization steps, the one-to-one relationship and
one-to-many relationship are used to identify a pair or multiple tables that have one-to-one relationship or
one-to-many relationship. If there is only one pair or multiple pairs among the tables, the tables will be
merged in a separate column family based on the foreign key of the tables.

Another schema transformation technique to transform the NoSQL database using denormalization
technique and data access pattern is proposed in [27]. In this schema transformation technique, a data
model in the relational database is converted into the NoSQL database schema using three rules. The first
rule considers the correlated data that have the same access pattern into a single column family. Then, a
suitable foreign key of a table is chosen in the NoSQL database by considering the existing join
relationships of one-to-one, one-to-many, and many-to-many from the origin relational database. The
third and final rules merged the data tables to reduce the foreign keys based on access pattern of the
application. In the second phase, the data source schema and target schema are mapped using the Tableau
schema mappings.

CSSE, 2022, vol.43, no.3 1179

Data transformation using multiple-nested tables merging is proposed in [18]. The multiple nested table
merging merges more than three tables of the relational database into a single column-oriented table. It
incorporates three cases to design column-oriented schema that includes single table, nested, and multiple-
nested tables merging. The single table migrates a single table of the relational database to the column-
oriented schema and selects the primary key of the table in the relational database as a rowkey in the column
family of the column-oriented database. The column family contains all the data from the relational database.
The nested table merging transforms two tables from the relational database into a single column-oriented
table. The multiple nested table merging transforms and merges more than three tables from the relational
database into a single column-oriented table. This schema integrates the data from the multiple tables of a
relational database into a single column-oriented database table to improve query performance. However,
this work did not consider data access pattern that can help to reduce data redundancy of HBase database.

Based on the literatures, it shows that many of the previous works focuses on denormalization and
rowkey design as part of their schema transformation technique from the relational database to the
NoSQL database. However, none of the previous works have considered schema transformation with read
pattern, nested, and multiple nested, and rowkey design in a single solution. The combination of all
mentioned criterion can improve query performance and also reduce storage size as it fits the nature of
column-oriented database schema. Therefore, this study focuses on schema transformation using
denormalization with read pattern, nested and multiple nested table merging and rowkey design a solution
to reduce unnecessary production of redundant column families that increases storage size and to improve
query performance of the resulted column-oriented database.

3 Proposed Approach

The proposed schema transformation technique has three main steps as listed as follows:

1) Step 1: Denormalization with read pattern
2) Step 2: Nested and multiple nested table merging
3) Step 3: Rowkey design

Fig. 2 below shows the steps for the proposed schema transformation technique of this study.

Relational schema and query
log

}

Step 1: Denormalization with
read pattern

!

No
Same access
key?
Identify the primary key of the
Relational table, and cross check to Yes
Column oriented table rowkey which .
had been created Step 2: Nested, multiple nested Create another table to single
table merging and create to the column family
No single column family
All the primary key of
Relational table exist Step 3: Determine rowkey and
in Column oriented give a name to the HBase table
schema?
Yes |
End

Figure 2: Proposed schema transformation technique

1180 CSSE, 2022, vol.43, no.3

Step 1: Denormalization with Read Pattern

In the proposed schema transformation technique, the database schema and query logs of the relational
database are analyzed to identify the origin’s data access pattern. The data access pattern consists of the read
pattern and the write pattern of the application system [26—31]. The read pattern is derived from the SELECT
statement of the query logs while the write pattern is derived from the INSERT statement and the UPDATE
statement of the query logs. In this study, in order to design the HBase database schema, the read pattern is
used to determine the access key of the record from the conditional expression of a SELECT statement. This
is based on the previous works in that uses data access pattern in [13,26,27] which also focuses only on the
read pattern. In the proposed work, denormalization with read pattern is performed as the first step in schema
transformation technique to avoid merging of unrelated relational tables that do not have the same read
pattern.

The basic form of the SQL statement to identify a read pattern is shown as follows:
Given a SELECT statement for a query log Q [32]:

Q: SELECT <attribute list> FROM <table list> WHERE <condition>;

where:

i. <attribute list> is a list of attribute names whose values are retrieved by the query,
ii. <table list> is a list of relation names required to process the query,
iii. <condition> is a conditional expression that identifies the records to be retrieved by the query.

In SQL statement, the basic logical comparison operators for comparing attribute values with one
another are OPR = {=, <, <, >, > #}. Besides, the conditional expression can also be combined with the
Boolean conditions AND, OR, and NOT. The Boolean conditions AND and OR are used to filter
the records based on more than one condition. The Boolean condition AND displays a record if all the
conditions separated by AND are TRUE. While the Boolean condition OR displays a record if any of the
conditions separated by OR is TRUE. The Boolean condition NOT displays a record if the condition is
NOT TRUE. There is also a LIMIT clause that is used in the conditional expression to specify the
number of records to return [32].

In this study, the access key is identified through the <condition> clause where a <condition> clause can
be in the following forms:

(1) limit ?;

(2) 4; OPR 4;;

(3) 4; OPR ?;

(4) <condition;> <Boolean condition> <condition,> ... <condition,>;

where

A; and A; are the attributes of a table, “?” denotes a constant value, <Boolean condition> = {AND, OR,
NOT}, and < > can be in one of the above forms. Based on the forms shown above, the rules for
denormalization with read pattern are as described below:

i) Rule 1: If the <condition> clause is in the form as specified in (1), then the access key of query Q is
the primary key of the table specified in Q.

ii) Rule 2: If the <condition> clause is in the form as specified in (2), then the access key is either 4; or

A;.

iii) Rule 3: If the <condition> clause is in the form as specified in (3), then the access key is 4;.

CSSE, 2022, vol.43, no.3 1181

iv) Rule 4: If there are n conditions as in the form specified in (4), then the access key for each
condition, <condition i>, is identified based on the form of the <condition i> as stated in (1),
(2) or (3) above and Rule 1, Rule 2, or Rule 3 are applied accordingly.

v) Rule 5: If the access key identified by Rule 2 or Rule 3 contains security information, then it is not
recommended to be the access key to ensure information security [33]. Therefore, if the query Q
has only a single access key, then the primary key of the table specified in Q is selected as the new
access key of Q. Otherwise, if there are more than one access key, then the access key that contain
security information is drop, while others are maintain.

Step 2: Nested and Multiple Nested Table Merging

HBase is a column-oriented database thus there are no join relationships between the HBase tables like
in the relational database and it does not support multiple table queries [4,18]. After the transformation, all
the related tables in the relational database are merged into a single column family table with the support of
either nested or multiple nested merging [4]. The schema transformation approach proposed in [26,27] is
limited to only nested table merging. The nested table merging has resulted into the creation of more
column families in the HBase table that may contain redundant column families thus increases query
processing time and unnecessary storage size. A multiple nested table merging in schema transformation
is proposed in [4] with the aim to improve query performance and reduce data redundancy. Multiple
nested table merging is important to cater merging of more than two tables in which nested table merging
only cater for two tables.

Rule 1: Given a query Q i where A_p is the access key of Q_i based on table P, and a query Q j, where
A s is the access key of Q j based on table S, where both access keys have been identified in Step 1. If the
access key A _p = A_s, then both tables P and S are merged into a single column family, say PS. The nested
table merging merged two tables of different queries if the access keys between these queries are having the
same read pattern.

Rule 2: Given a query Q_iwhere A_j is the access key of Q_i based on tables P and S, where the access
key has been identified in Step 1. Both tables P and S are merged into a single column family, to become PS.
The nested table merging merged two tables of a single query that have the same read pattern.

Rule 3: Given a query Q with a list of tables, T={T 1,T 2, ..., T n}, where the access key of Tis T x,
identified in Step 1. The list of tables T are merged into a single column family say T°. The multiple nested
table merging merged more than two tables of a single query into a single column family in the HBase table.

Step 3: Rowkey Design

In HBase, only one rowkey is allowed for unique identification. The data in the HBase database are
sorted lexicographically by a rowkey and there is no secondary key in the HBase table [34-37]. In this
study, the rowkey is selected from the access key that is identified in Step 1. There are three steps on
how to produce a rowkey as explained in detail in Step 3.1, Step 3.2, and Step 3.3.

Step 3.1: In the first step of rowkey design, the access key of the table is checked whether it is the
primary key of the relational table. If it is, the access key is selected as a rowkey in the HBase
database schema. Otherwise, if the access key is not the primary key of the relational table, then a
rowkey is determined by combining the access key and the primary key of the relational table to
form a unique key. Given a table R in a relational database schema with a list of attributes = {R_1,
R 2, ..., R_n} where R i is the primary key. Assume a table H derived in Step 2 with attribute
list={H 1, H 2, ..., H m} and an access key H j. If the access key H_j is also the primary key of
the relational table, where H j = R i, then H_j is selected as the rowkey of table H in the HBase
database schema. Otherwise, H j is combined with R i to form a unique key H_j R i, the rowkey of
H table in the HBase database schema.

1182 CSSE, 2022, vol.43, no.3

Step 3.2: After creating all the rowkeys for each column family in the HBase database in Step 3.1, the
primary keys and the tables of the relational database schema are reviewed. If there is a primary key of a
table in the relational database schema that does not exist as a rowkey in the HBase database schema,
then a new table based on the relational database schema is created in the HBase database schema. The
primary key of the table in that relational database is the rowkey in the new HBase table. This is to ensure
that all tables of the relational database are migrated accordingly to the HBase database to avoid data
loss. Given a relational database schema, if the primary key R i of the R table does not exist in the
HBase database schema derived in Step 2, a new table R’ in the HBase database schema is created
for the R table. The primary key R i is selected as the rowkey of the new HBase table R’.

Step 3.3: In this step, a short and meaningful name is given to each table name, column family name,
and column qualifier name in the HBase database. This is based on the best practices according to
[26,36,38]. This is because HBase stores the column qualifier with the values and HBase does not
limit the number of column qualifiers. In order to reduce storage size, short table name, column
name, and column qualifier name are suggested in [26]. The name given should not be descriptive of
table like in a typical relational table name [36].

4 Evaluations

In order to validate our proposed work, experiments that involved data migration process have been
performed. The other related works had incomplete explanations and lack of information in their schema
transformation procedure thus the experiment of the work could not be emulated. Based on the literatures
reviewed; only [26] showed the detail explanation on schema transformation, experiments, and results.
Therefore, the work [26] is implemented and is used as the benchmark technique.

In terms of the database platform, HBase is used as the column-oriented database and MySQL is used for
the relational database. A benchmark dataset called DELL DVD dataset [39] is used in the experiment.
Apache Sqoop tool is used to migrate data from the relational database (MySQL) to the column-oriented
database (HBase). The computer system used in the experiment has one core processor and 4GB RAM
running on Ubuntu Linux operating system.

The performance measurement used in each analysis is shown as follows:

i) Database sizes: Database size is measure to show the size of the resulted HBase database after the
benchmark [26] and the proposed transformation techniques are performed. The database size is
measured in gigabyte (GB).

ii) Response time: Response time is measured to measure the efficiency of query performance of the
resulted HBase databases after both the benchmark and the proposed transformation techniques
are performed. Time is measured in second (s). The time measurement is calculated as total
time used for querying the HBase database using query for DELL DVD dataset. Each
measurement represents the average time of five runs using different value of the same listing
of query on HBase database of [26] as well the proposed technique.

The percentage of storage size and query performance time are measured by:
| Total differences of storage size resulted

k work h k
Data size difference (%)= from the benchmark work and the proposed work|

100 1
Total storage size of benchmark work X D

CSSE, 2022, vol.43, no.3 1183

| Total differences of query processing time resulted
from the benchmark work and the proposed work|
Total time taken of benchmark work

Query performance time difference (%)= x 100 (2)

Fig. 3 describes the overview of the proposed schema transformation technique to migrate database from
MySQL to HBase database. Once the data is successfully generated or download, the data are loaded into
MySQL database for transformation and migration process. After the schema transformation process is
performed, the data are migrated from MySQL database to HBase database using the Apache Sqoop. The
MySQL Java connector is used to connect between MySQL database and HBase database. The Cdata
Excel Add-In for HBase is used to export the HBase data to an excel file. The distance requirement is
calculated using the Harversine formula in the excel file and then the result is imported to the HBase
table. Haversine formula is the formula for calculating distance between two (2) locations [40—42] and it
is used in Query 9 in the experiment.

Generate '; | ‘ Excel ‘
data using =
Perl script MysQL
or | cchemaand || Create transformed Cdata Excel Add-In
download | | Gluarylog Hbase Schema ‘ ! for HBase
MysQL | — ‘ =
sl RDB ‘ NosaL
I (MysaL) \ Migrate data using Apache Sqoop J (Hbase)
Load data 1 /
toMysQL | ! n— o
database | ! [:
i Interact with HB
| >‘ MySQL Java Connector ‘ At L

Figure 3: Overview of the migration process from MySQL to HBase

Based on the implementation that has been performed, the benchmark transformation technique
produces eight tables with 23 column families as shown in Fig. 4. While, the proposed transformation
method produces 10 tables with ten tables and 15 column families as shown in Fig. 5. In order to validate
the reduction of data redundancy in HBase database, the database size of five tables of DELL DVD
dataset and database size of three tables of Employees dataset are calculated. This is done to measure the
size of the data that is used to create HBase database. In order to measure the storage size efficiency,
average decrease percentage of the resulted HBase schema are calculated from the proposed work and the
work done by [26] as the benchmark result.

Tab. 1 shows the database size of the table used in the experiment using the DELL DVD dataset. It
shows reduction in data size between 8% and 75% in all queries performed on the resulted HBase
database from the proposed technique when compared to the benchmark result. On average, it records
13.83% decrease of data size used. This shows that the proposed work has successfully reduced the data
size usage in data transformation from relational database to NoSQL database.

The results of the database query processing time are shown in Tab. 2. It shows reductions between 12%
and 40% in terms of processing time for every query performed. Based on the table, an average of 29.28%
decrease of query processing time is recoded when it is compared to the benchmark result’s work. This shows
that the proposed work has successfully produced a column-oriented database that is efficient in query
processing time when compared to the benchmark result.

1184 CSSE, 2022, vol.43, no.3

Table: customers Table: customers_ix_user Table: customers_IX_GEO
1
rowkey: CUSTOMERID rowkey: USERNAME ‘ [SWisY, EAGIEON, CUSTOMERID
CF1: customers CF1: customers ‘ | CF1: customers
L
Table: products Table: products_ix_categ
rowkey: PROD_ID rowkey: CATEGORY, PROD_ID
CF1: products CF1: products
CF2: categories CF2: categories
CF3: reorder CF3: reorder
CF4: inventory CF4: inventory
Table: orders Table: orders_ix_cust ‘ Table: orders_ix_date ‘
rowkey: ORDERID rowkey: CUSTOMERID, ORDERID ’ rowkey: ORDERDATE ‘
CF1: orders CF1: orders CF1: orders
CF2: customers CF2: customers CF2: customers
CF3: orderlines CF3: orderlines CF3: orderlines
CF4: products CF4: products CF4: products

Figure 4: Resulted HBase schema after transformation using technique in [26]

Table: prod Table: category Table: prod_inv

rowkey: TITLE, PROD_ID | o rowkey; PROD_ID

[CF1: prod CF1: prod (nested)
CF1: prod CF2: category CF2: products
CF3: inventory
Table: cust Table: ord Table: cust_GEO
rowkey: CUSTOMERID rowkey: ORDERID rowkey: LAT, LON, CUSTOMERID
CF1: cust CF1: ord (Multiple Nested) f
s : CFL:
CF2: ords (nested) CF2: orders S
Table: ord_Dt Table: reorder Table: orderlines
. rowkey: ORDERDATE, ORDERID . rowkey: PROD_ID, DATE_LOW rowkey: ORDERLINEID,0ORDERID
' CF1: ord_Dt | | cF1: reorder CF1: orderlines

Figure 5: Resulted HBase schema after transformation using the proposed technique

Figs. 4 and 5 describe the column families generated by both transformation technique of [26] and the
proposed work respectively. Fig. 4 shows the benchmark technique produced the migrated column oriented
database schema with 23 column families. Fig. 5 shows the resulted column-oriented database has been
produced by the proposed transformation technique with only 15 column families. This shows that the
proposed transformation technique managed to reduce the column families of the transformed schema
thus affected the query processing time and data size usage.

CSSE, 2022, vol.43, no.3 1185

Table 1: Data size usage of the proposed and benchmark techniques

Query Tables involved' Data size Datasize Tables Difference in Difference in
used (Gb)' usage (Gb)* involved® data size (Gb) data size (%)

QHI, customer 19.000 15.000 cust 4.000 21.05

QH3,

QH6

QH2 products 0.056 0.014 prod_inv 0.042 75.00

QH4, orders 7.700 6.500 ord 1.200 15.58

QHS5,

QH7

QHS orders_ix_date 4.500 4.100 ord Dt 0.400 8.89

QH9 customers IX GEO 24.00 22.000 cust GEO 2.000 8.33

"Results from experiment performed based on [26]. “Results from experiment performed based on the proposed work.

Table 2: Query processing time of the proposed and benchmark techniques

Query Query processing Query processing Difference in query Difference in query
time' (s) time? (s) processing time (s) processing time (%)

QH1 0.0398 0.0350 0.0048 12.06

QH2 0.0330 0.0228 0.0102 3091

QH3 332.2102 199.0166 133.1936 40.09

QH4 0.0240 0.0194 0.0046 19.17

QH5 0.0400 0.0272 0.0128 32.00

QH6 0.1880 0.1420 0.0460 24.47

QH7 0.219%4 0.1572 0.0622 28.35

QH8 1.7014 1.0416 0.6598 38.78

QHY9 42.5052 26.4816 16.0236 37.70

"Results from experiment performed based on [26]. *Results from experiment performed based on the proposed work

5 Discussion

Based on the comparison results of data size, it shows that the resulted HBase tables to have smaller data
size than the tables produced by the benchmark technique. Also, the resulted HBase tables produce reduction
in query processing time when compared to the query processing time of the benchmark technique. This
shows that the proposed schema transformation techniques had successfully achieve the objective of this
study in terms of reducing data size and processing time.

The proposed schema transformation technique has successfully produced a single column family in a
transformed HBase schema. This is because of the proposed technique ability to execute denormalization
using read pattern, nested and multiple nested table merging and rowkey design. The identified read
pattern helps to identify access key of the table and the nested and multiple nested table merging merge
the related joined table into a single column family. Rowkey design used in all transformed tables is
based on step 3. In addition, the short table name, column family name, and column qualifier name are
given to all transformed HBase tables in which it reduces storage size as long names are always given by
the previous approaches that in turn increase the data size unnecessarily. This is because the HBase

1186 CSSE, 2022, vol.43, no.3

database stored the column qualifier with the values and HBase does not limit the number of column qualifier
that will increase the storage size. The number of column families define in each table of the transformed
HBase tables are set to maximum of three column families to avoid data retrieval performance degraded
due to the HBase schema design.

6 Conclusion

In this study, the proposed schema transformation technique that utilizes denormalization with read
pattern, nested and multiple nested schemas, and rowkey design has shown to be effective for schema
transformation to NoSQL database. The read pattern helps to identify the access key from query logs in
the application system. The same read patterns are merged together into a single column family in HBase
table. This reduces data redundancy in the HBase database and reduces storage size. The nested and
multiple nested schemas helps to merge related tables from relational database into a single HBase table.
This is because HBase has no join relationship and it is difficult to query and retrieve data from multiple
tables after data migration to the HBase database. The nested and multiple nested schema design on
HBase leads to query only on a single HBase table to retrieve the data and thus provides efficient
accessing time. Lastly, the rowkey design helps to produce only one rowkey for single HBase table.

As a conclusion, the proposed schema transformation technique that utilizes denormalization with read
pattern, nested, multiple nested table merging, and rowkey design has proved that the technique successfully
reduced the data redundancy thus reduces the storage size and also efficiently improve query processing time.
Based on the comparison results of data size, it shows that the resulted HBase tables to have smaller data size
than the tables produced by the benchmark technique. Also, the resulted HBase tables produce reduction in
query processing time when compared to the query processing time of the benchmark technique. This shows
that the proposed schema transformation techniques had successfully achieve the objective of this study in
terms of reducing data size and processing time.

Acknowledgement: We thank Universiti Putra Malaysia Grant Scheme (Putra Grant) from Universiti Putra
Malaysia (GP/2020/9692500) for their support.

Funding Statement: This work is supported by Universiti Putra Malaysia Grant Scheme (Putra Grant)
(GP/2020/9692500).

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] J. R. Lourenco, V. Abramova, M. Vieira and B. Cabral, “NOSQL database: A software engineering perspective,”
Advances in Intelligent System and Computing, vol. 353, no. III-1V, pp. 741-750, 2015.

[2] L. Rocha, F. Vale, E. Cirilo, D. Barbosa and F. Mourdo, “A framework for migrating relational datasets to
NoSQL,” Procedia Computer Science, vol. 51, pp. 2593-2602, 2015.

[3] N. Ntarmos, L. Patlakas and P. Triantafillou, “Rank join queries in NoSQL databases,” in Proc. of the 2014 VLDB
Endowment, Hangzhou, China, pp. 493-504, 2014.

[4] G. Zhao, Q. Lin, L. Li and Z. Li, “Schema conversion model of SQL database to NoSQL,” in Proc. of the 9th Int.
Conf. on P2P, Parallel, Grid, Cloud and Internet Computing, 2014, Guangdong, China, pp. 355-362, 2014.

[5]1 S. Ghotiya, J. Mandal and S. Kandasamy, “Migration from relational to NoSQL database,” in IOP Conf- Series:
Materials Science and Engineering, Vellore, India, vol. 263, no. 4, pp. 1-7, 2017.

[6] P.Badlani, “NoSQL in action-a new pathway to database,” International Journal of Science and Research, vol. 5,
no. 6, pp. 872-877, 2016.

CSSE, 2022, vol.43, no.3 1187

[7] T. Odia, S. Misra and A. Adewumi, “Evaluation of hadoop/mapreduce framework migration tools,” in Proc. of the
Asia-Pacific World Congress on Computer Science and Engineering 2014, Nadi, Fiji, pp. 1-8, 2014.

[8] A. B. M. Moniruzzaman and S. A. Hossain, “Nosql database: New era of databases for big data analytics-
classification, characteristics and comparison,” arXiv Preprint, arXiv:1307.0191, vol. 6, no. 4, pp. 1-14, 2013.

[9] S. H. A. El-Sappagh, A. M. A. Hendawi and A. H. El Bastawissy, “A proposed model for data warehouse ETL
processes,” Journal of King Saud University, Computer. & Information Science, vol. 23, no. 2, pp. 91-104, 2011.

[10] M. A. Ashok, “A review to the approach for transformation of data from MySQL to NoSQL,” International
Journal of Engineering, Applied and Management Sciences Paradigms, vol. 46, no. 1, pp. 9-14, 2017.

[11] J. Ahmed and R. Gulmeher, “NoSQL databases: New trend of databases, emerging reasons, classification and
security issues,” International Journal of Engineering Sciences & Research Technology, vol. 9655, no. 6, pp.
176-184, 2015.

[12] A. Goyal, A. Swaminathan, R. Pande and V. Attar, “Cross platform (RDBMS to NoSQL) database validation tool
using bloom filter,” in Proc. of 2016 Int. Conf. on Recent Trends in Information Technology, Chennai, India, pp. 1—
5, 2016.

[13] R. Ouanouki, A. April, A. Abran, A. Gomez and J. M. Desharnais, “Toward building RDB to HBase conversion
rules,” Journal of Big Data, vol. 4, no. 10, pp. 1-21, 2017.

[14] T. Jia, X. Zhao, Z. Wang, D. Gong and G. Ding, “Model transformation and data migration from relational
database to MongoDB,” in Proc. of the 2016 IEEE Int. Congress on Big Data, BigData Congress 2016,
San Francisco, CA, USA, pp. 60-67, 2016.

[15] A. Gomez, A. Ravanello, R. Ouanouki, A. April and A. Abran, “Experimental validation as support in the
migration from SQL databases to NoSQL databases,” in Proc. of the Cloud Computing 2015: The Sixth Int.
Conf. on Cloud Computing, GRIDs and Virtualization 2015, Nice, France, pp. 147-153, 2015.

[16] C. H. Lee and Y. L. Zheng, “Automatic SQL-to-NoSQL schema transformation over the MySQL and HBase
databases,” in Proc. of the 2015 IEEE Int. Conf. on Consumer Electronics - Taiwan, ICCE-TW 2015, Taipei,
Taiwan, pp. 426-427, 2015.

[17] A.Gomez, R. Ouanouki, A. April and A. Abran, “Building an experiment baseline in migration process from SQL
databases to column oriented NoSQL databases,” Journal of Information Technology & Software Engineering,
vol. 4, no. 2, pp. 1-7, 2014.

[18] G. Zhao, L. Li, Z. Li and Q. Lin, “Multiple nested schema of HBase for migration from SQL,” in Proc. IEEE Int.
Conf. on P2P, Parallel, Grid, Cloud and Internet Computing, Guangzhou, China, pp. 338-343, 2014.

[19] J. Yoo, K. H. Lee and Y. H. Jeon, “Migration from RDBMS to NoSQL using column-level denormalization and
atomic aggregates,” Journal of Information Science and Engineering, vol. 34, no. 259, pp. 243-259, 2018.

[20] N. Kuderu and V. Kumari, “Relational database to NoSQL conversion by schema migration and mapping,”
International Journal of Computer Engineering in Research Trends, vol. 3, no. 9, pp. 506-513, 2016.

[21] C. H. Lee and Y. L. Zheng, “SQL-To-NoSQL schema denormalization and migration: A study on content
management systems,” in Proc. of the 2015 IEEE Int. Conf. on Systems, Man, and Cybernetics, 2015, Hong
Kong, pp. 2022-2026, 2015.

[22] L. Ho, M. J. Hsieh, J. J. Wu and P. Liu, “Data partition optimization for column-family NoSQL databases,” in
Proc. of the Int. Conf. on Smart City/SocialCom/SustainCom Together with DataCom, Chengdu, China,
pp. 668-675, 2015.

[23] A. Kanade, A. Gopal and S. Kanade, “A study of normalization and embedding in MongoDB,” in Proc. of the
2014 IEEE Int. Advance Computing Conf., [ACC 2014, Gurgaon, India, pp. 416-421, 2014.

[24] S. A. T. Mpinda, L. G. Maschietto and P. A. Bungama, “From relational database to column-oriented NoSQL
database : Migration process,” International Journal Engineering Research and Technology, vol. 4, no. 5, pp.
399-403, 2015.

[25] G. A. Schreiner, D. Duarte and R. dos, S. Mello, “SQLtoKeyNoSQL: A layer for relational to key-based NoSQL
database mapping,” in Proc. of the 17th Int. Conf. on Information Integration and Web-Based Applications &
Services, Brussels, Belgium, pp. 1-9, 2015.

1188 CSSE, 2022, vol.43, no.3

[26] D. Serrano, D. Han and E. Stroulia, “From relations to multi-dimensional maps: Towards an SQL-to-HBase
transformation methodology,” in Proc. 2015 IEEE 8th Int. Conf. on Cloud Computing, New York, NY, USA,
pp- 81-89, 2015.

[27] C. Li, “Transforming relational database into HBase: A case study,” in Proc. of the IEEE Int. Conf. on Software
Engineering and Service Sciences, 2010, Beijing, China, pp. 683—687, 2010.

[28] H. Khazaei, M. Fokaefs, S. Zareian, N. Beigi-Mohammadi, B. Ramprasad et al., “How do I choose the right
NoSQL solution? A comprehensive theoretical and experimental survey,” Big Data and Information Analytics,
vol. 1, no. 2, pp. 185-216, 2016.

[29] F. Zhu, J. Liu, S. Wang, J. Xu, L. Xu et al., “Hug the elephant: Migrating a legacy data analytics application to
hadoop ecosystem,” in Proc. of the 2016 IEEE Int. Conf. on Software Maintenance and Evolution, Raleigh, North
Carolina, USA, pp. 177-187, 2016.

[30] MongoDB, (2020, Feb). RDBMS to MongoDB Migration Guide. [Online]. Available: https://medial6.
connectedsocialmedia.com/MongoDB/14856/RDBMS MongoDB Migration Guide.pdf/ (accessed on
29 December 2019).

[31] J. Klein, I. Gorton, N. Ernst, P. Donohoe, K. Pham et al., “Application-specific evaluation of NoSQL databases,”
in Proc. IEEE Int. Congress on Big Data, Los Angeles, CA, USA, pp. 526534, 2015.

[32] R. Elmasri and S. B. Navathe, “Basics of functional dependencies and normalization for relational databases,” in
Fundamentals of Database Systems, 6th ed.; Pearson: Texas, United States of America, pp. 491-532, 2011.

[33] J. Jose, T. T. Tomy, V. Karunakaran, V. A. Krishna, A. Varkey et al., “Securing passwords from dictionary attack
with character-tree,” in Proc. of the 2016 IEEFE Int. Conf. on Wireless Communications, Signal Processing and
Networking, 2016, Chennai, India, pp. 2301-2307, 2016.

[34] O. Hajoui, R. Dehbi, M. Talea and Z. I. Batouta, “An advanced comparative study of the most promising NoSQL
and NewSQL databases with a multi-criteria analysis method,” Journal of Theoretical & Applied Information
Technology, vol. 81, no. 3, pp. 579-588, 2015.

[35] V. Manoj, “Comparative study of NoSQL document, column store databases and evaluation of cassandra,”
International Journal of Database Management System, vol. 6, no. 4, pp. 29-39, 2016.

[36] A. H. Team, Apache HBase™ Reference Guide, 2019. [Online]. Available: http://hbase.apache.org/book/book.
html (accessed on 12th November 2019).

[37] L. George, in HBase: The Definitive Guide, O’Reilly Media: Sebastopol, California, 2011.

[38] D. DeRoos, P. C. Zikopoulos, R. B. Melnyk, B. Brown and R. Coss, in Hadoop for Dummies, John Wiley & Sons:
Hoboken, New Jersey, 2014.

[39] T. Muirhead (2019). DVD store test application, [Online]. Available: https://github.com/dvdstore/ds3/tree/
master/ds3.

[40] E. Winarno, W. Hadikurniawati and R. N. Rosso, “Location based service for presence system using haversine
method,” in Proc. of the 2017 Int. Conf. on Innovative and Creative Information Technology: Computational
Intelligence and IoT, Salatiga, Indonesia, pp. 1-4, 2017.

[41] V. Jovanovic, V. Lazovic and N. Minic, “SQL query execution time between two singidunum university
locations,” in Proc. of the Int. Scientific Conf. of IT and Business Related Research, Belgrade, Serbia, pp. 624—
628, 2015.

[42] N. Chopde and M. K. Nichat, “Landmark based shortest path detection by using A* and haversine formula,”
International Journal of Innovative Research in Computer and Communication Engineering, vol. 1, pp. 298—

302, 2013.

https://media16.connectedsocialmedia.com/MongoDB/14856/RDBMS_MongoDB_Migration_Guide.pdf/
https://media16.connectedsocialmedia.com/MongoDB/14856/RDBMS_MongoDB_Migration_Guide.pdf/
http://hbase.apache.org/book/book.html
http://hbase.apache.org/book/book.html
https://github.com/dvdstore/ds3/tree/master/ds3
https://github.com/dvdstore/ds3/tree/master/ds3

	An Efficient Schema Transformation Technique for Data Migration from Relational to Column-Oriented Databases
	Introduction
	Related Works
	Proposed Approach
	Evaluations
	Discussion
	Conclusion
	flink7
	References

