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Abstract: Electricity price forecasting (EPF) is important for energy system
operations and management which include strategic bidding, generation schedul-
ing, optimum storage reserves scheduling and systems analysis. Moreover, accu-
rate EPF is crucial for the purpose of bidding strategies and minimizing the risk
for market participants in the competitive electricity market. Nevertheless, accu-
rate time-series prediction of electricity price is very challenging due to complex
nonlinearity in the trend of electricity price. This work proposes a mid-term fore-
casting model based on the demand and price data, renewable and non-renewable
energy supplies, the seasonality and peak and off-peak hours of working and non-
working days. An optimized Gated Recurrent Unit (GRU) which incorporates
Bagged Regression Tree (BTE) is developed in the Recurrent Neural Network
(RNN) architecture for the mid-term EPF. Tanh layer is employed to optimize
the hyperparameters of the heterogeneous GRU with the aim to improve the mod-
el’s performance, error reduction and predict the spikes. In this work, the pro-
posed framework is assessed using electricity market data of five major
economical states in Australia by using electricity market data from August
2020 to May 2021. The results showed significant improvement when adopting
the proposed prediction framework compared to previous works in forecasting
the electricity price.

Keywords: Deep learning; energy management; machine learning; prediction

1 Introduction

The forecast of electricity price projection is an important element of expectations for policy makers,
governments, and financial market participants. Electricity price forecasting (EPF) has become an
important information to manage the deregulated electricity market, complex renewable energy and
emission policy objectives. This is because, accurate and consistent price forecasting will minimize risk,
maximize profit for the day-to-day market, improve bidding and production measures [1]. In several
countries, deregulations of the electricity sector have been developed to enhance congestion control,
facilitate renewable energy, and maximize the resource allocation of the power system. In addition, EPF
provides vital information to all stakeholders in the power sector marketplace since the accuracy of EPF
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influenced the performance and rational analysis of energy resource optimization. Besides, accurate EPF can
improve wholesale electricity price bidding strategy and production which can increase the profits in day-
ahead trading and energy management. Usually, power portfolio managers are interested with short-term
and mid-term price forecasts. The short-term forecasts (intra-day) are the key elements in day-to-day
market operations, especially for bidding at a power exchange or for executing effective demand
response. Meanwhile, the mid-term forecasting which can range from several weeks to several months
ahead are used for planning purposes such as the tuning of mid-term plans and resources allocation, risk
management and the valuation of exchange traded futures and bilateral contracts. This is due to high
saturation of intermittent technologies and the evolving concerns related to resource adequacy in the
longer-term. These forecasting operations will affect the baseload electricity price, such as the peakload
price, the average price for the 24 h of the day or the baseload price [2].

In general, time series forecasting is analyzing time series data via modelling and statistics approach to
aid strategic decision-making process. Time series forecasting incorporates information related to historical
values and associated patterns to foresee future activity [3,4]. Nowadays, researchers are capable of
employing and extracting complex information from time series data to solve various problems such as
wind speed prediction [4], stock market prediction [3,5-7], and forecasting electricity prices [8,9]. Time
series models have been widely used to forecast electricity prices, although they can be challenging due
to large variations [10-19]. Existing statistical techniques tried to reveal the specific pattern of historic
power price utilizing curve fitting. For instance, German electricity market has tested a k-factor Guégan
Introduced Generalized Autoregressive Conditionally Heteroskedastic (GIGARCH) for forecasting
electricity price [10,11]. An iterative neural network methodology is also adopted along with this
combinatorial neural network-based prediction technique to forecast upcoming electricity price. The
advantages of this method include good precision, model functionality, and reliability. Meanwhile, Auto-
regressive Integrated Moving Average (ARIMA) was proposed for electricity and power load forecasting
[13,14,16,18]. However, application of statistical models had shown to be challenging when predicting
multi-dimensional nonlinear price of electricity since they are mainly based on linear equations.
Moreover, statistical methods are inadequate for solving nonlinear multi-dimensional data for prediction
purpose, as its more suitable in handling linear data [20].

In time series analysis, machine learning models have shown to perform better than statistical methods.
Support Vector Machine (SVM) was adopted in [17,20,21] for load and electricity forecasting. The other
common machine learning models applied in EPF are support vector regression (SVR) [22-24] and
artificial neural network (ANN) [19,25,26]. Hybrid models of ANN are used to predict electricity load
and price such as adaptive network-based fuzzy inference system (ANFIS) and Backtracking Search
algorithm (BSA) [27]. However, the abovementioned conventional machine learning models are
inadequate for complex and nonlinear problems. Recurrent neural network (RNN) which is a deep
learning technique with a recurrent feedback network has shown to perform better when dealing with
time series data compared to conventional machine learning algorithm [28]. The work in [18] proposed a
Deep Belief Network (DBN) for electricity price forecasting. On the other hand, the work in [15],
proposed LSTM network for electricity price forecasting. Nevertheless, the performance of the proposed
models from previous methods can still be improved to achieve more accurate results when dealing with
complex and nonlinear electricity market fluctuations.

Therefore, this paper proposes an optimized GRU consisting of RNN with Bagged Regression Tree
forecasting model for electricity price prediction. The bagged trees regression is applied to predict
nonlinear data which is further optimized by using GRU RNN network. Then the tanh layer is utilized to
optimize the hyperparameters of the heterogenecous GRU to improve the model’s performance, error
reduction and predict the spikes. Contributions of this study include:
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e Improvement of the prediction performance by tuning the nonlinear degree of the feature effects of
demand, seasons, fuel supply, renewable and non-renewable energy, peak and off-peak hours of
forecasting,

e Integration of Bagged Trees and GRU in RNN to handle complex nonlinear features of electricity
price.

e Prediction of the unusual price spikes by adopting GRU and Tanh function layers which optimize the
hyper parameters of deep neural networks.

This paper is structured as follows. Section 2 explains the proposed methodology; Section 3 presents the
results and discussions. Finally, Section 4 provides the conclusion of this work.

2 Methodology

This work proposed a forecasting framework for mid-term EPF for five states in Australia which
includes pre-processing module, Bagged Trees Ensemble (BTE) algorithm, Recurrent Neural Network
(RNN) and Gated Recurrent Unit (GRU). The electricity market dataset is divided into three components:
training set, validation set and test set. The workflow of the proposed framework is shown in Fig. 1.

Feature Preprocessing > Processed Dataset |
Module
Assemble the input Trainin
g
features and sync / v s\_/z V \
the renewable Feature extraction > BTE Predicted output saved as
supply data and based on Bagged input Feature of RNN GRU and
main grid supply Regression Tree process the features
data with time Ensemble Parameters Evaluate
= Saving g Forecasting
Made the initial Solve BP models using model
Feature Selection prediction using SGD
using linear trend | — gradient descent
model algorithm B
I Machine Learning | ’ Deep I;ir::flz:d Spike ‘ ’ Validaliory ’ Testing

Figure 1: Flow diagram of the proposed framework

2.1 Pre-Processing Module

The proposed forecasting model is developed based on information of the demand and price data in
megawatts (MW) and Australian dollar (AUD) from five states in Australia (NSW, QLD, SA, TAS, VIC).
Furthermore, we considered renewable and non-renewable energy supplies data in megawatts (MW)
which substantially impact pricing electricity. Besides that, the seasonality and peak and off-peak hours of
working and non-working days were also considered. Data clusters are usually formed by the input
features may present when accumulating unprocessed data due to high dimensions, outliers, and missing
values, which contributes to instability in the forecasting performance [29]. Therefore, data clusters need
to be pre-processed to aid the prediction process. Hence, in this work, a linear trend model is applied to
identify effective pattern of features for the prediction process. Example of dataset adopted in this work is
tabulated in Tab. 1.
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Table 1: The input features dataset for the proposed model

Peak/off-  Time  Main electricity = Previous hour Solar power Hydro power Wind power
peak hours (Hour) supply (MWH) price (AUD)  supply MWH) Supply (MWH) supply (MWH)

1 5 7360.25 40.54 0 992 215.06
1 6 7066.01 43.59 0 992 192.84
1 7 6841.68 34.74 0 645.09 168.44
1 8 6732.33 17.15 0 325.58 146.70
1 9 6980.24 16.61 0 214.92 136.46
0 10 7661.34 31.56 0 125 186.70
0 11 8639.57 40.02 0 60 179.90
0 12 9890.74 49.99 0 2.5 810.19
0 13 9845.55 50.25 0 20 776.65
0 14 9446.45 54.32 0 94.58 819.08
0 15 8992.55 55.51 9.76 380.62 825.95
0 16 8547.70 47.99 189.73 705.43 760.85
0 17 8162.07 39.65 418.42 478.88 746.72

The linear trend method acts with the trend precisely and show the trend without any assumption. The
input dataset used in this work are the residual seasonality, peak and off-peak hour and renewable energy
trend in time series dataset. Let p; =¢; and ¢; =0. The equations for the feature processing are described
in Egs. (1)—(7). Where p; is the approximation level of the series at time ¢, g; is the estimation of the trend
(slope) of the series at time ¢, a is the smoothing parameter of the level 0 < o < 1 and f is the smoothing
parameter of the level 0 < < 1. i denotes the seasonality and ¢ is the hour of observation.

pi=oti + (1 —a)(pim1 + gi-1) Q)
qi = Bpi — pi-1) + (1 = B)gi )
Ly =pi+qi 3)

Let p; =t and ¢; =0. An alternative form of these equations are;

Pi =Pi-1 T qi-1 + e “)
qi = qi-1 + ofe (5)
liyi =pi+ i (6)
where,

ei=1t;— (pic1 +gim1) =t — iy (7

Note that if f=0, then the linear modecan be considered as single exponential smoothing model.

2.2 Bagged Trees Ensemble (BTE)

Bagged Trees Ensemble (BTE) algorithm is adopted to generate several bootstrap samples and trains
classifiers on the new learning sets. Then, BTE algorithm computes the mean predictions for a sequential
output or performs a plurality for a class outcome. Assuming the training set is defined as A{(p,,, ¢n), M
el,2, ..., M} with g, represents either a class label or numerical response. For an p input ¢, could be
predicted using @ (p, 4), where @ (p, A) is a single learning set predictor. Assuming there is a series of
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learning sets {Ag, R=1, ..., M }each having M. number of distinct samples chosen from 4. The purpose will
be to utilize {4z} to obtain more accurate predictor than the single learning set predictor O(p, A). Replacing
O (p, A) with the average of @ (p, Ag) over R. for a numerical value of ¢, i.e., Op(p) = E4 O (p, 4) is an
apparent method of performing the task. The subscript D in @ signifies aggregation, and E, represents
the anticipation over 4 in that equation. Most of the time we have one learning set, however, bootstrap
samples can be created from 4 (4€) which might be used to replicate a similar procedure leading to @p.
with replacement, such that @,(p) = average @ (p, A) [30]. This technique is called bagging and Tab. 2
pnts the bagging algorithm applied in this work.

Table 2: Bagged regression tree ensemble algorithm

Input  Training dataset = {(ps, i), k€ 1,2, ....., m}
A base learning algorithm using regression trees (RT) and
the number of learning cycles, j.

Process forj=1, ...,J Create bootstrapped samples from training dataset
TD; = Bootstrap (TD) with replacement.
Output RT{p, q) = GTD; Bootstrap sample for training dataset (TD), TD;;
; Train regression trees (RT}).
qx =% > RTj(p*, q)  The output of the trained base learners are
J=1 averaged.

The classifiers are also defined as regression trees (decision trees). In this work, the proposed bagged
tress implemented 5 folds cross-dation. Then, the number of RT (chosen N =230) and the minimal leaf
size (selected G, = 8) are applied. Each regression tree was built using a bootstrap sample selected
uniformly fromhe input data. Further, the bagging method averaged the learners’ outputs to obtain a
single forecast. This technique is called bagging and Tab. 2 presents the bagging algorithm applied in this
work.

2.3 Gated Recurrent Unit (GRU)

As RNN is recurrent in nature, it wos much the same way for all inputs, while the output of the input data
is dependent on the previous calculations. After generating the output data, it is replicated and revert back
into the recurrent network unit. RNN count the present input and the output acquired from the last input
while it makes logical decision. RNNs can utilize the internal state (memory) to evaluate input variables,
which is different from feedforward neural network [31,32]. In recurrent neural network, all of the inputs
are connected with one another, which distinguishes it from the other neural networks.

In general, the RNN has an issue with inflating and erasing gradients [33]. The most familiar and used
Recurrent Neural Network (RNN) elements are GRU and LSTM. RNNs have a reverse connectivity which
has significant detrimental impact on model performance, which can’t see in CNNs, GRU deals with these
difficulties. GRU is a more robust RNN framework, designed for long-range dynamic feature dependencies.
Besides, a GRU architecture requires less training time, with typically competitive results to an LSTM. The
input and forget gates are fused into a single update gate in GRU’s core structure [34,35]. The GRU
architecture contains two gates layers: the reset (Y) and an update (Z) gate, whereas LSTM architecture
includes three gates [5,15].
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In this work, the input and forget gate in GRU are merged to update gate and hidden state reset gate as
result it takes less time to process the data. The equations of the GRU cell adopted in this work are shown in
Egs. (8)—(12). A multi-layer GRU is adopted due to faster training process and smaller number of parameters
required.

pi=0(Wp. [gi1, x]) (8)
qr =Wy . [gi-1, x]) ©)
7= O, . [pi X g1, x1]) (10)
re=W—q) X g-1+4q: T (11)
yi=0(Wo-ri) (12)

where x,, g1, g P»» 41 7+ and y, are the input vector, the state memory variable at previous moment, the state
memory variable at current moment, the state of reset gate, the state of update gate, the state of the current
candidate set and the output vector at current moment respectively. On the other hand, W,,, W,,, W,, W, are the
weight matrices for the corresponding inputs of the network activation functions while / represent the identity
matrix. Then, backpropagation (BP) algorithm is employed to train and adjust the system parameters of the
GRU RNN, such as the weights and biases.

The activation function in the neural network is one of the important concerns in the deep training
process that works out well in terms of nonlinearity in the learning process. Existing activation functions,
such as ReLU [36] and Swish, are unable to use high negative input values and, as a result of zero-hard
rectification, may suffer from the dying gradient problem. Therefore, finding a better activation function
that doesn’t have these limitations is critical. To address the issue this model uses a new nonparametric
method called Hyperbolic Tangent for Neural Networks (NNs) [34]. The activation function handles the
fading gradient problem by scaling the non-linear Hyperbolic Tangent (Tanh) function through a linear
method. A non-parametric hyperbolic tangent activation layer like ReLU, and Swish, the similar
unrestricted upper limits property on the right-hand side of the activation curve is shared by Tanh. where
g(x) is a hyperbolic tangent function and defined as the Eq. (13).

exp* —exp™*

g(X) = Tanh(x) = W (13)

3 Results and Discussions

In this work, electricity demand and price data were obtained from Australian Energy Market Operator
(AEMO) from August 2020 to May 2021 to develop the proposed mid-term EPF framework. Test dataset
includes the hourly data from January 2021 to May 2021. In the meantime, the training dataset is
arranged accordingly where 60% of the data is used as training while the rest 40% is used as validation
dataset. The training dataset includes 5 prior months to the forecasting weeks. This work proposed two
types of forecasting: 1-week forecasting and 2 weeks forecasting. Tab. 3 briefly shows the sample
arrangement of training dataset to forecast electricity price for the month of January and February. The
arrangement is modified accordingly to forecast the months of March, April and May 2021.
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Table 3: Examples of training data arrangement for the EPF

Training dataset Testing dataset

5 months data 1 week forecasting 2 weeks forecasting
Week 1, Aug 2020—Week 4, Dec 2020 Week 1, Jan 2021 Week 1-2, Jan 2021
Week 3, Aug 2020—Week 2, Jan 2021 Week 3, Jan 2021 Week 3-4, Jan 2021

It is argued that the data points used for developing the forecasting model should be strongly correlated
with each other. Hence, the correlation coefficient R of the actual and predicted output of the model is
computed to assess the feasibility of implementing BTE model. The purpose of analyzing regression
model is to extract significant relationships between the forecast variable of interest and the predictor
variables. A perfect forecasting modelling will produce a correlation coefficient R value of 1. Figs. 2-6
showed a regression value, R of 0.78, 0.80, 0.88, 0.76, and 0.87 for Australia’s five economic states
(NSW, QLD, SA, TAS, VIC) respectively when applying BTE model. As can be seen, the regression
value obtained when implementing conventional BTE model is in the range between 0.76 to 0.87 which
is inadequate in forecasting complex time series data. Hence, in order to improve the accuracy of the
forecasting model, the data was further transferred to RNN model and this work proposed to incorporate
GRU in the RNN architecture for further optimization.

Predictions: model 1
250 -

R=0.78

200 -

g

Predicted response
8

50

0 50 100 150 200 250
True response

Figure 2: NSW BTE testing model

The two weeks forecasting results are compared in Fig. 7. After applying the proposed BTE and GRU
model, the correlation coefficient of R for NSW, QLD, SA, TAS, VIC has improved significantly to 0.9961,
0.9995, 0.9800, 0.9996, 0.9996 respectively (Tab. 4). This shows that the proposed forecasting model
achieved a correlation coefficient, R approximately 1 which means that the proposed forecasting model
manage to correlate the data points better as compared to BTE model in Figs. 2-6. Thus, high value of R
contributed to better performance in mean absolute percentage error (MAPE) and root mean square error
(RMSE). In this work, the accuracy of the proposed point forecasting model is evaluated by computing
the MAPE and RMSE. RMSE evaluates the forecasting precision and the ability of the point prediction
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results while MAPE conveys the absolute average forecasting deviation of trains and targets. As can be seen
from Fig. 7, the proposed BTE+GRU produced the smallest value of RMSE and MAPE values compared to
other methods such as BILSTM, LSTM+GRU, and LSTM for all the five states, NSW, QLD, SA, TAS, VIC.
It can be concluded that the most effective method in forecasting the electricity price in this work is the
proposed BTE+GRU model where BTE and GRU are incorporated in the RNN architecture. Meanwhile,
Tab. 5 tabulated the average performance evaluation of the proposed BTE+GRU method for 1 week and
2 weeks forecasting. The results show that the RMSE and MAPE values are about the same for both
types of forecasting interval which means that the forecasting model is feasible to solve 1 week and
2 weeks forecasting problem. Eventually, accurate information on the electricity price forecasting will
contribute to effective management in the deregulated electricity market, complex renewable energy and
emission policy objectives.
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Figure 3: QLD BTE testing model
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Figure 4: SA BTE testing model
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Figure 5: TAS BTE testing model
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Figure 6: VIC BTE testing model
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Table 4: Comparison of regression correlation coefficient between two different models

States of Australia

R (BTE model)

R (Proposed BTE+GRU model)

NSW
QLD
SA
TAS
VIC

0.78
0.80
0.88
0.76
0.87

0.99
0.99
0.98
0.99
0.99

Table 5: Average performance evaluation of the proposed BTE+GRU method

1 week forecasting

2 weeks forecasting

RMSE MAPE RMSE MAPE
NSW 0.294784 0.671307 0.552075 0.745342
QLD 0.513686 0.428665 0.895746 0.441092
SA 2.263616 0.36288 1.992935 0.326579
TAS 0.404107 0.300019 0.409577 0.318366
VIC 0.308608 0.895352 0.430335 0.905478

As tabulated in Tab. 6, the proposed model is benchmarked with several methods to measure the
effectiveness of the proposed BTE and GRU model. As can be seen, the proposed BTE and GRU model
produced the lowest mean RMSE and mean MAPE values as compared to other methods which are
0.86 and 0.55 respectively. The work in [16] adopted machine learning approach with Trend and
Seasonal Components (TBATS) which adopted trigonometric technique supports forecasting of daily
seasonality by applying maximum likelihood estimation. However, TBATS method does not permit the
adoption of external regressors. The computation of TBATS+ANN, ANN+ARIMA, TBATS+ARIMA,
TBATS+ANN+ARIMA methods were reported in [16] by using Denmark electricity market. It can be
seen that the average RMSE for the four methods applied in [16] is significantly high compared to
methods applied in this work that adopted deep learning methods such as LSTM, LSTM+GRU, BiLSTM
and the proposed model. This justifies the importance of adopting deep learning method in developing an

accurate forecasting model.
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Table 6: Performance evaluation of the proposed method and other methods

Model RMSE MAPE
Mean Min Max Std Devn Mean Min Max Std Dev

The proposed BTE+GRU 0.86 0.12 5.02 1.07 0.55 0.17 1.684 0.39
LSTM 2.55 0.18 1821 5.09 1.06 1.00 2.81 0.96
LSTM+GRU 252 033 1632 524 1.43 048 5.05 1.28
BiLSTM 5.05 0.84 1653 437 8.27 8.64 5934 14.57
TBATS+ANN [16] 40.21 8.88 1742 2571 3346 7.53 1363 21.5
ANN+ARIMA [16] 38.05 8.07 168.8 24.06 31.92 590 165.6 21.14
TBATS+ARIMA [16] 37.5 994 1764 2641 31.11  8.10 162.7 21.86
TBATS+ANN+ARIMA [16] 36.44 8.04 1642 2434 30.06 6.63 148.2 20.34

Figs. 8 and 9 show the examples of 1-week forecasting results while Figs. 10 and 11 show the examples
of 2-week forecasting results when using the proposed model for two different states in Australia. It can be
seen that the electricity price fluctuations for different states of Australia differ due to different demand,
supply and energy resources. The results justified that the proposed forecasting model can generate
comparatively accurate forecasting results and the deviation between the curve of the proposed BTE
+GRU model and the actual load curve is considered the lowest compared to other methods as tabulated

in Tab. 6.
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Figure 10: Two weeks forecasting model for NSW
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Figure 12: Forecasting model comparison for NSW

Figs. 12—14 presents the 2 weeks forecasting results from the month of January to May 2021 in an hourly
basis for three economical states in Australia such as New South Wales, Tasmania and Victoria. At most
points, the conventional BTE model was not able to forecast the spikes which justifies the inadequacy of
implementing conventional BTE method in EPF. Despite the complex nonlinearity in the trend of
electricity price, the proposed model which incorporated BTE and GRU managed to forecast the spikes
more accurately and seems to fit the actual data to a satisfactory degree. Hence, this justified the
contribution of the proposed model in solving mid-term EPF problem.
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Figure 13: Forecasting model comparison for TAS
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Figure 14: Forecasting model comparison for VIC

Moreover, the MAPE of the proposed forecasting model is benchmarked with previous works that

adopted different electricity market as shown in Tab. 7. It

can be summarized that the proposed

forecasting model for Australian electricity market is feasible with MAPE value in the range of 0.17% to
1.68% as compared to previous works with MAPE values of approximately 11% in [17], 9% in [2], 3%
to 5% in [18], 1.9% in [19], 5.85% to 11.8% in [28], and 2.4% to 4.3% in [15]. The MAPE value was
computed by averaging the MAPE values for the five states of Australia that are focused in this work.
This suggests that the proposed forecasting model is feasible for multi-regional mid-term electricity price

forecasting.
Table 7: Benchmarking the proposed method with previous works
Compared model Electricity market MAPE (%) Limitations/challenges
SVM [17] Mid-term PJM electricity market 11.7491% Accuracy in peak price forecasting considerably
LSSVM [17] 10.9722% low by using the proposed machine learning
methods. Optimization of forecasting
performance in the peak price area is the main
challenge of the study.
Pc4 [2] Short-and mid-term electricity 9.01% In summer, the electricity price does not react to
Auto regressive (AR) [2] market APX. UK 8.89% the significant decrease in demand. It is
challenging to relate the forecasting performance
of demand combined with natural gas when
applying statistical approach.
ARIMA [18] Mid-long term electricity 5.140% Data analysis is limited since short-term
DBN [18] consumption wuhan, china 3.278% prediction is challenging.
ANN PSO (Hybrid) [19] Mid-term load power north 1.9% ANN PSO method is not feasible to handle large
american electricity market data set of nonlinear data.
CNN-KNN [28] Day-ahead PJM electricity market 5.87%—-11.79% Limited discussion on time series data analysis

EEMD-LSTM_SMBO  Day-ahead PJM electricity market 2.47%-4.34%
[15]

Proposed BTE+GRU Mid-term australian electricity 0.17%—1.68%
market

and statistical reliability.

Uncertain accuracy due to limited variables
considered in the prediction model.

4 Conclusion

The proposed framework is developed based on information of the demand and price data from various
states in Australia (NSW, QLD, SA, TAS, VIC). Furthermore, we also considered renewable and
non-renewable energy supplies data, the seasonality, peak and off-peak hours of working and non-
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working as the forecasting inputs which substantially impact the electricity pricing. In this work, an
optimized GRU consisting of RNN with Bagged Regression Tree forecasting model is proposed for
electricity price prediction. Then, the tanh layer is employed to optimize the hyperparameters of the
heterogeneous GRU with the aim to improve the model’s performance, error reduction and predict the
spikes. A machine-learning approach called bagged trees ensemble (BTE) and deep neural network
named GRU were successfully integrated in this work to forecast the mid-term electricity price in the
current deregulated electricity market. The bagged trees regression is applied to predict nonlinear data
which is further optimized by using GRU RNN network. The applied ensemble algorithm managed to
enhance the stability of base learners by aggregating the outputs of base learners to generate a single
prediction. Finally, a comparative study with conventional time-series models has demonstrated the
effectiveness of the proposed methodology. The proposed forecasting model was also compared with
previous works and had shown promising results. For future work, the proposed forecasting model can be
improved by considering new profit and return-based quality measures. Besides that, the forecasting
model can be further modified to solve long-term electricity price forecasting as well. It is worth noting
that the methodology presented here can easily be expanded to include a broader scientific domain of
time series forecasting applications, such as weather forecasting, earthquake prediction, and heartbeat rate
prediction.
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