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Abstract: Improving short-term wind speed prediction accuracy and stability
remains a challenge for wind forecasting researchers. This paper proposes a
new variational mode decomposition (VMD)-attention-based spatio-temporal net-
work (VASTN) method that takes advantage of both temporal and spatial correla-
tions of wind speed. First, VASTN is a hybrid wind speed prediction model that
combines VMD, squeeze-and-excitation network (SENet), and attention mechan-
ism (AM)-based bidirectional long short-term memory (BiLSTM). VASTN initi-
ally employs VMD to decompose the wind speed matrix into a series of intrinsic
mode functions (IMF). Then, to extract the spatial features at the bottom of the
model, each IMF employs an improved convolutional neural network algorithm
based on channel AM, also known as SENet. Second, it combines BiLSTM
and AM at the top layer to extract aggregated spatial features and capture tempor-
al dependencies. Finally, VASTN accumulates the predictions of each IMF to
obtain the predicted wind speed. This method employs VMD to reduce the ran-
domness and instability of the original data before employing AM to improve pre-
diction accuracy through mapping weight and parameter learning. Experimental
results on real-world data demonstrate VASTN’s superiority over previous related
algorithms.

Keywords: Short-term wind speed prediction; variational mode decomposition;
attention mechanism; SENet; BiLSTM

1 Introduction

Wind energy, as one of the most environmentally friendly renewable resources, has obvious benefits,
such as cleanliness, low cost, and sustainability. It has become the primary renewable energy source and
is rapidly developing globally [1]. Wind power’s intermittent nature, randomness, and instability,
however, pose challenges to wind power generation systems [2].

Accurate wind speed prediction is critical for wind energy conversion system configuration, scheduling,
maintenance, and planning [3]. Four main conventional wind speed algorithms are currently in use: 1)
physical methods, 2) statistical methods, 3) spatial correlation methods, and 4) artificial intelligence (AI)
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methods. A physical method, such as numerical weather prediction, is to develop a physical or
meteorological information model, such as temperature, air pressure, humidity, topography, and air
density, to predict wind speed over time [4]. However, this method necessitates complex calculations and
performs poorly in short-term wind speed forecasts [5]. Based on big historical data, statistical methods
use mathematical equations to predict wind speed [6]. Autoregressive moving average model, moving
average model, autoregressive model (AR), and autoregressive integrated moving average model are
some of its representative methods [7]. For prediction, spatial correlation methods rely on the interaction
of wind speed at different wind speed observation sites [8]. AI methods are not dependent on a precise
model of the object. Instead, they learn the relationships between inputs and outputs using historical data.
Consequently, they are appropriate for random nonlinear systems. Deep learning algorithms, such as
multilayer perception (MLP) [9], recurrent neural network (RNN) [10], convolutional neural network
(CNN) [11], gated recurrent unit (GRU), long short-term memory (LSTM), and others have been used for
short-term wind speed prediction since the development of deep learning.

Traditional AI methods are simple to implement and can be adapted in various ways. However, due to
the randomness and intermittent nature of wind speed, traditional AI methods still have room for
improvement. In this regard, the academic community has proposed a hybrid prediction model based on
modal decomposition methods to obtain relatively stable wind velocity subsequences, such as empirical
mode decomposition (EMD), which is good at processing nonlinear nonstationary signals [12], ensemble
empirical mode decomposition (EEMD), which is an improved method for EMD mixing phenomenon
[13], and complete ensemble empirical mode decomposition, which is based on EEMD, eliminating the
unclean noise removal of EEMD [14]. The VMD method is robust to sampling and noise and overcomes
the limitations of EMD to a certain extent. Comparative studies show that the VMD hybrid model
outperforms a single prediction model in terms of prediction accuracy [15–17], so this study employs
VMD to decompose wind speed series.

Currently, most researchers focus on selecting input variables in the prediction process while ignoring
the different impact levels of various model features on the output. Furthermore, most AI wind speed
prediction methods only extract temporal features. In recent years, research interest in capturing spatial
features has increased. Consequently, this paper proposes a new method for predicting wind speed based
on CNN’s attention mechanism (AM) and the BiLSTM deep learning network based on VMD
decomposition. First, the wind farm’s spatio-temporal wind speed is used as input data to build SENet, a
CNN architecture that uses the AM to weigh channel features. It can pay more attention to the
effectiveness and reduce the impact of useless features while extracting spatial features. The data
containing spatial features are then transferred to the BiLSTM-Attention layer, which extracts temporal
features. To strengthen the influence of important information, different weights are assigned to the
hidden state of BiLSTM using mapping weights and parameter learning. This method addresses the issue
of the existing wind speed prediction AI models’ insufficient accuracy.

The remainder of the paper is organized as follows: Section 2 explains the basic principles of the
algorithm’s framework; Section 3 illustrates a detailed introduction to the VASTN network architecture;
Section 4 discusses the experimental results and compares them with other typical algorithms; Section
5 summarizes the entire paper.

2 Background Theories

2.1 Variational Mode Decomposition

VMD is a new signal decomposition technology proposed by Dragomiretskiy et al. [18] that is primarily
used to decompose an input signal into a discrete number of subsignals known as modes. First, VMD
decomposes the original signal into a bandwidth with a center pulsation based on the number of modes
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specified. The alternate direction multiplier method (ADMM) is then used to update each mode and its
corresponding center pulsation, gradually demodulating each mode to its corresponding baseband.
Finally, it extracts each mode and the associated center pulsation.

Assuming that the data to be processed is f, each mode is uk and its center frequency is ωk. The specific
process of VMD is as follows.

1) To obtain the unilateral spectrum, compute the analytic signal associated with each mode using
Hilbert transform.

2) The frequency spectrum of each mode is modulated to the baseband by exponentially mixing the
analytical signal of each mode and the corresponding center frequency.

3) To obtain the gradient square L-norm, the signal is demodulated using Gaussian smoothness. It has the
following variational constraint model.

min
fukg; fxkg
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where the number of modes to be decomposed is K, {uk} corresponds to the k-th mode, {ωk} is its center
pulsation, δ(t) is the Dirac function, and * means the convolution operation.

4) Use the quadratic penalty function α and the Lagrange multiplier λ to find the optimal solution to the
abovementioned variational constrained model. The constrained variational problem is transformed
into a nonconstrained variational problem, and the resulting Lagrangian function is as follows.
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5) Finally, the ADMMmethod is used to solve the unconstrained variational problem, and uk and ωk are
updated continuously throughout the solution process. Finally, each uk can complete the frequency
band division based on the frequency domain characteristics of f and realize the adaptive signal
decomposition. The following are the new uk and ωk of the solution.

ûnþ1
k ¼

f̂ ðxÞ �P
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2
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(4)

uk and ωk do not stop updating until they meet the following criteria.X
i

kûnþ1
k � ûnkk22=kûnkk22, e (5)

ɛ is a given level of accuracy greater than 0.
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2.2 SENet

Hu et al. proposed squeeze-and-excitation networks (SENet), a CNN-based AM that learns the features
of different channels. SENet refers to the “squeeze-and-excitation” (SE) block of learning the relationship
between the CNN convolution kernel’s channels. It employs the channel AM to adaptively recalibrate
channel-wise feature responses by explicitly modeling the interdependencies. Finally, the SENet
architecture combines the SE block with the general CNN network [19].

CNN is a feedforward neural network with a deep structure that employs convolutional calculations
[20]. As a representative deep learning model, it uses trainable convolution kernels, local pooling
operations, and fully connected operations to alternately apply the results of forward and
backpropagations to the raw input to extract spatial features [21]. Due to its superior performance, CNN
has been widely used to extract spatial features in various fields, including machine vision [22], voice
recognition [23], and text processing.

The structure of an SE block is depicted in Fig. 1. First, following the traditional convolution operation,
the size of the convolution kernel is compressed to 1 × 1 ×C using the global average pool. The weight of
each channel is then calculated through the excitation operation and assigned to the convolution kernel.
Where Ftr represents a convolution operation with the following input and output:

Ftr:X ! U ; X 2 RW 0�H 0�C0
; U 2 RW�H�C (6)

The formula of Ftr is as follows.

uc ¼ vc �X ¼
XC0

s¼1

vsc � xs (7)

where uc represents the c-th two-dimensional (2D) matrix in the three-dimensional (3D) matrix U and vsc, is a
2D spatial kernel that acts on the corresponding channel of X and represents a single channel of vc.

SENet proposes a squeeze step to address the problem of not utilizing channel correlation. To focus on
the channel information, the spatial features are compressed using global average pooling. Eq. (8) transforms
the input of W ×H ×C into the output of 1 × 1 ×C.

zc ¼ FsqðucÞ ¼ 1

W � H

XW
i¼1

XH
j¼1

ucði; jÞ (8)

The purpose of the excitation operation is to fully capture the channel dependencies. Therefore, it
employs a straightforward gating mechanism with sigmoid activation.

Figure 1: A typical squeeze-and-excitation block
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s ¼ Fexðz; W Þ ¼ rðgðz; W ÞÞ ¼ rðW2dðW1zÞÞ (9)

In Eq. (9), z is the squeeze output, W1,W2 are fully connected layer operation, δ indicates a ReLU layer
operation. And then the output go through the sigmoid function σ to get swhich is to characterize the weights
of c feature maps in matrix U. This weight is learned by training the previous fully connected and nonlinear
layers end-to-end.eXc ¼ Fscaleðuc; scÞ ¼ sc � uc (10)

Finally, the SE block applies the calculated channel weight to each matrix using Eq. (10), where sc is the
weight of c-th matrix U.

2.3 BiLSTM

LSTM is proposed as the main component of BiLSTM to overcome limitations such as gradient
vanishing and long-term dependence of recurrent neural networks (RNN). Furthermore, because of its
superiority in dealing with sequential data, LSTM has found widespread application in video analysis
[24], speech recognition [25], signal analysis [26], etc.

LSTM introduces a gate mechanism to control the circulation and loss of features to solve the long-term
dependence problem of RNN. Fig. 2 depicts the transmission of data characteristics between several adjacent
LSTM cells, where Xt, ht, and ct represent the input data, output value, and unit state at time t, respectively.

Each LSTM unit employs three gates to determine whether the information is retained or lost, as shown
by the six formulas below, where w represents the input matrix, b denotes a bias vector, and σ is an activation
function:

1). The forget gate: The forget gate ft determines how much of the unit state ct−1 at the previous moment
is retained in the current moment ct.

ft ¼ rðwf � ½ht�1; xt� þ bf Þ (11)

2). The input gate: The input gate it determines the amount of network input xt saved to the unit state ct at
the current time.

it ¼ rðwi � ½ht�1; xt� þ biÞ (12)

3). The output gate: The output gate ot controls the proportion of the current output value ht output by the
control unit status ct to the LSTM.

Figure 2: Structure of long short-term memory (LSTM) units
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ot ¼ rðwo � ½ht�1; xt� þ boÞ (13)

4). Unit status update value ~ct.

~ct ¼ tanhðwc � ½ht�1; xt� þ bcÞ (14)

5). Unit state ct.

ct ¼ ft � ct�1 þ it � ~ct (15)

6). Output value ht.

ht ¼ ot � tanhðctÞ (16)

BiLSTM is an extension of regular LSTM, which comprises forward and backward LSTMs (i.e., left-to-
right and right-to-left). First, it employs LSTM on the forward input sequence. The reverse input sequence is
then fed into the LSTM model. Consequently, the model’s accuracy can be improved because using the
LSTM twice can greatly improve the long-term dependence [27]. Recent research has shown that this
method can also predict wind speed [28].

3 Methodology

3.1 Data Process

A difficult problem is retaining the spatio-temporal correlation of data without increasing the amount of
data. Dimension reduction is an efficient preprocessing method of spatio-temporal wind speed data, which
can remove noise and unimportant features of high-dimensional data and subsequently improve data
processing speed [29]. In this paper, the spatial wind speed matrix proposed [30] is a practical solution
for organizing spatio-temporal wind speed data into two dimensions (SWSM). Typically, our dataset
comes from a 2D array, which can be represented by an M ×N grid and each wind speed station by
coordinates (i, j)(1 ≤ i ≤M, 1 ≤ j ≤N) (Fig. 3a). The wind speed in the time dimension is a one-
dimensional time series for each wind speed station (Fig. 3b). Consequently, multiple continuous-time
SWSM can represent the 3D distribution of all wind speeds in time and space.

Figure 3: (a) Awind speed time series. (b) A series of spatio-temporal wind speed data into two dimensions
(SWSM)
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Another issue is that VMD is typically used to decompose time series, making it difficult to act directly
on 3D spatio-temporal data. In this case, we improved SWSM to solve it (Fig. 4), where k is the number of
modes.

1) After completing the SWSM, extract and save the wind speed for each time series separately.
2) Using VMD, decompose each time series separately and obtain IMF1, IMF2, … IMFk for each time

sequence.
3) The IMFs are divided into k sub-SWSMs based on their positions.

3.2 The Basic Strategy for VASTN

Removing irrelevant data from the deep hybrid architecture can significantly reduce unnecessary
training time and prevent overfitting. Consequently, the VASTN algorithm first removes all useless data
from the selected original data, leaving only the wind speed, corresponding time, and geographic location
information to ensure the dataset’s temporal and spatial correlation. The original SWSM with solid
nonlinearity and randomness is then decomposed using VMD into a series of sub-SWSM composed of
IMF. Next, we use the SENet-BiLSTM-Attention hybrid framework for model training and prediction for
each sub-SWSM component and obtain the predicted value of each IMF. Finally, the predicted values of
each IMF are superimposed to obtain the final predicted wind speed. Fig. 5 depicts the flow chart for the
preceding procedure.

3.3 Network Architecture

Following the data processing described above and the use of VMD, we must extract the features of the
sub-SWSM, i.e., the extraction of spatial features and the capture of temporal features.

The spatial features are extracted using SENet. It has the following advantages: 1) The topology-
preserving nature of kernels enables CNNs to fully and directly utilize spatial attributes from a single
SWSM [31]. 2) SENet can learn to use global information to selectively emphasize channels’ information
and suppress useless information without increasing computational complexity [19].

Herein, we use a combination of BiLSTM and an AM as the time model to capture the extracted spatial
features in time sequences, with the following advantages: 1) LSTM can analyze the dependencies within the
sequence by capturing both long-term and short-term time characteristics to meet different forecasting needs.

Figure 4: Steps to generate sub-SWSM composed of intrinsic mode functions (IMFs)
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2) Because BiLSTM traverses time series in both directions, it is more effective than general LSTM at
extracting time features [32]. 3) Finally, by combining the AM and BiLSTM, the model can focus on
more important features, reducing training time complexity while increasing prediction accuracy.

Fig. 6a depicts the overall network framework proposed by the paper, At the model’s base, CNN is used
to extract the spatial characteristics of a single wind speed matrix that can be viewed as a grayscale image.
The SE block then accepts the output of the CNN layer to emphasizes critical channel information while
weakening useless information, analyzing spatial correlation in the wind farm. Next, we use a fully
connected layer to change the dimensionality of the SENet output so that it can be input into the
BiLSTM layer. In the model’s upper layer, we use BiLSTM to capture temporal features among
previously extracted spatial features bidirectionally. The AM can simultaneously improve efficiency and
accuracy. Finally, the top layer can output the current IMF forecast value, which is combined with other
IMF forecast results to produce the final wind speed forecast value.

The mixed model can be jointly trained using a loss function defined as a mean squared error (MSE).

1

n

Xn
i¼1

ðŷi � yiÞ2 (17)

where n is the total data count, yi represents the i-th actual wind speed, and ŷi is the predicted value of i-th
wind speed.

Figure 5: The flowchart of variational mode decomposition-attention-based spatio-temporal network
(VASTN)
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The training error propagates down the model backward during model training, i.e., the backpropagation
(BP) algorithm, widely used in various domains such as surgical simulation [33]. The error difference
propagates from the BiLSTM-Attention layer to the SENet layer and the underlying CNN. Consequently,
each layer can adjust parameters using the training error. Another potential advantage is that the spatial
model (SENet) can adapt based on temporal data. Similarly, the temporal model (BiLSTM-Attention) can
adjust based on spatial data [30]. This way, space and time learning can be coupled together, allowing the
entire framework to learn spatio-temporal features simultaneously.

4 Case Study

4.1 Data Set

The National Renewable Energy Laboratory provides the Wind Integration National Dataset Toolkit,
which is a dataset that realistically reflects the ramping characteristics, spatial and temporal correlations,
and capacity factors of simulated wind plants. It includes wind speed data with a 5-min resolution for
over 126,000 land-based and offshore wind power production sites across the continental United States
from 2007 to 2013 [34].

This paper uses 100 wind speed datasets with 52560 frames at ten-minute intervals generated from a
10 × 10 wind turbine matrix in New Mexico at 36.5 latitude and −103.3 longitude for the whole year of
2012, with the highest wind speed being 32.77 m/s and the lowest wind speed being 0.02 m/s.

Figure 6: (a) The process of the network framework
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4.2 Data Decomposition

The parameters of the VMD algorithm are as follows: the number of modes K, the penalty term α, the
fidelity coefficient τ, and the convergence tolerance level ɛ. Studies have shown that τ and ɛ can usually take
default values [35]; hence, the difficulty and focus of the VMD algorithm lies in determining how to select
the appropriate K and α. Herein, the values of K and α refer to the method [36], and we conduct multiple
experiments to determine K = 8, α = 2000, and τ = 0.3. In terms of the frequency spectrum of the
decomposition mode, a very small K can result in signal under-segmentation, while too many modes can
result in pattern repetition or additional noise [36]. Fig. 7a depicts the decomposition result, and Fig. 7b
depicts the absence of modal aliasing in the decomposition result, indicating that the decomposition
achieves a relatively ideal effect.

4.3 Evaluation Criteria

This paper compares the prediction results of the VASTN model and other algorithms using the root
mean square error (RMSE), mean absolute error (MAE), mean absolute percent error (MAPE), and
Pearson correlation (COR). The evaluation criteria are as follows.

Figure 7: (a) Variational mode decomposition (VMD) diagram of a time series (b) Spectrogram of each IMF
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RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
i¼1

ðŷi � yiÞ2
s

(18)

MAE ¼ 1

n

Xn
i¼1

jŷi � yij (19)

MAPE ¼ 100%

n

Xn
i¼1

ŷi � yi
yi

���� ���� (20)

COR ¼ covðŷi; yiÞ
rŷiryi

(21)

where n denotes the number of predicted data, yi represents the i-th actual wind speed, ŷi is the predicted
value of i-th wind speed, cov(X, Y) denotes the covariance between X and Y, and σX represents the
standard deviation of X. The higher the COR, the better the predicted performance, and the lower the
RMSE, MAE, and MAPE, the worse the predicted performance.

4.4 Environment and Settings

To implement the network, the experiment employs the Keras2.4.2 framework with the
TensorFlow2.4 backend. A CPU E5-2689 16-core 16G, GPU NVIDIA GeForce RTX 3070, 8G video
memory, and 200 GB solid-state drive comprise the experimental server environment.

In a prediction task, the dataset is divided into three parts: the first 60% of the frames are the training set,
the next 10% are the validation set, and the remaining 30% are the test set. The training set is one of them, and
its purpose is to train the model. The validation set is used to monitor the model’s quality, save the best model
in real-time during training, and use the test set to evaluate the model’s predicted performance.
Simultaneously, we use early stopping in the validation set to improve the model performance and
prevent overfitting. As previously stated, the training set, validation set, and test set in this article contain
31536, 5256, and 15768 frames, respectively. There may be a few differences in the frame number in
each set depending on the prediction horizon. Also, in order to show the superiority of VASTN in short-
term wind speed forecasting, and to find out the best time point for VASTN forecasting, we set the
prediction horizon of 10, 20, 30, 60, 120 min in the experiment.

VASTN is trained using the Adagrad optimization algorithm, with the training epoch set to 100. Tab. 1
shows that the deep hybrid framework’s optimization algorithm and hyperparameters are derived from
experiments.

Table 1: Hybrid deep framework configuration

Index Type Configurations

1 Convolution layer kernels: 20; kernel size: 3 × 3; stride: 1 × 1

2 SE block layer filter: 50; ratio: 0.5

3 SE block layer filter: 100; ratio: 0.5

4 Convolution layer kernels: 200; kernel size: 2 × 2; stride: 1 × 1

5 Fully connected layer units: 200

6 BiLSTM-attention layer hidden units: 200
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4.5 Comparison Algorithm

To validate the proposed VASTN’s superior performance, we compare it with the following wind speed
prediction AI models: LSTM, multilayer perceptron (MLP), recurrent neural network (RNN), and predictive
spatio-temporal network (PSTN) [30]. Simultaneously, to validate the effectiveness of each component of the
hybrid framework, we set up some VASTN submodels for comparison, namely the SENet-BiLSTM-
Attention, BiLSTM-Attention, and VMD-CNN-LSTM model.

LSTM, MLP, RNN are AI algorithms that can capture temporal dependencies in a temporally dynamic
manner, but they cannot capture features of spatial data.

PSTN is a spatio-temporal wind speed prediction model instead of other typical algorithms. Its model
framework is divided into two parts: CNN and LSTM. CNN extracts the spatial features of the data,
while LSTM captures the temporal features and finally obtains the predicted value.

Tabs. 2 to 5 show a comparison of the RMSE, MAE, MAPE, and COR of the various prediction models.
VASTN has clearly demonstrated superiority across all prediction horizons and evaluation criteria. When the
prediction horizon is 10, 20, 30, 60, and 120 min, the RMSE of VASTN is 13%, 20%, 16%, 21%, and 19%
lower than that of PSTN, with an average reduction of 17%. The average optimization of MAE and MAPE is
18% and 28%, respectively, indicating that VASTN has significant advantages over the traditional wind
speed prediction model.

Table 2: Comparison of Root Mean Square Error (RMSE) for different prediction models

Model Prediction horizon (min)

10 20 30 60 120

LSTM 0.616 0.961 1.214 1.812 2.549

MLP 0.621 1.033 1.227 2.222 2.582

RNN 0.678 1.000 1.280 1.871 2.552

PSTN 0.590 0.946 1.158 1.687 2.383

BiLSTM-attention 0.613 0.949 1.212 1.804 2.541

VMD-CNN-LSTM 0.520 0.776 1.013 1.378 2.177

SENet-BiLSTM-attention 0.578 0.883 1.389 1.664 2.363

VASTN 0.517 0.753 0.972 1.339 1.933

Table 3: Comparison of Mean Absolute Error (MAE) for different prediction models

Model Prediction horizon (min)

10 20 30 60 120

LSTM 0.346 0.628 0.836 1.331 1.98

MLP 0.367 0.735 0.859 1.694 1.949

RNN 0.416 0.673 0.893 1.369 1.976

PSTN 0.362 0.654 0.805 1.225 1.831

BiLSTM-attention 0.354 0.610 0.834 1.319 1.97

VMD-CNN-LSTM 0.332 0.532 0.714 1.023 1.653

SENet-BiLSTM-attention 0.355 0.593 0.796 1.210 1.813

VASTN 0.331 0.513 0.691 0.990 1.493
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Furthermore, for the SENet-BiLSTM-Attention submodel that does not use VMD decomposition,
VASTN reduces the RMSE, MAE, and MAPE by an average of 20%, 16%, and 25%, respectively.
Similarly, the VMD-CNN-LSTM submodel outperforms PSTN by 14%, 13%, and 21%, respectively. It
demonstrates that VMD decomposition can better eliminate wind speed randomness and unevenness for
short-term wind speed forecasting, resulting in better forecast results. Furthermore, compared to general
LSTM, BiLSTM has specific optimizations in RMSE, MAE, and MAPE. Similarly, VASTN has a 6%,
6%, and 10% improvement in these three aspects compared to the VMD-CNN-LSTM submodel of the
algorithm that does not use the AM, demonstrating the model’s optimization after the introduction of the
AM. Compared with the spatio-temporal model PSTN, the best-performing model in the time sequence
model, BiLSTM-Attention, improves RMSE, MAE, and MAPE by 5%, 4%, and 6%, respectively. It
shows that the model’s temporal and spatial characteristics are generally superior to the time sequence
model, indicating that spatio-temporal data contains more features conducive to wind speed prediction
than pure time series data.

Fig. 8 depicts the prediction results of the VASTNmodel proposed in the paper for the 20-min prediction
horizon. The predicted value of the VASTN model is consistent with the actual value. When there is no

Table 5: Comparison of Pearson Correlation (COR) for different prediction models

Model Prediction horizon (min)

10 20 30 60 120

LSTM 0.989 0.975 0.961 0.905 0.802

MLP 0.990 0.976 0.959 0.906 0.802

RNN 0.989 0.975 0.959 0.906 0.801

PSTN 0.990 0.977 0.962 0.917 0.832

BiLSTM-attention 0.990 0.974 0.962 0.908 0.802

VMD-CNN-LSTM 0.992 0.983 0.971 0.946 0.864

SENet-BiLSTM-attention 0.991 0.978 0.964 0.921 0.830

VASTN 0.993 0.984 0.973 0.949 0.895

Table 4: Comparison of Mean Absolute Percent Error (MAPE) for different prediction models

Model Prediction horizon (min)

10 20 30 60 120

LSTM 6.476 12.872 17.789 30.553 49.325

MLP 7.614 17.633 18.815 26.769 49.009

RNN 6.677 13.552 15.918 25.894 47.391

PSTN 6.931 12.922 17.079 25.595 46.504

BiLSTM-attention 7.351 12.315 17.954 30.256 48.089

VMD-CNN-LSTM 6.451 9.957 13.238 20.826 35.851

SENet-BiLSTM-attention 6.637 12.084 15.581 26.710 43.513

VASTN 5.947 9.522 13.123 20.421 29.500
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apparent fluctuation in wind speed, the residual analysis results show that the model’s prediction residuals
can be uniformly and randomly distributed on both sides of the zero baselines. Conversely, only when the
wind speed changes dramatically can it deviate further. This suggests that systematic errors are rare in the
modeling process. Fig. 9 compares 20-min wind speed prediction results of different typical models and
VASTN, including VASTN, LSTM, MLP, RNN, and PSTN. Fig. 10 compares the prediction results of
VASTN and its submodels, including SENet-BiLSTM-Attention, BiLSTM-Attention, and VMD-CNN-
LSTM. Figs. 9 and 10 demonstrate the VASTN algorithm’s superiority in short-term wind speed prediction.

Figure 8: 20-min VASTN prediction results and residual chart

Figure 9: 20-min typical model comparison chart
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5 Conclusion and Future Work

Accurately and efficiently predict short-term wind speed is still a challenging problem. To solve this
problem, this paper proposes VASTN, a new hybrid deep framework for short-term wind speed
prediction, which integrates the learning of wind speed’s temporal and spatial characteristics into a
unified framework. First, VMD decomposition reduces the randomness of wind speed. The spatial
properties of the wind speed matrix are then extracted using SENet, and the time properties are weighted
and extracted using BiLSTM-Attention. Finally, the proposed model combines the results of each IMF’s
prediction to obtain the wind speed prediction value. Experiments on real-world datasets show that the
VASTN algorithm outperforms the traditional short-term wind speed prediction algorithm. It also
demonstrates the accuracy of VMD, the AM, and the extraction of temporal and spatial wind speed
features in short-term wind speed prediction.

In future work, we will use the improved VMD algorithm to automatically adjust and select the optimal
VMD parameters. In addition, we will attempt to improve the algorithm’s accuracy and efficiency by
employing other AM methods, such as spatial attention or channel and spatial hybrid attention.
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