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Abstract: In most of the scientific research feature selection is a challenge for
researcher. Selecting all available features is not an option as it usually compli-
cates the research and leads to performance drop when dealing with large datasets.
On the other hand, ignoring some features can compromise the data accuracy.
Here the rough set theory presents a good technique to identify the redundant fea-
tures which can be dismissed without losing any valuable information, however,
exploring all possible combinations of features will end with NP-hard problem. In
this research we propose adopting a heuristic algorithm to solve this problem,
Polar Bear Optimization PBO is a metaheuristic algorithm provides an effective
technique for solving such kind of optimization problems. Among other heuristic
algorithms it proposes a dynamic mechanism for birth and death which allows
keep investing in promising solutions and keep dismissing hopeless ones. To eval-
uate its efficiency, we applied our proposed model on several datasets and mea-
sured the quality of the obtained minimal feature set to prove that redundant
data was removed without data loss.
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1 Introduction

Usually, researchers start their research by preparing data in order to start data analysis to discover
hidden rules and insights. Before starting this process, mainly in huge datasets, only features-attributes-
related to the research should be considered. However, deciding if a feature is necessary or not is not
something intuitive, especially when the research is being done by someone out of the domain. For
example, a computer or mathematical scientist is doing a research based on medical dataset, for
researcher it will not be intuitive to decide which features are really needed to make decision and which
are not. Features required to make that decision is called “Minimal Reduct” while other features will be
called “Redundant Features”. Redundant and unnecessary features will cause negative impact of the
performance in terms of data processing execution time, in addition to inefficient utilization of memory
and storage resources. Also, those redundant features will mislead the machine learning process and
might result in generating invalid rules and decisions.
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When dealing with huge datasets in terms of high number of attributes, the need for a technique to
eliminate the unnecessary attributes becomes a must. In other words, when a dataset has too many
attributes, there will be a need for a technique to calculate the importance of each attribute. The result
should not be only to say if an attribute is necessary or not, however, there might be a gray area in which
we need to have figures showing the effect of removing an attribute on the quality of the dataset. Here,
and depends on the characteristics of each case, the researcher can decide how much tolerance he can
offer. In some cases, in order to reduce the number of the selected attributes the decision might allow
10%-for example-tolerance to the quality of the dataset, while in other cases it might not be possible to
accept any tolerance, in such cases, only attributes with zero impact on the quality of the dataset can be
dismissed.

Pawlak in 1982 [1,2] has introduced the rough set theory, to provides a powerful mathematical based
technique to handle inconsistent data and generate uncertain rules. In the machine learning, a various
number of techniques can assess the relation between the attributes of a dataset, however, most of them
cannot not provide a solution for inconsistent datasets where no definite rules can be obtained. The power
of rough set lies in its ability to take a dataset as an input, and without any additional information or
supervision it will be able to find the minimal reduct without affecting the quality of the original dataset.
However, in spite of the capabilities of the rough set theory, when working with huge datasets with high
number of features, the rough set's techniques will need to evaluate all the possible combinations of
attributes in order to find the minimal reduct which eventually will be an NP-hard in order to generate all
possible reducts and then selecting the minimal one. Heuristic algorithms can support this process
allowing reaching the “optimal” solution by only evaluating a limited number of solutions without the
need to explore the entire domain of solutions.

Polar Bear Optimization PBO, proposed by Połap et al. [3] is a meta-heuristic algorithm which in
principle shares the behavior of the other population based heuristic algorithms in having a randomly
generated population, and then inside a finite number of loops each member of the population will try to
move toward the optimal solution based on a moving function. The implementation of function varies
from one algorithm to another. The technique that PBO proposes is the dynamic control of population
through a continues birth and dead mechanism that will allow investing more in good promising
solutions and at same time will keep ignoring hopeless ones. Other swarm-based algorithms usually start
with static population and in each iteration, an equal opportunity is given to all members in the
population to improve solution they found.

2 Related Work

Due to the importance of reducing number of attributes within affordable processing time, many
researches have implemented the rough set theory with the support of heuristic algorithms which allowed
finding the minimal reduct without the need to explore all possible alternatives. Previously implemented
heuristic algorithms, more or less, share the same concept of having static population generated at the
beginning and then keep trying to enhance the founded solutions in each iteration using several
techniques for moving and fitness functions. The uniqueness of PBO algorithm is the dynamic death/
reproduction technique. This technique allows giving additional chance to good solutions by generating
new solutions out of good potentials while keep eliminating solutions that are not progressing well.

A considerable amount of literature focused on either using the rough set techniques to find optimal
reduct in various areas, or just utilized the heuristic algorithms in solving NP-hard problems. However, in
our summary here we have only listed studies implemented the rough set combined with heuristic
techniques:
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Chen et al. [4] developed a novel using the rough set and the fish swarm algorithm for feature selection.
Su et al. [5] also proposed a novel search strategy to find the minimal features reduction using the rough set
theory along with fish swarm algorithm to find the minimal reduct. Both could prove that using the Fish
Swarm Algorithm can enhance the accuracy of finding the core features in addition to efficiency of
convergence rate. Djaafar et al. [6] also presented a new cooperative swarm intelligence algorithm for
feature selection based on a combination of Firefly Algorithm (FA) and Particle Swarm Optimization
(PSO) using quantum computation and a high accuracy classification and better rate of feature reduction.

Lazo-Cortés et al. [7] also presented a new technique for obtaining the shortest reducts based on binary
cumulative operations over a pair-wise comparison matrix, and a fast candidate evaluation process, the result
of their experimental analysis showed that they were able to find the minimal reduct faster than other
algorithms reported in the literature. Alweshah et al. [8] proposed a heuristic approach where they
proposed a combination between wrapper approach and genetic programming algorithm, Wrapper
Genetic Programming (WGP) to identify the most informative attributes. Their proposal increased the
probability of finding high-quality reducts. Anaraki et al. [9] developed a new version of a binary
shuffled frog leaping algorithm hybridizing with fuzzy-rough dependency degree (FRDD) for selecting
the most informative features of a dataset. Also, a very recent research was conducted by Thuy et al. [10]
proposed an attribute significance measures based on stripped quotient sets for calculating core and
reduct, time for finding the minimal reduct was reduced compared with similar approaches. Zheng et al.
[11] proposed an enhancement for heuristic attribute reduction (EHAR) in rough set is proposed, in some
rounds of the process of adding attributes, those that have the same largest significance are not randomly
selected, but build attribute combinations and compare their significances. Alijla et al. [12] assessed the
potential of Master River Multiple Creeks Intelligent Water Drops (MRMC-IWD) using real-world
optimization problems related to feature selection and classification. Hassanien et al. [13] proposed an
improved moth-flame approach to automatically detect tomato diseases. The moth-flame fitness function
depends on the rough sets dependency degree and it takes into a consideration the number of selected
features. Moudani et al. [14] applied Dynamic programming technique in order to enumerate dynamically
the optimal subsets of the reduced attributes of high interest by reducing the degree of complexity. Li
et al. [15] proposed a new method based on the Wolf Search Algorithm (WSA) for optimizing the feature
selection problem. Huang et al. [16] introduced an Incremental Weight Incorporated Rule Identification
(IWIRI) algorithm to process in-coming data (objects) and generate updated decision rules without
re-computation efforts in the database. Alia et al. [17] developed a new algorithm for Feature Selection
based on hybrid Binary Cuckoo Search and rough set theory for classification on nominal datasets. Wang
et al. [18] introduced distance measures into fuzzy rough sets and propose a novel method for attribute
reduction. They first construct a fuzzy rough set model based on distance measure with a fixed parameter.
Then, the fixed distance parameter is replaced by a variable one to better characterize attribute reduction
with fuzzy rough sets. Sattar et al. [19] presented an improve of water cycle algorithm (IWCA) for rough
set attribute reduction, by hybrid water cycle algorithm with hill climbing algorithm in order to improve
the exploitation process of the WCA. Yang et al. [20] studied a pseudo-label strategy systematically in
rough set theory. They first proposed a pseudo-label neighborhood relation then explored the attribute
reductions based on the re-defined measures.

The rest of this paper is organized as: In Section 2, an introduction to rough set theory and its basic
functionality, in addition to an explanation of the PBO algorithm in general, Section 3 will present how
PBO algorithm was customized to be implemented along with rough set, Section 4 describes the
experimental results, Section 5 concludes this research and list some open topics for future researches.
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3 Background

We will start this section by explaining the basic concepts of the rough set theory, then we will go
through the common characteristics of the heuristic algorithms focusing on the population-based ones,
finally will describe the new technique introduced in PBO algorithm.

3.1 Rough Set Theory

Introduced by Pawlak [1,2], can be defined as a technique for knowledge discovery to handle fuzzy and
unstable datasets where traditional classification algorithms cannot obtain exact and certain rules.

3.1.1 Information System
In rough set the information system (Information table) can be defined as a table of rows and columns.

Columns will be called attributes or features, while rows will be called objects (instances), Formally, the
information table can be defined as I = (U, A), where U is the universe, a finite non-empty set of objects,
A is a finite non-empty set of features.

3.1.2 Decision System
Information systems can also include one or more features for decision. For example, a doctor can give a

decision for each patient-object-based on a list of input features. Information systems include several
features, those features have a different influence on the decision. The definition of the decision system
can be extended to be I ¼ ðU ; C [D; V ; FÞ, where V is a non-empty set of attribute values, and the
function f is a Cartesian product of A and U into V.

3.1.3 Indiscernibility
Indiscernibility identifies the objects (instances) that, with regard to certain feature(s), cannot be

distinguished from each other. It is simply an equivalence relation between objects. For a decision system
/ ¼ ðU ; C [ DÞ, there may exist an indiscernibility relation IND∝(C):

IND/ðCÞ ¼ f ðxi; xjÞ 2 U2 j 8 c 2 CcðxiÞ ¼ cðxjÞg (1)

3.1.4 Set Approximation
Assume B ⊂ C be the set of condition features, [x] B be the equivalence class of each object x ∈U by the

feature subset B. The approximation of the set of objects X ⊂ U by using the equivalence class [x] B is given
by the lower BX and the upper approximation �BX . The lower approximation of X is defined by:

BX ¼ f x 2 U j½x�B � Xg (2)

The upper approximation of X is defined by:

�BX ¼ fx 2 U j½x�B \ X 6¼ [g (3)

The lower approximation of X, or in some references is called the positive region, consists of all object
that are certainly belongs to X. whereas the upper approximation, the negative region, consists of all object
that might belong to X. The accuracy of a set can be calculated as the following:

/ pðX Þ ¼ jPX j
j�PX j (4)

The accuracy of a rough set is a ratio between 0 and 1. When this value is one, it means that upper and
lower approximation match, in this case the set is not rough anymore and called “Crisp Set”. On the other
side, when the value is decreasing, this will increase the negative region which means a kind of inconsistency.
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3.1.5 Dependency of Features
The dependency between a set of condition attributes B and a set of decision features R is given by the

following formula:

cBðDÞ ¼
jPOSBðDÞj

jU j � 1 (5)

POSB(D) is the positive region of B, so here we divide number of elements on the lower approximation
by total number of objects.

When the value of γB(D) = 0, this means B is independent of D, and if D is fully dependent on B the
value will be 1. This dependency of condition attributes on the decision attribute(s), is the core function
of the rough set that we will calculate to evaluate the effect of removing some features on the
dependency of decision. When a feature a is removed from B and dependency value is not changed, this
means the attribute a is a redundant attribute and can be removed without affecting the quality of the dataset.

cBðDÞ ¼ cB�aðDÞ (6)

3.2 Polar Bear Optimization

Polar bear optimization can be classified under population based optimization algorithms proposed by
Połap et al. [3], a simulation to the way that polar bear living and hunting in hard circumstances, the
algorithm can be summarized as a population of bears, each of them tries to move toward the target a
kind of local search, at the same time, each bear will keep checking if other bears have found a better
solution, in this case the bear will move toward the bear who is more close to the best so far founded
solution. Also, different from other swarm-based algorithms, this algorithm has a powerful control of the
population by applying dynamic production and death mechanism, which allows finding the optimal
solution in few numbers of bears and also in few numbers of iterations. The newly developed PBO
algorithm showed an efficiency in solving optimization problems, this was verified by testing PBO
against several optimization functions and comparing its performance to other metaheuristic algorithms.
This algorithm can be used in several domains. For example, Nasr et al. [21] used PBO in their research
“Neutronic and thermal-hydraulic aspects of loading pattern optimization during the first cycle of VVER-
1000 reactor using Polar Bear Optimization method”.

3.2.1 Population Generation
Depending on an input variable (population size) the algorithm starts by creating the population

elements and distributes them randomly within the scope of search domain, specifying number of bears
which will be looking for the target solution, this input parameter should be selected very carefully,
although increasing this number will increase the chance of finding the global optimal solution, but on
the other hand, having too many bears will have negative impact on the performance.

3.2.2 Local Search
One step will be moved by all bears at each iteration, however, before moving the new potential location

the new solution will be evaluated, if the new position is better than the current one then the bear will move,
otherwise it will stay at current location. Formulas (7), (8) and Fig. 1 describe the local search behavior.

r ¼ 4a cosðf0Þsinðf0Þ (7)

xnew0 ¼ xactual0 � rcosðf1Þ (8)
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3.2.3 Global Search
Once in internal loop-local search-is complete and all the population elements had a chance to improve

their locations, the global search starts by selecting one of the best solutions-bears-and all elements will try to
make a step toward, however, a step will be first evaluated and only if the step will lead to a better solution,
then the step will take place. The global search is performed according to the formula (9) and Fig. 2

ð�xtjÞðiÞ ¼ ð�xt�1
j ÞðiÞ þ signðxÞ / þc (9)

where ∝ is a random number in interval (0, 1), ω is the distance between two spatial coordinates and γ is a
random value in the range of (0, ω).

Figure 1: Local search

Figure 2: Global search
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3.2.4 Dynamic Control of Population
Unlike most of other swarm-based optimization algorithms, objects in PBO are not fixed. First the

algorithm starts by generating only 75% of the population, and then after completing each iteration a
decision is made whether to produce a new member or remove one based on a randomly generated
variable. When reproduction is decided, then two of the best bears will generate a new solution by
combining the two solutions, here we assume that combining two good solutions will produce another
good solution. However, when the decision is to remove a bear, the bear having the worst value
according to the fitness function will be removed from the population after checking that current number
of bears will not be less than 50% of the given population size.

Those characteristics of BPO algorithm helped in finding the “optimal” solution using fewer numbers of
objects-bears-and relatively less loops. Here, we put the word “optimal” inside quotations because there is no
guarantee that the founded solution is the optimal one. This concept is common among all heuristic
algorithms. Several researches were performed to find the optimal population size and number of required
loops [22] is an example study, the summary of those studies can be summarized as: Increasing number
of objects will help increase the search area and avoid stuck in local minimums, which leads in more
chance to find global optimum-the optimal solution, while increasing the number of loops will result in
having more accurate solutions, however, after a certain threshold, increasing the number of objects of
loops might not be useful [23].

4 Proposed Model, Binary Polar Bear Optimization BPBO

In the previous section we explained how the rough set technique can be used to assess the quality of a
subset of attributes for a given dataset. Then we have described the basic concepts of PBO algorithm. In this
section we will explain our proposed approach of finding the minimal subset of features without the need to
explore all possible combinations with the support of PBO algorithm.

Start Initialize the 
population and 

parameters

if iteration 
count is 

Calculate the 
step parameter

Each bear 
makes a local 

search

The best bear will 
make one more 

local search

Update the global 
solutions and the 
convergence table

Calculate K - the 
reproduction 

parameter

If K < 0.25Reproduce a new bear 
out of two good bears

Remove the worst 
bear

End

Increase the 
iteration counter

Return the 
convergence table

NoYes

No

Yes

Figure 3: Procedure of BPBO
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The polar bear algorithm as proposed in [3] can only deal with solutions as spatial objects with n
dimensions, solutions can be presented as a set of coordinates ðx1; x2; . . . xnÞ same for functions (local
search, global search, moving functions, …), can only deal with this kind of solutions. However, each
solution in related to feature selection is a list of selected and not selected attributes, A solution can be
represented as a binary array, where “1” indicates that an attribute was selected while “0” means the
opposite. For a single dataset all arrays will have the same length, example:

In Fig. 4 an example of dataset with eight features, in this subset of features, feature number 3 and 6 were
not selected.

According to the above, PBO cannot be applied as is to solve feature selection problems because both
algorithms are speaking different languages. Following sub-sections will present our changes to the original
PBO to be compatible with RST related problems:

4.1 Local Search

In order to make a step as a local search, we will be flipping over s attributes on and off, s is calculated
according to Formula (10):

s ¼ 4 � 4 � i

maxc
(10)

In Formula (10) i is the current outer loop counter, maxc is the maximum number of iterations. The idea
here is to start by making big steps and changing four features and then gradually will start decreasing the
number of changed features to one when solution becomes closer to the optimal one. In the first quarter of the
loop four random features are being changed to make a movement, while in the last quarter we assume that
solutions became good enough and no need to make big steps. This technique was inspired from Simulated
Annealing [24] and [25].

In each loop and after all bears make a step as a local search, we proposed give one more chance to one
of the best bears. First, we randomly select one of the top 10% bears and apply the local again (Fig. 5).

4.2 Global Search

Once local search is finished where all bears tried to enhance their locations, two of the best bears will be
randomly selected in order to produce and new solution. Here we have applied two approaches (Fig. 6), first
we produce a new solution by including attributes exist in in both solutions (AND operator), and then
produce another solution by including attributes exist in at least one of the solutions (OR operator). Then
we evaluate both solutions and select the solution with higher fitness.

1 1 0 1 1 0 1 1

Figure 4: Solution presentation

Current position

1 0 1 1 1 0 0 1
Next position

1 1 0 1 1 0 1 1

Ex. S = 3

Figure 5: Local search
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4.3 Fitness Function

The dependency will be calculated according to formula (5) in order to evaluate each generated solution,
however, this formula does not give attention to the number of the selected features. In other words, if two
solutions have the same quality, formula (5) considers them as equal solutions. We needed a mechanism that
gives weighting to the quality of the proposed solutions in addition to the number of the selected features.
Here our fitness function will be the formula (11) as proposed by Wang et al. [26]:

Fitness ¼ a � cRðDÞ þ b � jCj � jRj
jCj (11)

The first part of the equation a� cRðDÞ is the classification quality as defined in formula (5), while |C| is
the total number of attributes in the dataset and |R| is the number of only selected attributes. This formula
allows a kind of tolerance to quality calculation, where α and β can be considered as tolerance variable
that will be an input for the algorithm. Increasing parameter β can increase the tolerance and might
compromise the quality by accepting more solutions with fewer attributes. Those parameters can be
adjusted according to the nature of problem, when dealing with critical data where accuracy is very
important, then α and β should be set to one and zero respectively. According to Kirkpatrick et al. [24],
proposed values for α, β can be 0.9 and 0.1 respectively.

4.4 The Proposed Algorithm

Our main proposed algorithm along with sub-algorithms is represented in Fig. 3 and by the following
pseudo-code:

BPBO Algorithm

Input: Information table IS (table), Polulation Size (bears), number of loops (maxc) and tolerance variables α
and β

Output: convergence table

(1:) Initialize variables: convergence, g_min, g_fitness, i = 0

(2:) Create only 75% of the population and calculate the initial fitness of each bear according to (11)

(3:) while (i <= maxc)

(4:) {

(5:) Calculate number of attributes to change “step” according to (10)

(6:) for each element (curr) ∈ population

1 1 0 0 1 0 1 1
Good solution 1

1 0 1 0 1 0 1 1
Good solution 2

1 0 0 0 1 0 1 1 1 1 1 0 1 0 1 1

ORAND

Calculate fitness Calculate fitness

Select the solution 
with higher fitness

Figure 6: Reproduction
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(7:) {

(8:) next = move (curr, step) according to moving algorithm

(9:) If fitness of new position is better than current one

(10:) Move the current element to the new position

(11:) if fitness of the new position is higher than the g_optimal or same fitness with a smaller
number of attributes

(12:) g_fitness = current_fitness

(13:) update g_min = len(curr)

(14:) add current element to convergence table (output)

(15:) }

(16:) Randomly select one of the best 10% and make one additional move according to lines 8–15

(17:) Generate random number κ between 0 and 1

(18:) If k < 0.25

(19:) Randomly choose two of the top 10% bears to reproduce a new one according to
formula

(20:) else

(21:) if current population size > bears * 0.5

(22:) remove the worst element from population

(23:) i = i + 1

(24:) }

(25:) Return convergence table

Reproduction Algorithm

Input bear1, bear2

Output new bear

(1:) Solution_AND = selecting common attributes in bear1 and bear2

(2:) Fitness_AND = Fitness of Solution_AND

(3:) Solution_OR = selecting attributes exists in both bear1 or bear2

(4:) Fitness _OR = Fitness of Solution_OR

(5:) If Fitness _AND > Fitness_OR

(6:) New_Solution = Solution_AND

(7:) else

(8:) New_Solution = Solution_OR

Output New_Solution
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Moving Algorithm

Input bear, steps

Output new proposed solution

(1:) next = bear

(2:) for i = 1 to steps

(3:) select random pos between 1 and length of bear

(4:) if attribute[pos] of bear = 0

(5:) attribute[pos] of next = 1

(6:) else

(7:) attribute[pos] of next = 0

Output next

5 Experimental Analysis

We have selected eight benchmark datasets from Machine Learning Repository UCI [27] to evaluate the
performance of our proposal. We have used same datasets of [4] in order to compare our results with other
similar algorithms. The analysis was done on a computer with 1.8 GHz CPU and 16 GB RAM running
Windows 10. The analysis will prove the effectiveness of our algorithm in finding the minimal reduct
using small population and few numbers of iterations, however, the execution time might not an accurate
indicator to be compared with figures reported in [4] because both researches were performed on different
environments. Because algorithms are stochastic based process, each execution might give different
results, so we have evaluated each dataset ten times and the optimal results were reported in our analysis.

The algorithm will need four parameters as an input, population size, number of iterations in addition to
two tolerance parameters. Population size and number of iterations should depend on the size of the dataset,
especially number of features. The total number of possible solutions increases when number of features
increases. According to that and based on our experimental analysis we noticed that the optimal size for
population is same number of attributes. Same logic also applies for number of iterations, increasing the
number of features will require more trials to find the optimal solution. We noticed that two times number
of attributes will be needed as iteration count. We did not see any need to modify those parameters
according to number of instances in the dataset.

The Tab. 1 contains a list of the used datasets with information related to number of records and number
of features excluding the class-decision-feature, in addition to number of available unique values for the class
attribute. Tab. 2 includes dataset name, number of instances and features, then the minimum reduct obtained
using brute force by examining all possible solutions. Then we have added the results for the optimal reduct
obtained by three heuristic algorithms, RSAR [23], EBR [28] and FSARSR [4] along with execution time
needed to calculate this reduct. Last two columns of the table are the results of our proposed algorithm.

Table 1: List of used datasets

No Dataset Samples Features Classes

1 Audiology 200 69 24

2 Balance 625 4 3
(Continued)
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From Tab. 2 and Fig. 7 we can compare our results with three other algorithms in terms of number of
features of the minimal reduct found by each algorithm in addition to the execution time. We can see that our
algorithm was able to find the optimal reduct similar or even better than other algorithms. Especially for the
Chess dataset, which is the largest dataset in our analysis in terms of number of attributes and number of
samples, brute force was not able to find the minimal reduct for this database due to the high number of
possible solutions and the needed time to calculate one reduct due to high number of instances. In this
dataset we were able to find a minimal reduct with 21 attributes where similar researches could find
solutions with minimum 29 features. Also, when we compare the execution time, we can see a big
difference with other algorithms, sometimes it is almost ten times which cannot be only due to difference
in hardware and the execution platform.

Figure 7: Convergence chart per dataset/heuristic algorithm

Table 1 (continued)

No Dataset Samples Features Classes

3 Chess 3196 36 2

4 Lung 32 56 3

5 Mushroom 8124 22 2

6 Soylarge 307 35 19

7 Soysmall 47 35 19

8 Vote 435 16 2

Table 2: Optimal solution by several heuristic algorithm

Dataset Instances Features Min RSAR Time EBR Time FSARSR Time BPBO Time

Audiology 200 69 - - - - - 13 4765.51 14 14

Balance 625 4 4 4 0.492 4 0.489 4 1.98 4 <1

Chess 3196 36 - 31 766.52 33 547.13 29 3343 21 275

Lung 32 56 4 5 1.22 4 0.64 4 128.56 4 1

Mushroom 8124 22 4 5 286.27 5 225.839 4 2767.12 4 47

Soylarge 307 35 10 13 23.904 10 12.21 10 573.31 9 6

Soysmall 47 35 2 4 0.24 2 0.40 2 6.89 2 <1

Vote 435 16 9 10 1.73 13 1.28 9 45.32 8 <1
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From Fig. 8, we can see the convergence for all datasets we have used, based on the complexity (number
of instances and number of attributes) of the dataset, the figure can clearly show that our algorithm is trying to
improve the fitness of all dataset. We noticed that-except for vote dataset-all datasets start at fitness 0.9, the
fitness is calculated according to formula (11), the algorithm starts by calculating the fitness by including all
features, in that case the right operand of the + sign in formula (11) will be zero, while the left side will be
0.9 when the original dataset is crisp [2]. The fitness of vote dataset was below 0.9 when selecting all features,
this means the dataset is rough even when all features were selected. Another interesting result was the
balance dataset as it was started with fitness 0.9 and no enhancement was possible because the dataset
contains 4 features and the minimum reduct was also 4, so no features can be dismissed.

As an input parameter, we should decide the needed population size for each dataset, randomly several
values of bears were used across all datasets, we have noticed that the in most of the times that the optimal
value for the population size is almost same number of attributes. Taking into consideration that selecting the
population size correctly has a major impact on the performance. Selecting a very small number might not
allow the algorithm finding good results specially when number of attributes is high. On the other hand,
selecting high number might result in finding good solutions but will have negative impact on the
execution time. In Figs. 9–11, we have presented the result of using several numbers of bears to find the
minimal reduct of the most complicated datasets, Chess, Audiology and Soylarge, we can notice at
certain threshold having more bears will not produce better solutions anymore as the optimal solution is
already reached. According to our analysis, this threshold is usually the total number of attributes in the
dataset.

Figure 8: BPBO convergence chart per dataset

Figure 9: Chess fitness/population size
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One more important factor is the iteration count, this parameter also has impact on the possibility of
finding the optimal solution and also has affects the total runtime. Similar to population size, this
parameter should be selected carefully, and also according to our analysis and as we can see in
Figs. 12–14, the optimal solution is found at a certain threshold, which is in most of the cases is almost
two times the feature's count, for example in the Chess database where we have 36 attribute, the optimal
number of iterations is 72, after this threshold, the algorithm will be looping but no more solution are
found, assuming that population size is also selected according to our above recommendation.

Figure 10: Audiology fitness/population size

Figure 11: Soylarge fitness/population size

Figure 12: Chess fitness/iteration count

Figure 13: Audiology fitness iteration count
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The main contribution in this research is the dynamic population and re-production/death strategy,
however, to prove that we have also included additional information to each generated solution including
the iteration number which produced that solution and the number of steps executed as a local search
until reaching the optimal solution, from Tab. 3 we can see that the optimal solution was mostly
produced as a result of the re-production mechanism and not by the initial population, and we can also
notice that solutions generated during the loop are close to the optimal solution and only few steps in
local search were needed to move toward the optimal solution. From this table we can understand that
objects in the initial population were not able to find the optimal reduct using such few bears/iterations,
and only the re-produced bears allowed finding the target solution efficiently.

6 Conclusion and Future Work

In our research we have discussed the importance of reducing the size of the dataset before starting any
research and how the rough set theory provides a powerful technique to find the minimal dataset's reduct. We
also explained how the rough set by itself might not be able to find the minimal reduct as this might require
calculating all combinations of attributes which is not possible in large datasets. The heuristic algorithms,
especially population-based ones, can play a vital role in solving such NP-Hard problems. In the
literature, several heuristic algorithms were utilized along with rough set techniques to find the minimal
product. We proposed a binary representation of the Polar Bear Optimization algorithm to find the
optimal reduct of a dataset. The polar bear algorithm can only deal with solutions represented as spatial
coordinates while the solutions in the rough set are binary array of of selected and unselected features of
the dataset, we had to make some amendments to the original functions of PBO to be make it compatible
with rough set terminologies. We first represented the objects-bears-in binary format, then we modified
the local and global search functions by using binary operators. To evaluate our proposed algorithm, we

Figure 14: Soylarge fitness/iteration count

Table 3: Analysis for the obtained solutions

Dataset Samples Features Iterations Best solution Changed Duration(s)

Audiology 200 69 140 107 111 12

Balance 625 4 10 1 1 <1

Chess 3196 36 74 56 68 220

Lung 32 56 114 68 78 1

Mushroom 8124 22 46 28 29 46

Soylarge 307 35 72 42 70 12

Soysmall 47 35 72 21 29 1

Vote 435 16 34 11 33 1
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have selected several datasets from UCI and compared our results with other similar algorithms. Our
experimental analysis showed that the dynamic population behavior of our proposed algorithm allowed
finding the minimal reduct in a very efficient way in comparing with similar algorithms.

In this research we have implemented AND/OR as binary operators to reproduce new solutions based on
two good solutions after each iteration, the results were very good and showed that this was really a
promising technique, however, we believe that implementing more advanced binary operators worth
evaluation and might even give much better results, this could be a subject for future researches to be
evaluated.
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