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Abstract: Scalability is one of the most important quality attribute of software-
intensive systems, because it maintains an effective performance parallel to the
large fluctuating and sometimes unpredictable workload. In order to achieve scal-
ability, thread pool system (TPS) (which is also known as executor service) has
been used extensively as a middleware service in software-intensive systems.
TPS optimization is a challenging problem that determines the optimal size of
thread pool dynamically on runtime. In case of distributed-TPS (DTPS), another
issue is the load balancing b/w available set of TPSs running at backend servers.
Existing DTPSs are overloaded either due to an inappropriate TPS optimization
strategy at backend servers or improper load balancing scheme that cannot
quickly recover an overload. Consequently, the performance of software-intensive
system is suffered. Thus, in this paper, we propose a new DTPS that follows the
collaborative round robin load balancing that has the effect of a double-edge
sword. On the one hand, it effectively performs the load balancing (in case of
overload situation) among available TPSs by a fast overload recovery procedure
that decelerates the load on the overloaded TPSs up to their capacities and shifts
the remaining load towards other gracefully running TPSs. And on the other hand,
its robust load deceleration technique which is applied to an overloaded TPS sets
an appropriate upper bound of thread pool size, because the pool size in each TPS
is kept equal to the request rate on it, hence dynamically optimizes TPS. We eval-
uated the results of the proposed system against state of the art DTPSs by a client-
server based simulator and found that our system outperformed by sustaining
smaller response times.

Keywords: Software-intensive systems; distributed executor service; load
balancing; overload monitoring; multi-threading; thread pool; performance

1 Introduction

The drastic revolution of computing world in the era of Internet and www revealed new server side
architectures that travelled from concurrency to parallelism to distributed, grid and cloud computing
architectures. In this whole journey, the most desirable factor has been performance that is mostly

This work is licensed under a Creative Commons Attribution 4.0 International License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original
work is properly cited.

Computer Systems Science & Engineering
DOI:10.32604/csse.2022.022319

Article

echT PressScience

mailto:faisal@hu.edu.pk
http://dx.doi.org/10.32604/csse.2022.022319
http://dx.doi.org/10.32604/csse.2022.022319


dependent on the middleware that drives server-side applications. It is the middleware that makes server-side
applications scalable, highly available and highly performant. The most vital approach used by the
middleware to improve system performance is TPS that is a multithreading architecture that handles
incoming requests or events simultaneously. TPS is also known as executor service. A TPS architecture
consists of a request queue, a pool of threads (workers) and most important, the optimization policy, that
dynamically optimizes pool size to give better performance. Smaller than the optimal pool size wastes
processing resources and requests wait most of the time for the availability of thread, that suffers
response times and throughput. On the other hand, large pool size than system’s capacity increases thread
related overheads that suffer response times. These overheads ultimately make the system busy most of
the time to manage these overheads instead of letting threads execute requests, thus degrade system
performance. These overheads include context switching overhead, scheduling overhead and
synchronization overhead. Furthermore, if there are more shared resources between threads, then more
synchronization causes additional scheduling overhead that further reduces system performance. Thus, the
key concern in TPS-based systems is the dynamic optimization of thread pool size that avoids too small
or too large pool size in order to elude execution time overhead. The experimental studies have proved
that it is the most significant factor that effects the overall performance of applications.

Determining the optimal size of thread pool dynamically on runtime is a challenging problem.
Therefore, majority of the commercial server applications use bounded TPS, where thread pool size is
specified empirically by minimum and maximum limits at server initialization time and the optimization
policy makes the size float between these limits on system demand. However, when system demands
more threads beyond the maximum limit then requests are ultimately queued up and experience large
wait times. The unbounded TPS on the other hand, avoids specifying upper limit and keeps thread pool
size equal to the request rate. However, high load condition may result in very large thread pool size
(than system capacity) that suffers system performance. Thus, dynamically setting an appropriate upper
bound of thread pool size in unbounded TPS is significant to avoid overload condition.

The diversity of target servers where TPSs are deployed makes optimization policy more challenging, as
there are different characteristics of the deployment system with a different nature of tasks. Thus, the TPS has
been evolved into DTPS [1] (also called distributed executor service) where a central server distributes
incoming client’s requests to all instances of TPS running in backend servers. There are two main issues
in DTPS. First, maintaining an optimal thread pool size at each instance of TPS is significant to prevent
the overload condition, otherwise it suffers response times. Second, the load balancing between TPSs is
another critical issue where a fast overload recovery procedure of TPS is needed. In this regard, resource
level load balancing is used in DTPS presented in [2], where unbounded TPSs used memory utilization
as an overload detection metric. The load balancer supervises the memory resources of all TPSs and
distributes requests according to the available memory in TPS. However, memory utilization is a low
level metric that cannot be used as an actual pointer to the overload condition, because some other
resource may be the cause of bottleneck even on efficient memory utilization, hence it has been reported
in [3] that resource level metrics are too coarse to locate the overload condition. Moreover, resource level
metrics are not directly related to end user experience, thus memory-utilization metric does not provide
reliable response-time outage [4]. On the contrary, the application level metrics indicate top-level health
of server that are more important for observability and these metrics quickly detect the problem and
internal health of the system. In this regard, a round robin load balancing is used in DTPS presented in
[5] that utilized throughput decline to detect the overload in unbounded TPS. The DTPS used a heuristic
overload recovery by restoring the size of thread pool to the last stable state on which the TPS was
running gracefully. The objective of keeping the throughput parallel to the request rate was achieved in
[5], however, throughput may result in either resource over-provisioning or lack of responsiveness due to
non-uniform traffic load in multi-tier applications [6]. Furthermore, higher throughput does not mean
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reliable response times for all clients [7,8]. Regarding load balancing strategy, no consideration is taken in the
load balancing policies of [2,5] to overcome the overload quickly by reducing the request rate on overloaded
TPS based on the intensity of overload and shift the load towards other gracefully running nodes.

In order to overcome the aforementioned limitations of DTPSs, we present a new DTPS that uses
collaborative round robin load balancing. Our new DTPS uses a robust application level metric (queue
average wait) to detect the overload condition in unbounded TPS. The average-wait of the requests
(waiting in the queue for the availability of thread) is periodically calculated. The value of average-wait
beyond a threshold specifies large number of threads in the pool than system capacity that indicates an
overload condition. Thus, the current request rate at TPS is passed as an overload point to the load
balancer. Consequently, the collaborative round robin scheduler in the load balancer adopts a
collaborative policy with overloaded TPS. Its robust load-deceleration technique, which is applied to the
overloaded TPS has the effect of a double-edge sword. On the one hand, it adopts such a load on the
overloaded TPS which is according to its capacity, on the other hand, it sets an appropriate upper bound
of thread pool size of overloaded TPS, because the pool size at each TPS is kept equal to the request rate
on it. The scheduler decelerates the request rate on overloaded TPS proportional to the intensity of
overload point, hence recovers overload condition quickly and improves response times. The remaining
workload is shifted towards other gracefully running TPSs. The request rate on overloaded TPS is
decelerated by specific percentage which is based on the overload point of TPS. The higher the overload
point, the more the request rate is decelerated. This research work assumes that the load balancer is
reliable, while the mechanism to ensure reliability is out of scope of this work.

The rest of the paper is organized as follows. Related work is given in Section 2. Design of the proposed
system is presented in Section 3. Section 4 is a validation of the proposed system. And finally, the conclusion
and future work are presented in Section 5.

2 Related Work

The first mathematical model for dynamic optimization of TPS was presented in [9]. This model
presented a relationship between the request rate, pool size and the costs of thread creation, destruction
and context switching. In practical however, thread-related costs are very difficult to estimate accurately
by server applications. For example, the context switch places at the operating system level, hence a
server application might need in-kernel latency profiling tool that further consumes system resources and
effects system capacity.

The fundamental theorem in queuing theory known as Little’s law [10] is the most basic way to
configure thread pool size. Thus, this law has been used in the research works [11–13] to optimize thread
pool size. The queuing law considers the request arrival rate and the service time of requests to configure
pool size. In [11], a multiple request queue scheme is utilized where a single pool of thread serves
multiple request queues and each queue stores particular type of requests. URL is used to classify the
type of request. Each request arrived at the server is pushed to its corresponding queue by using a lookup
table. Each queue is allotted specific number of threads in the pool based on its weight that is calculated
by average service time of waiting requests and request arrival rate. Similarly, the Little’s law is used in
the dynamic thread pools of a real-time middleware [12], that is developed for IoT environment. This
work uses different thread pools to receive, process and retransmit requests that are running in distributed
IoT environment. It optimized thread pools, based on arrival rate of packets and packet’s retransmission
time. The work in [13] is based on the performance improvement of n-tier web architectures running in
the cloud domain. They devised an iterative algorithm for thread pool optimization by combining queuing
laws and data measurement of each tier in distributed system. They adopt an offline system profiling
strategy and run the algorithm on n-tier system for 100 min in order to generate near optimal thread pool
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size of each tier. Algorithm first identifies critical resources of each tier that saturates on increasing
workloads. Next, a near optimal pool sizes are configured for identified bottlenecked tiers in order to
avoid hardware saturation and finally, the remaining tiers that were not saturated are also configured by
proper thread pool sizes by applying queuing law. These offline results are then applied to the online
system during system reconfiguration phase in the cloud. The problem in optimizing pool size using
queuing law is the service time of requests which are unknown at schedule time. These service times
must be estimated based on the past experience by a proper verified model. However, the estimates could
be off by orders of magnitude, as service time of requests is not always constant and may be affected by
number of factors including context switch time, thread contention. Hence, some research works only
considered the request arrival rate and predicted the rate, so that an appropriate pool size can be set
before that request arrival.

Schemes have been presented in the past to predict the future request arrival rate, and set the pool size
equal to the request rate. In this regard, reference [14] presented a prediction based TPS that creates threads in
the pool in advance by Gaussian distribution. The scheme periodically computes the rate of change in the
pool size (number of threads). This rate is used as a coefficient of linear equation to identify the expected
number of threads in the future and set the pool size accordingly. However, predictions may be inaccurate
due to the synchronization overhead. Another prediction based TPS is presented in [15] that calculates
exponential moving averages of change in pool size. However, redundant threads were created by this
TPS if predictions are wrong. TPS developed in [16] was extension of [15]. This TPS analyzed trends of
time series in order to avoid redundant threads. However, its downside was creation of lacking threads.

Some research works have been used the divide and conquer approach to optimize thread pool size. The
TPS presented in [17] applied a divide and conquer approach to divide a task into subtasks and run those
subtasks in parallel by pool of threads in order to reduce computational cost. Similarly, the reference [18]
implemented a round robin based TPS in the software stack of their simulation system (SMAUG). This
TPS repeatedly distributes the task of preparing simulation data across multiple threads in the pool and
achieves performance of software stack in the data preparation and finalization. The problem with this
parallel processing approach is the logical division of a task into subtasks on runtime, which is very difficult.

The fuzzy and heuristic approaches have been attempted in TPS optimization. The TPS presented in [19]
uses a model fuzzing approach in order to optimize pool size. However, number of constraints and
parameters were applied for dynamic optimization of TPS which is too difficult to rapidly make a
decision, hence this scheme is not suitable for the system having frequent change in request rates.
A heuristic approach is presented in [20] to find a near optimum thread pool size. The objective of the
work in [20] was to increase the execution performance of integration process by using thread pool. They
used set of algorithms that generates different thread pool configurations to process a task in time
efficient manner. These configurations are iteratively applied to process a specified task. Finally, the best
configuration is selected that will execute a task in shorter time. The winning thread pool configuration is
then selected as a thread pool size. However, systems having variation in the nature and size of messages
executed by the task can affect this algorithm.

The resource level metrics have been used in TPS optimization. The CPU-utilization metric is used in
[21] to optimize thread pool size, where a lower bound and upper bound of utilization-threshold are defined
and a function repeatedly increases the pool size when CPU utilization decreases and vice versa. However,
CPU utilization alone is not a good indicator of QoS [22]. The server applications running on the back-end
servers have become diverse, hence CPU utilization alone is not appropriate to exactly represent the load
status of the back-end server [23], because some other resource may be the cause of bottleneck even on
very low CPU utilization. Similarly, the TPS presented in [24] optimized pool size based on the
performance data of threads that is associated with system resource usage. It collects the performance
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data of threads in the form of thread usage to the available system resources that are updated gradually to
generate historic data. The historic performance data of threads is combined with newly collected thread’s
performance data to generate a cumulative data that indicates thread performance trend. This trend is
analyzed over time in order to adapt certain size of thread pool. However, successively measuring
different types of resource usages after short intervals consumes computational resources and decrease
machine capacity [25].

The high level metrics have been used in TPS optimization. The response time is considered as a
performance metric in [26,27] for TPS optimization. The optimization policies are based on response time
observations. After specified time intervals, an algorithm compares successive response times on specific
pool size and either increases pool size if response times are higher or decreases pool size if response
times are better. However, due to the dynamics and unpredictability of the workload in application server
the response time metric needs more assessment. The work of [28] is based on throughput metric. On
throughput fall, the algorithm gradually increases pool size until throughput stability. In case of multi-tier
applications, the response time and throughput may result in either resource over-provisioning or lack of
responsiveness due to non-uniform traffic load [6]. Response time metric becomes vague and useless for
server applications that have requests of different processing times, e.g., multi-tier web applications.
Hence, policies [29] have been suggested to smooth response time metric to make it effective in multi-tier
applications. Similarly, the throughput metric is only effective in traditional transaction processing system
that serves uniform load traffic. Moreover, higher throughput does not mean reliable response times for
all clients [7,8].

Some TPS optimization schemes have been presented that targeted specific machine architectures. The
scheme presented in [30] is developed for GPU-based applications. In order to increase the computational
speed of parallel tasks in a real-time simulation, a framework is proposed that is based on thread pool,
where the size of pool depends upon particular GPU architecture running the application. Similarly, the
work of [31] targeted those applications that are running in multicore CPU’s. The authors presented a
framework for web servers to increase the performance of multicore CPU’s. The framework consists of
stages that contains set of tasks that are processed by a thread pool which is tuned by the resource controller.

In [32], the author proved by experiments that the performance of multithreaded application based on
thread pool depends not only on thread pool parameters but also on computational complexity of thread
pool tuning algorithm and available computational resources. The author suggested that an optimal pool
size can be achieved by assessing both computational complexity and resources.

The resource level load balancing is used in DTPS presented in [2], where unbounded TPSs used
memory utilization as an overload detection metric. The load balancer supervises the memory resources
of all TPSs and distributes requests according to the available memory in TPSs. There is a thread pool
agent at each back-end server that is guided by the load balancer to adjust thread pool size based on
corresponding back-end server load. A resource agent running in each back-end server periodically
monitors server’s overload condition by accessing memory status and saves the status of memory in a
data structure that is passed to the load balancer upon its request. When load balancer observes a change
of load pattern at any back-end server, it first examines the memory status of corresponding server in
order to assess feasibility of new thread pool size. If corresponding back-end server has enough available
memory, then load balancer sends a signal to the agent in order to set a new thread pool size. However,
memory utilization is a low level metric that cannot be used as an actual pointer to the overload
condition, because some other resource may be the cause of bottleneck even on efficient memory
utilization, hence it has been reported in [3] that resource level metrics are too coarse to locate the
overload condition. Moreover, resource level metrics are not directly related to end user experience, thus
memory-utilization metric does not provide reliable response-time outage [4]. Moreover, if there is no
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shortage of memory it does not mean that everything is satisfactory. Another DTPS presented in [5] is a
Heuristic-DTPS that utilized a round robin load balancing. This DTPS utilized throughput decline to
detect the overload condition in TPS. The overload recovery was done by restoring the size of thread
pool to the last stable state on which the TPS was running gracefully. As discussed before, throughput
may result in either resource over-provisioning or lack of responsiveness due to non-uniform traffic load
[6]. Furthermore, throughput proportional to the request rate does not mean that response times are not
compromising, especially in case of load spikes, as it has been reported in [33] that throughput metric
does not provide the best indication of outages quickly. Moreover, higher throughput does not mean
reliable response times for all clients [7,8]. Regarding load balancing strategy, no consideration is taken
in the load balancing policies of [2,5] to overcome the overload quickly by reducing the request rate on
overloaded TPS based on the intensity of overload and shift the load towards other gracefully running nodes.

The performance metrics presented in the literature review has shown that none of these metrics can
properly target TPS because of its use in the variety of servers. The server applications running on the
back-end servers become diverse with non-uniform traffic load [6], where requests are of different sizes,
hence neither resource level metrics nor the presented high level metrics are adequate for TPS
optimization. The resource level metrics are not fit for TPS as there is no direct relation between the
utilization of a resource and the QoS of the service. The high level performance metrics are only useful
for performance optimization of applications having request of almost similar sizes. Moreover, the load
balancing techniques presented in [2,5] did not use any strategy to overcome the overload faster based on
the intensity of overload condition.

In contrast to the aforementioned schemes, we are presenting a more robust application-level metric i.e.,
average wait of queued requests to detect and resolve overload condition. In a stable unbounded TPS, the
requests submitted to the request queue for processing do not wait and picked up by available threads for
execution, because pool size is kept parallel to the request rate. However, the increasing waits of the
requests in the queue indicate that the system is no more responsive due to the low machine capacity that
has wasted to manage thread related overheads. Our proposed metric is independent of request type and
request size, hence more suitable for TPS optimization. Also, our proposed collaborative round robin load
balancer has an effect of double-edge sword, that not only recovers the overload quickly by maintaining
an affordable load on the overloaded TPS, but also sets an appropriate upper bound of thread pool size of
overloaded TPS, because the pool size at each TPS is kept equal to the request rate on it. The overload
monitoring scheme is running in each TPS that detects the overload condition based on the average waits
of queued requests that are waiting for the availability of thread. The monitoring scheme periodically
compares queue average waits and reacts on upsurge of average waits beyond a threshold. In such a case,
it signals current request rate as an overload point to the load balancer. Consequently, the collaborative
round robin scheduler decelerates the request rate on the overloaded TPS proportional to the intensity of
overload point, hence recovers overload condition quickly and improves response times. The remaining
workload is shifted towards other gracefully running nodes in a round robin manner.

3 System Architecture of Proposed DTPS

In this section, we discuss the system architecture of our new DTPS shown in Fig. 1, that is composed of
a load balancer and one or more unbounded TPSs (running in the backend servers). We proceed by first
discussing the load balancer and next we present the architecture of TPS.

3.1 Load Balancer

The load balancer is a central coordinator that receives client’s requests and forwards these requests to
the available set of TPSs. The TPSs execute requests and send responses to the load balancer, that in turn
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sends these responses back to the corresponding clients. Each TPS first connects to the load balancer in order
to be a part of the distributed system. The load balancer maintains a hash table that stores information of each
TPS connected to it. The hash table entries are detailed in Tab. 1. The connector component of the load
balancer repeatedly listens for TPSs connections. When a TPS connects to it, the connector creates a
Stream-Reader thread for it, that repeatedly receives TPS responses and sends these responses back to the
clients.

Moreover, the Stream-Reader may also receive overload point (OP) value sent by corresponding
overloaded TPS. The OP specifies the request rate at which the TPS is overloaded. In such a case,
Stream-Reader uses IP of corresponding TPS as an indexed into the Hash table by a hash function and
updates OP entry in the hash table. The counter entry in the hash table is used to recover the overload
condition. In case of overload condition, it is incremented on every request submission in order to keep
track of the request rate on overloaded TPS. The counter reduces the request rate on overloaded TPS. It
prohibits the request rate to reach the OP again in order to prevent the overload. The counter is never
incremented on request submission to the stable TPS, because counter is only used to control and prevent
the overload condition on the TPS. Hence, there is no need to update the counter for a TPS that is
running gracefully. The Counter-Resetter is a timer thread that activates after every second and resets the
values of all counters that are not null, in order to control request rate every second on overloaded TPS.
The Counter-Resetter and counter are used to keep track of request rate and control the request rate per
second on TPSs in order to prevent overload condition again. Both of these components of the load
balancer assist the round robin scheduler to adapt the collaborative policy with overloaded TPS by
decelerating the load on by specific percentage.

Figure 1: Distributed thread pool system with a collaborative round robin load balancer and set of TPSs at
backend servers

Table 1: Hash table entries, where each entry belongs to particular TPS running in backend server

Entry
name

Purpose

IP IP of backend server where TPS is running.

Socket This entry stores output stream of TPS used to forward client's requests to TPS.

OP Overload Point (if not NULL) mentions the request rate at which TPS becomes overloaded. It
represents intensity of overload.

Counter This entry (if not NULL) is used to bound the request rate on corresponding TPS based on the
value of OP.
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The collaborative round robin scheduler (CRRS) works in a round robin manner when there is no
overload condition in the system. However, in case of overload condition, the CRRS adopts a
collaborative policy with overloaded TPS. The working flowchart of CRRS is shown in Fig. 2.

The Receiver component in the load balancer receives client’s requests and forwards these requests to
the CRRS. The CRRS repeatedly iterates through the hash table. It forwards requests to the TPSs in a round
robin manner by fetching next available TPS’s information from hash table. If hash table entry specifies that
OP is null, then request is sent to the corresponding TPS without incrementing its counter. Otherwise, the
CRRS is restricted to decelerate the request rate to overcome the overload condition, hence it increments
the counter in order to track the request rate per second on overloaded TPS. The CRRS will decelerate
the request rate on TPS depending upon the value of OP (which is communicated by the TPS at backend
server) at which the overload condition was detected. The OP is basically the request rate at which the
TPS was overloaded at backend server. The more the value of OP that caused the overload on TPS, the
large the amount of request rate reduced by the CRRS, to quickly recover the overload. This is achieved
with the help of number’s placement (NP) of OP on which the overload occurred in the TPS. The request
rate is decreased by 10% of the number placement of OP. Eq. (1) is used by the CRRS to decelerate the
request rate on overloaded TPS.

Counter , OP � ðNumber Placement of OP=10Þ (1)

For example, if a TPS is overload on 1200 requests per second, then TPS will send the value 1200 as an
overload point (OP = 1200) to the load balancer. The number placement of 1200 is 1000, hence the request
rate will be decreased by 100 requests per second and CRRS will send 1100 requests per second to the
overloaded TPS. Similarly, the request rate will be decelerated to 1000 requests per second for OP =
12000. For low intensity overload, the decelerating value is also low. For example, if overload is
occurred in TPS at 500 request rate (OP = 500), then CRRS will decelerate the request rate by 10 requests
(i.e., counter< = 490). In case, if a TPS is overloaded again on 490 requests per second, then request rate
is kept to 480, and so on. If the condition in Eq. (1) is false, then it indicates that the CRRS has sent
requests to the corresponding TPS according to its capacity. Hence from hash table, the request is sent to
any other graceful TPS. In this way, the remaining requests are shifted to the gracefully running TPSs.

The overload is monitored by the overload monitoring scheme at TPS after every half second, hence this
scheme quickly sets an appropriate request rate on the overloaded TPS which is according to its capacity.
Furthermore, this approach sets an upper limit of thread pool size in TPS (discussed in the next section).

Figure 2: Working flowchart of collaborative round robin scheduler
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Since we used unbounded TPS at backend servers, thus a controlled request rate by CRRS on the overloaded
TPS ultimately creates an appropriate thread pool size, hence optimizes TPSs.

3.2 Unbounded Thread Pool System

In this section, we discussed the system architecture and operational flow of TPS, that is composed of
collection of components as shown in Fig. 3.

When a TPS starts, it initializes a thread pool, the request and response queues. Initially, the thread pool
is allocated threads equal to the number of cores in the system. On runtime, the pool size is kept equal to the
request rate on TPS. Each thread has a Timer object that starts when a threads becomes idle. The Timer
destroys its corresponding thread if it is idle for 500 ms. This reduces the pool size when the request rate
gradually falls. After initializing thread pool and queues, the TPS connects with the load balancer. If it is
connected successfully, then TPS starts its Receiver thread, that waits for request arrival. Receiver thread
repeatedly receives client’s requests (that are forwarded by the load balancer), marks a time stamp on
request and submit it to the request queue which is a producer consumer FIFO queue. The time stamp
mentions the time the request entered in the system. It assists in calculating the total wait time of request
in the queue. The request has to wait in the request queue, until a free thread is available. If there is an
optimal number of threads inside thread pool, then every request is immediately picked up by a free
thread as soon as it is inserted into the queue. Receiver also increments a synchronized object named
Counter on each request arrival. The Counter is used to keep track of request rate. On arrival of the very
first request, the TPS starts request rate monitor. The request rate monitor is a timer thread that keeps
track of request rate. It activates after every second and assigns the Counter to the Frequency object and
sets the Counter to zero. The request rate monitor keeps the current request rate and the last highest
request rates in Frequency object. Finally, the request rate monitor runs optimization policy thread and
passes it a copy of Frequency object in order to optimize thread pool size (if required).

The optimization policy thread reads the current and the last highest request rates from Frequency object
and compare these rates. If current request rate is greater than the last highest request rate, then optimization
policy optimizes pool size by keeping it equal to the current request rate. Finally, the optimization policy
starts Average Wait Calculator (AWC) thread and exits. The AWC monitors the effect of pool size
optimization on the system. The AWC is a timer thread, that keeps track of average wait of queued
requests that are waiting inside the request queue for the availability of thread in order to run the request.
Initially, this thread is activated by the optimization policy after very first optimization of pool size and

Figure 3: System architecture of TPS running in backend-server
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later it repeatedly performs its job after every 500 milliseconds. Eq. (2) is used by the AWC to calculate the
queue average wait. For all requests from 1 up to n that are waiting in the queue, the wait time of i-th request
is calculated by arrival time of i-th request and current time, and the sum of waits of all requests is calculated
and divided by the queue size n.

Average Wait ¼
Xn

i¼1

ðCurrentTime� ArrivalTimeðiÞÞ=n (2)

The AWC thread saves the result of eq. (2) in Average-Wait object. The AWC thread updates this object
after every 500 ms and also keeps the last updated value in this object for comparison. After updating this
object, the AWC starts overload monitoring scheme and also passes a copy of this object in order to
detect the overload. The overload monitoring scheme is a thread that monitors and controls overload
condition in its TPS. It is always started by the AWC. It reads current and previous average waits (of
queued requests) from Average-Wait object and calculates percentage increase. If percentage increase is
greater than specified threshold (10%) then it indicates an overload condition. This mentions that the
current request rate is not affordable for the system because it has created threads in the pool beyond the
system capacity. Consequently, the overload monitoring scheme sends the current request rate as an
overload point to the load balancer (to decelerate the request rate) that updates corresponding entry of OP
in the hash table. The CRRS adopts the collaborative policy and decelerates the request rate on TPS until
it is according to the TPS’s capacity. Keeping an affordable request rate on the TPS ultimately reduces
the size of its thread pool that results in an appropriate amount of threads in the pool, hence optimizes
pool size.

The threshold (percentage increase of 10%) used by the overload monitoring scheme has been
determined after successive simulation tests under different loads by compromising some fundamental
thread related overheads in context switching, scheduling and contention, as these overheads are
prerequisites of thread management. We found this threshold working well to overcome the overload. Our
goal is to enable the overload monitor scheme to respond quickly in case of increasing queue average
wait in order to make response times stable. Overload monitoring scheme achieves this by threshold of
10%. The automatic tuning of this parameter will be investigated in the future work.

4 Result and Discussion

In this section, we are validating the proposed system by jPoolRunner [34] simulation toolkit. The
simulator is based on the client-server model. Its server-tier can accommodate a TPS inside it, whereas
the client-tier behaves as a load generator, that sends requests to the server-tier and receives responses.
The client-tier also displays performance statistics. Testing is performed on a network of four computers
with 64gb memory each, where one of these computers is running the client-tier of simulator and another
one is running the load balancer and remaining two computers are backend servers running a separate
instance of TPS. The backend servers are intel Xeon with 18 cores and intel quad core. The processing
capacity of backend servers is different in order to evaluate the results. We validate the improved
performance (in terms of response time) of our collaborative round robin based DTPS (CRR-DTPS)
against RL-DTPS [2] and Heuristic-DTPS [5].

4.1 Testing on Gradually Increasing Request Rate

To conduct this test, we gradually increased the load (request rate) on the load balancer. The dynamic
request rate is shown in Fig. 4, where x axis represents time in seconds and y axis represents request rate.
Initially, the request rate is generated by the poisson distribution with λ = 1400. After every minute, the
load gradually increased up to 200 more requests i.e., λ = λ+200. In each scheme, half of the workload is
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sent to each server every second. For example, in the first minute of testing, when the request rate is 1400, the
700 requests are sent to both of the backend servers each second, similarly, on second minutes, 800 requests
are sent to both of the backend servers and so on. The workload is simulated by the Task object (available in
toolkit) that simulates 1 kb file by sleeping for ≈100 milliseconds.

A comparative analysis of three schemes in terms of pool size at low-processing backend server is
depicted in Fig. 5, with x axis representing the time in seconds and y axis representing the pool size. The
first three minutes of the test execution show that each scheme is producing pool size equal to the request
rate. However, RL-DTPS did the same in the last minute. The RL-DTPS didn't find any shortage of
memory, thus it kept its pool size to 1000 in the last minute too. As there is sufficient amount of memory
available at backend server which can be seen in Fig. 6, thus RL_DTPS did not detect internal overload
condition. Fig. 6 represents memory utilization of RL-DTPS. The memory utilization pattern (Heap)
confirms that memory is not growing quickly, instead it is a flat baseline trend in form of double-
sawtooth pattern where memory is gradually increases and decreases due to the small GC pauses which is
necessary for reclaiming memory by GC. Heap is uplifted in the fourth minute of the test execution due
to the increase of threads in the pool that can be seen in Fig. 5 that shows pool size of 1000. It can be
seen in Fig. 5, that both of CRR-DTPS and Heuristic-DTPS schemes are producing same thread pool size
in the last minute. The CRR-DTPS initially kept its thread pool size to 1000 at the start of the fourth
minute, but its overload monitoring scheme detected overload condition by observing large queue
average wait. Consequently, it sent the overload point (1000) to the load balancer, that immediately
changed the load on the corresponding backend server to 900 requests per second. Thus, the pool size of
900 can be seen in Fig. 5 in the last minute. Ultimately, the load is shifted to the other high processing
backend server by the CRRS. The Heuristic-DTPS also maintained same pool size as CRR-DTPS did in
the fourth minute by restoring previous pool size which was 900.

Figure 4: System load used for testing

Figure 5: Comparison among pool sizes of three schemes at low processing backend server
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A comparative analysis of response times (of all requests) of three schemes is presented in Fig. 7, that
shows that CRR-DTPS and Heuristic-DTPS are producing very small response times in the whole test run as
compared to RL-DTPS.

The CRR-DTPS is producing efficient response times in whole test execution. It detected the overload in
the start of the last minute on low processing machine and reduced request rate to 900 requests per second on
it. Thus, more workload is shifted to the high processing node for improved performance. Similarly, the
Heuristic-DTPS is producing efficient response times in the last minute. However, a small amount of
requests suffered due to simple round robin scheme, which is unable to shift the load to the gracefully
running node. The RL-DTPS is producing higher response times in the last minute, as it did not detect
internal health of the system and TPS on low processing machine is overloaded, because large number of
threads resulted in overheads of thread management, thread context switching and thread synchronization.
Hence, system is busy in managing these overheads instead of letting threads run requests. Thus, queue
wait of requests increases. Moreover, the new request arrivals on low processing machine further
increased queue waits and response time. Consequently, the new requests have to wait more for the
completion of the old requests. Thus, all requests on TPS of low processing machine are suffered with
high response times.

The 90th percentile response time of both CRR-DTPS and Heuristic–DTPS is 100 milliseconds, while it
is 135 milliseconds for RL-DTPS. Hence, CRR-DTPS produced 25.9% less response time than RL-DTPS.

4.2 Testing on Sudden Load Spike

To conduct this test, we put a sudden spike of load to overload servers. The dynamic request rate is
shown in Fig. 8, where x axis represents time in seconds and y axis represents request rate. Initially,
request rate is generated by poisson distribution with λ = 1000. However, we suddenly increased the

Figure 6: Memory utilization of RL-DTPS on low processing backend server

Figure 7: Comparison of response times of all requests between three schemes
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request rate with λ = 2000 after 30 s. This load spike will assess the schemes in case of bursty workload. The
workload here is also simulated by the Task object (available in toolkit) that simulates 1 kb file by sleeping
for ≈100 milliseconds.

A comparative analysis of thread pool sizes of three schemes at low processing backend server is
presented in Fig. 9, that shows that the CRR-DTPS configured the pool size to 1000 on load spike (due
to 1000 request rate on TPS), however the pool size gradually dropped by 100 threads in every half
second and sustained to 800 till the end of test. The successive reduction of pool size is due to the
increasing average waits on 1000 and 900 request rates. The overload monitoring scheme signaled these
rates successively to the load balancer, as a result, the CRRS gradually decelerated the request rate.
Finally, the system turned into stable state with thread pool size of 800 till the end of the test. The
Heuristic-DTPS detected the overload situation too, however, it restored its pool size to previous state
which was 500 and kept this pool size till the end of test. Since 500 threads are enough to complete
1000 requests (of 100 milliseconds) per second, therefore no more throughput decline is observed by
Heuristic-DTPS. The RL-DTPS kept its pool size parallel to the request rate as it did in the last test.

A comparative analysis of response times of three schemes is presented in Fig. 10. It is clear in the figure,
that CRR-DTPS outperformed both schemes. It can be seen in Fig. 9, that CRR-DTPS detected the overload
twice after load spike, and set an appropriate pool size of 800. The remaining load is shifted to the other TPS,
hence improved response times. The Heuristic-DTPS is producing higher response times for ≈500 requests
each second at low processing backend server, whereas RL-DTPS is producing higher response times for all
of the 1000 requests at low processing backend server. Furthermore, the response times of RL-DTPS are
increasing gradually for new requests at overloaded TPS. The 90th percentile response time of three
schemes are CRR-DTPS = 100 milliseconds, Heuristic–DTPS = 135 milliseconds, and RL-DTPS =

Figure 8: System load used for testing

Figure 9: Comparison among pool sizes of three schemes at low processing backend server
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170 milliseconds. Hence, CRR-DTPS produced 25.9% less response time than Heuristic-DTPS, while its
performance gain is 41% against RL-DTPS. The Heuristic-DTPS produced 20% less response times
against RL-DTPS.

It has been concluded that our new scheme outperformed other schemes in terms of response times.
Furthermore, our scheme can respond effectively to both request arrival patterns of gradually increasing
load and bursty load.

5 Conclusion and Future Work

This paper has presented a collaborative round robin load balancing scheme for distributed thread pool
system. The load balancer is backed by an overload monitoring scheme running in each TPS at backend
servers. The overload monitor uses queue average-wait metric to detect the overload. The overload is
quickly recovered by the collaborative round robin load balancing. The load balancing scheme has the
effect of a double edge sword that not only balances the load among available TPSs according to their
capacities, but also optimizes thread pool sizes of TPSs. The incoming client’s requests are first
distributed to the available set of TPSs in a round robin manner. However, in case of overload situation at
any TPS, the load balancer quickly decelerates the load on the overloaded TPS proportional to the
intensity of overload and shifts incoming requests towards other available nodes. The load deceleration
process optimizes thread pool size of corresponding TPS. The effect of the double edged sword
collaborative load balancing improves client’s response times. We have compared this scheme with two
other existing schemes by an open source client-server based simulation tool and the results of evaluation
have proved that our new scheme is more performance efficient in terms of response time.

In the future, we will auto-tune the thresholds used in this paper. Furthermore, we will add multiple load
balancers to support availability and reliability.
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