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Abstract: The design of controllers for robots is a complex system that is to be
dealt with several tasks in real time for enabling the robots to function indepen-
dently. The distributed robotic control system can be used in real time for resol-
ving various challenges such as localization, motion controlling, mapping, route
planning, etc. The distributed robotic control system can manage different kinds
of heterogenous devices. Designing a distributed robotic control system is a chal-
lenging process as it needs to operate effectually under different hardware config-
urations and varying computational requirements. For instance, scheduling of
resources (such as communication channel, computation unit, robot chassis, or
sensor input) to the various system components turns out to be an essential
requirement for completing the tasks on time. Therefore, resource scheduling is
necessary for ensuring effective execution. In this regard, this paper introduces
a novel chaotic shell game optimization algorithm (CSGOA) for resource sche-
duling, known as the CSGOA-RS technique for the distributed robotic control
system environment. The CSGOA technique is based on the integration of the
chaotic maps concept to the SGO algorithm for enhancing the overall perfor-
mance. The CSGOA-RS technique is designed for allocating the resources in such
a way that the transfer time is minimized and the resource utilization is increased.
The CSGOA-RS technique is applicable even for the unpredicted environment
where the resources are to be allotted dynamically based on the early estimations.
For validating the enhanced performance of the CSGOA-RS technique, a series of
simulations have been carried out and the obtained results have been examined
with respect to a selected set of measures. The resultant outcomes highlighted
the promising performance of the CSGOA-RS technique over the other resource
scheduling techniques.
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1 Introduction

In the recent years, due to the high control performance, high reliability of the distributed control
systems (DCS), low implementation costs, and reconfiguration flexibility, they have been extensively
used in various areas. There are several benefits in utilizing a DCS in the robot collection procedures [1].
These systems are capable of controlling a wider range of heterogeneous devices and do so on greater
physical distances. Such a scheme might be very modular and can therefore support multiple devices.
The implementation and design of a DCS that works efficiently and effectively in various hardware
configurations and computations may be a nontrivial task [2]. For instance, one of the most important
consideration here is to ensure the accessibility of resources by the various components in the system
(such as the computational units, communications channels, sensor inputs, robot chassis) for
accomplishing their task efficiently [3]. Not all resources can adapt to several concurrent access requests
at the same time, and several resources on the other hand can manage only a single request at a particular
time instant. Another problem here is to define an appropriate procedure for the distribution of requests
for the concerned resources inside the entire system. This procedure in a way ensures the balancing
conditions of the computation and the resource loads and further confirms that none of the components in
the system are charged beyond the defined levels. A DCS was established for handling the collection of
small mobile robots possessing the required computing capabilities and restricted on-board sensing ranges
[4]. Fig. 1 illustrates the overview of the robotic control model.

The robots should be capable of working with teams: this ability assures that a large physical area could
be surveyed by the robots and hence could provide a degree of redundancy by pointing out the robots that are
either deactivated or the ones that are unable to complete their tasks on time. Moreover, the robots must
function independently. Because of the weight and size constraints of the Scout's design, the computation
hardware that is accessible on a Scout is constrained with a limitation of 2 8-bit microcontrollers [5]. For
utilizing the processor resources, several tasks often run on a processor. The scheduling algorithms of this
task not only affects the utilization of a processor but also controls the system's performance [6]. The
optimum scheduling methodology opted for the multiprocessors is the NP hard, hence the heuristic
algorithms are often adopted for the allocating tasks. A technique employed for scheduling the tasks in
the distributed systems is the integration of the scheduling algorithms for the uniprocessor and the static
task distribution algorithms [7]. Followed by which, the system would start functioning, whereas, the
processor assigned tasks would be observed to remain unaltered. The algorithms are simpler and the
offset of the scheduling algorithms are smaller. Another type of allocation algorithm is the dynamic

Figure 1: Overview of the robotic control system
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allocation algorithm. The tasks in this case might migrate to the processor during the run time of the system.
The algorithms are capable of achieving the required optimal objective functions such as the control
performance of system, processor utilization, and so on. However, the algorithms are observed to be
highly complicated with bigger offsets and the foreseeability of the algorithms appear to be weak.

This study emphases on the dynamic allocation of resources during the runtime instead of analyzing the
resource requests offline, it encourages for plan changes when the requests are not fulfilled. Especially, this
method is appropriate for an unpredicted environment in which the resources should be assigned in a
dynamic manner that cannot be anticipated before. Load schedule is thus determined as the procedure for
balancing, providing, and allocating the load in DCS effectively. The primary objective is to decrease the
transmission time and the overall cost acquired for scheduling the load in the scheme. The scheduling of
the load is executed by different scheduling methods. The scheduling algorithm is determined based on
the dynamic and static nature of the load. Also, they are categorized into the non-heuristic and the
heuristic types. The Meta heuristic algorithm plays a significant role in scheduling the load through an
appropriate search procedure. At present, to conquer the disadvantages, several scientists have resolved
this challenge by utilizing the optimization algorithm. However, this methodology fails to achieve the
required processing cost, completion time, and load related attributes efficiently. To combat this problem,
a group of metaheuristic-based load scheduling algorithms have been proposed for the DCS robotic
environments.

This paper introduces a novel chaotic shell game optimization algorithm (CSGOA) for resource
scheduling called as the CSGOA-RS technique for the distributed robotic control system environment.
The CSGOA technique is based on the integration of the chaotic maps concept to the SGO algorithm to
enhance its overall performance. The CSGOA-RS technique has derived a fitness function involving three
different parameters such as the make span, the reliability cost, and the mean flow time (MFT) for the
allocation of resources in such a way that the resource utilization can be considerably improved. The
CSGOA-RS technique is valid even for the unforeseen environment where the resources are to be allotted
dynamically using the prior estimations. The performance of the CSGOA-RS technique can be examined
under different aspects and the results can be discussed extensively.

2 Literature Review

Lee et al. [8] proposed the architecture for balancing the workload and the competency adjustments in
the multirobot task distributions. Competency represents the capability of a robot for executing a task based
on its cost and quality, and the workload balancing mechanism represents the allocation of workloads
between the robots. This method considers the cost and quality of a robot for a task and thereby adjusts
them according to the changes in the environment. For balancing the workload, this method uses the idea
of subsidy to inspire the participation of the lesser active member of the robot teams. Experimental result
demonstrates that this model could alter the competency levels according to the changes in the
environment and allocate workloads between the robots in a balanced way. Goyal et al. [9] addressed the
problem of energy utilization using the cloud platforms. The techniques and algorithms should be capable
of reducing the schedule resources and power consumption levels for enhancing the efficacy of the server.
Also, Load balancing appears to be a significant part of cloud technique as it encourages for balanced
load allocations between the servers for satisfying the user requirements. This study has made use of
various optimization methodologies such as the PSO, CSO, BAT, CSA, and WOA for balancing the load,
energy efficacy, and resource scheduling for creating an effective cloud platform. Blankenburg et al. [10]
proposed a distributed multi-robot control framework that addresses the above mentioned problems and
accomplishes the succeeding participations: i) it permits for the online and dynamic distribution of robots
to the various phases of the task, ii) it makes sure that the collaborative robot scheme would follow the
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individual task constraints and iii) it permits for opportunistic, flexible task implementations in distinct
environment conditions. This framework utilizes a distributed messaging scheme for allowing the robots
to interact with each other. Every robot uses its team member and own state for monitoring the growth on
a provided task and recognizes the appropriate subtask for executing an activation spreading methodology.

Zhu [11] proposed a solution to the fairness problems in multitype resource allocations for the multirobot
methodologies possessing multiple resource requests. They employ DRF principles in this solution for
2 distinct schemes: STR-MRT and MTR-SRT. In STR-MRT, the robots can execute only individual tasks
at a time, task is separable, and for accomplishing the entire set of tasks they would require an increased
number of robots. In MTR-SRT, the robots are capable of executing multiple tasks at a time, tasks here
are inseparable and the entire set of tasks can be accomplished by a single robot. Delgado et al. [12]
offered a complete procedure in the event of realizing the OES on the basis of public domain real world
operating systems on many low cost OES platforms. Their efficiency was compared and evaluated based
on the interrupt response time, periodicity, scheduling ability, and task synchronization i.e., with respect
to the critical metrics for determining the reliability and stability of the real-world regulators. Maoudj
et al. [13] handled the growth of a DMAS for controlling and scheduling RFAC. In this technique, a
method for solving the key challenge decision problems in RFAC was proposed and implemented. These
problems are thus interrelated to the product operation scheduling features that relies on the sequencing
and allocation aspects on the robots while fulfilling the robot and product based limitations under the
make span minimization. The presented DMAS addresses this problem with the help of a cooperative
methodology that is supported by 3 different types of independent control agents, namely, the local agent,
the remote agent and the supervisory agent. Yuan et al. [14] proposed a G/G/1 queuing scheme for
analyzing the efficiency of the server in DGC. Based on the single objective constraints the optimization
problems are solved and formulated by a presented SBA, this is done for identifying the SBA that could
minimize the energy cost of a DGC supplier by optimally assigning the tasks of heterogeneous
applications amongst the various DGCs. It further specifies the running speed of the servers and the
amount of power on the servers in every GC while confronting the respond time limitations of the tasks
of each of the individual applications.

Gultekin et al. [15] proposed a second order cone programming formulation for detecting the Pareto
efficient solutions. The conic formulation was capable of detecting the robotic schedules for the smaller
cells with limited number of machines in moderate computational time durations. This approach could
produce a huge set of accurate Pareto effective solutions in a shorter computation time. Wang et al. [16]
addressed the multi robot task scheduling mechanism for 2 types of robots arising from the
heterogeneous robotic order fulfillment system. The heterogeneous multi robot scheme consists of 2 kinds
of robots with complementary and specialized abilities for achieving long cycle and multi-station order
fulfilment tasks on a logistic network. Such problems are very complex due to the innate complex
schedule constraint of the tasks and hence coupled based on the temporal–spatial relationships among the
robots. This procedure would then be followed by the construction of a set-theoretic and mixed integer
linear programming problem formulation mechanism, this essentially makes use of the coupled
methodology instead of the decoupled methodologies for exploring the synergies among the
heterogeneous robots, i.e., unlike the techniques proposed in the present studies.

Sun et al. [17] proposed 2 new robotic job shop scheduling methods using deadlock and robot motion
considerations (RJSPDT). The presented method concurrently considers the scheduling of tack operations
and motion of the robots with an aim of minimizing the make span. Two modeling methods have been
employed here, namely, the conventional position and the new network based approaches i.e., stimulated
by the aviation scheduling work. Fu et al. [18] focused on the online scheduling and charging approaches
of the robots in warehouses using the unknown moving paths. Initially, the storage scenarios here would
be abstracted to a grid methodology. Next, the shortest path algorithms would provide priority to the
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robotic tasks based on the coordinate differences. Later, the minimal service quantity of the MC would be
defined by the arbitrary simulations.

In He et al. [19], developed the distributed cooperative controllers for a selected set of scenarios. Here,
certain aspects such as the manipulability enhancement, transport of the object, and obstacle avoidance are
attained online with a new optimization-based methodology. As the local controllers don't require another
robot for transmitting the method or for joining the space data, the systems appear flexible with
communication costs. Fang et al. [20] used an interconnected undirected graph for describing the multiple
redundant manipulator systems. In the existing studies, it is observed that some constraints include the
convex set built for the joint physical limit, inequality constraints are derived for avoiding the obstacles,
and equality constraints are derived for tracking the required paths. New distributed neurodynamic based
algorithms are evolved for solving the complicated problems in real-world, hence it is necessary to have a
central coordinator in the multirobot systems.

3 Background Information: System and Task Models

The control loop must be capable of transmitting the required control signals to the concerned process, it
should effectively compute the control signals and acquire the required data from a physical procedure. Such
functions have been found to influence one another forming loops, these loops are named as loop tasks as
they represent a task in the system. As the period of these loop tasks tend to differ to a specific extent
they would not be set prior to the initialization of the process [21]. DCS operates on several processors
through a transmission network. Various processors are adapted in DCS for realizing different types of
control tasks, therefore DCS is heterogeneous, i.e., the implementation time is distinct on distinct
processors. Depending on this, the processor and loop task models have been provided below.

Definition 1. Loop tasks set in DCS indicates S = {τ1, τ2, …, τn}(n ≥ 2). Where τi∈ S represents the ith
loop task and is quintuple.

si ¼ ðC; Tmin; Tmax; T ; PrÞ (1)

where C, T min
i , T max

i and T represents the implementation time, the minimum sampling period, the
maximum sampling period, and the sampling period of the loop task τi correspondingly. Pr implies the
processor to which the loop task τi is assigned.

Definition 2. DCS is defined as a processor set Ω that operates on a network: Ω = {Pr1, Pr2, …, Prm}
(m ≥ 2), Pri = (ρ, u), where ρ and u represents the processing ability coefficients and the utilization of the
processor Pri correspondingly.

For a loop task, the implementation time vectors are presented as follows.

Definition 3. In DCS, τi.C is determined as a vector si:C ¼ ½si:Cð1Þ; si:Cð2Þ; . . . ; si:CðmÞ�, whereas
τi.C( j) denotes the implementation time of the loop task τi on the processor Prj.

Definition 4. The processing ability coefficients represent the performance speed of the loop tasks on a
processor. In heterogeneous DCS, processors are elected as regular processors, denoted as Prnor, and its
processing ability coefficients are represented as one. The processing ability coefficients of Pri is given below

Pri:q ¼ sj:C:ðPrnorÞ
sj:CðiÞ (2)

Whereas τj.C(Prnor) represents the implementation time of the loop task τj on a regular processor and τj.C(i)
indicates the implementation time of the similar loop tasks on the processor Pri.
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Definition 5. When each loop task in DCS completes before the assigned deadlines then the DCS can be
categorized under the schedulable type.

This study is based on the following succeeding rules:

i) The required number of loop tasks and processors are to be set.
ii) The deadline of the loop task is equivalent to their period.
iii) Loop tasks are independent of one another.

4 The Proposed Model

In this study, an effective CSGOA-RS technique has been developed for scheduling the resources
proficiently in the distributed robotic control system. The CSGOA-RS technique is intended to allot the
resources in such a way that the transfer time is minimized and the resource utilization is increased. In
addition, the CSGOA-RS technique has derived a fitness function involving three parameters namely the
make span, the reliability cost, and the mean flow time (MFT) for the allocation of resources in such a
way that the resource utilization is considerably improvised. The detailed working of the CSGOA-RS
technique has been elaborated in the succeeding sections.

4.1 Design of CSGOA Technique

The shell game was inspired by inventing a novel optimization technique called as the Shell Game
Optimization (SGO). Therefore, the subsequent statements are considered:

� During this game, one person would be assumed as the game operator.

� 3 shells and 1 ball would be assigned to an operator.

� All players would be provided with 2 opportunities for guessing the correct shell.

For the mathematical representation of the SGO algorithm, a set of N people would be considered as the
game players. In Eq. (3), the place ‘d’ of a player ‘i’ would be demonstrated as xdi :

Xi ¼ ðx1i ; . . . ; xdi ; . . . ; xni Þ (3)

At this time, Xi is actually an arbitrary value to the problem variable. According to Xi, the value of the fitness
function (FF) can be estimated for all the players. Fig. 2 illustrates the steps involved in the SGO techniques.

After computing the FF value for all the players, the game operator would select 3 shells in such a way
that most of the shells are connected to the location of an optimum player, 2 other shells would be selected
arbitrarily using Eq. (4).

Figure 2: Steps involved in SGO algorithm
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game’s operator:
shell1 ¼ ball ¼ Xbest

shell2 ¼ Xk1
shell3 ¼ Xk2

8<
: (4)

where Xbest implies the place of minimal (in minimization issues) or maximal (in maximization issues)
fitness, Xk1 and Xk2 are places of 2 members of the population. k1 and k2 represent the arbitrary numbers
among [1-N] that are selected arbitrarily. After computing the FF and recognizing the shell for all the
players, the aspects of intelligence and accuracy of the players would be estimated in this phase [22]. All
the players would guess that the shell dependent upon the players are inspired based on the fitness
accuracy and intelligence. The accuracy and intelligence normalization value is represented by Eq. (5).

AIi ¼ fiti � fitðXworstÞPN
j¼1½fitj � fitðXworstÞ�

(5)

where AIi represents the accuracy and intelligent of the players i and Xworst refers to the place of minimal
(in maximization issues) or maximal (in minimization issues) fitness levels.

At this point, the player would be prepared to guess the ball. The game is to be played with 3 shells and
all the players would be provided with only 2 chances, the players can make use of the available 3 states of
guesses. In the beginning state, an initial guess would be correct and the place of ball could be recognized
easily. In the second state, the player making a wrong guess in the primary selective state can guess the place
of the ball the second time. Finally, in the third state, when both the guesses of the player go wrong, the player
turns out to be unsuccessful in recognizing the place of the ball. The guess vector detailed byGv is inspired as
in Eq. (6) for all the players.

GvðxÞ ¼
state1: ½1 0 0�; at first

state2:
½0:5 0:5 0�
0:5 0 0:5

;

�
at second

state3: ½0 0:5 0:5�; else

8>><
>>: (6)

The probability of selecting most states to the shell selective is inspired by Eq. (7).

state ¼
state 1: if AIi. rg1
state2: if AIi . rg2
state3: else

8<
: (7)

where rg1 signifies the feasibly of a correct guess at the initial selective and rg2 indicates the feasibly of a
correct guess the second time.

Eventually, the Xi vector that is considered as the place of the members of the population is upgraded
with the Eqs. (8)–(11).

dxdi;ball ¼ r1 � ðball � xdi Þ � state ð1; 1Þ (8)

dxdi;shell2 ¼ r2 � ðshelld2 � xdi Þ � signðfiti � fitshell2Þ � stateð1; 2Þ (9)

dxdi;shell3 ¼ r3 � ðshelld3 � xdi Þ � signðfiti � fitshell3Þ � stateð1; 3Þ (10)

xdi ¼ xdi þ dxdi;ball þ dxdi;shell2 þ dxdi;shell3 (11)
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where ri represents the arbitrary value in the range of [0 1], dxdi;ball, dx
d
i;shell2

, and dxdi;shell3 are the movements of
dimensional ‘d’ of the player ‘i’ according to shell1, shell2, and shell3.

Algorithm 1: Pseudocose of SGO

Input: Random formation of the initial population

Output: The better optimum solution

Begin

Initialize the random formation of the primary population Xi

Compute the fitness value of the agent

Choose the ith member of 3 shells Xishell1, Xishell2, Xishell3

Compute the Accuracy & Intelligence (AI)

Simulate the Guess state

Choose the dimensional of the ith member

Compute Xishell1, Xishell2, Xishell3

Upgrade the place of dimension of the ith member

If each member is upgraded, go to step 10 else go to step 2

If termination condition is initiated

Attain the better optimal solution

End

Chaotic maps are efficient enough in enhancing the solution quality of the SGO algorithm in resolving
the resource scheduling problems. Generally, chaos is a deterministic arbitrary technique that is non-linear, it
is dynamic model that is non-periodic, non-converging, and bounded in nature. The nature of chaos is
obviously arbitrary and unpredictable, and it can retain an element of regularity. The chaos utilizes the
chaotic variables instead of the arbitrary variables. Many functions (chaotic maps) and some parameters
(primary condition) are vital even for the longer systems. Furthermore, a huge number of distinct
sequences are created easily by altering their primary conditions. Also, this sequence is deterministic and
reproducible. In addition, it is extremely sensitive depending upon their primary conditions and
parameters. An extensive variation of the distinct chaotic maps is accessible in the optimization domain.
In this proposed work, 10 very extensively utilized chaotic maps have been employed [23]. The
mathematical modulation of these chaotic maps thus utilized have been explained in the subsequent
subsections. The chebyshev map has been expressed in Eq. (12).

ukþ1 ¼ cosðPar:cos�1ukÞ (12)

The circle map is a 1D map that is a member of the dynamical schemes on a circle and is initially
determined by the Andrey Colmogorov. This map is determined as:

ukþ1 ¼ uk þ b� Par

2Par

� �
sinð2pukÞmodð1Þ (13)

This formula is created with chaotic numbers amongst (0, 1) by utilizing Par = 0.5 and b = 0.2. Par is
employed in the form of control parameters. The formulas of the Gauss map are determined as:
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ukþ1 ¼
0 uk ¼ 0

1

ukmodð1Þ otherwise

8<
: (14)

1

ukmodð1Þ ¼
1

uk
� 1

uk

� �
(15)

This map also creates a chaotic sequence in (0, 1).The iterative chaotic map formula is expressed in
Eq. (16).

ukþ1 ¼ abs sin
Par

uk

� �� �
(16)

where Par implies the adaptable parameter. The equation for the logistic map formula is provided in Eq. (17).

ukþ1 ¼ Par:ukð1� ukÞ (17)

where Par is the control parameter, which is set to 4 for generating numbers amongst 0 and 1. The family of
the piecewise maps is expressed using Eq. (18).

ukþ1 ¼

u

Par
0 � uk � Par

uk � Par

0:5� Par
Par � uk � 0 ¼ 5

1� P � uk
0:5� Par

0:5 � uk � 1� Par

1� uk
Par

1� Par � uk � 1

8>>>>>>>>>><
>>>>>>>>>>:

(18)

where Par refers to the appropriate control parameter whose range is 0 and 0.5. The sine map is
determined as:

ukþ1 ¼ a

4
sinðpukÞ (19)

Par implies the control parameter containing values in the ranges 0 and 4. The singer map is
considered as:

ukþ1 ¼ Parð7:86uk � 23:31u2k þ 28:75u3k � 13:302875u4kÞ (20)

where Par represents the control parameter whose values lie in the range 0.9 and 1.08. The sinusoidal map is
expressed as follows:

ukþ1 ¼ Par:u2k sinðpukÞ (21)

where Par signifies the control parameter. In this case, the simplified formula of this map was utilized by
employing Par = 2.3 and u0 = 0.7 that is expressed as:

ukþ1 ¼ sinðpukÞ (22)
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The formula of the tent map is demonstrated as:

ukþ1 ¼ 2uk uk , 0:5
2ð1� ukÞ uk � 0:5

�
(23)

4.2 Application of CSGOA Technique for Resource Scheduling

The CSGOA-RS technique derives a fitness function and is utilized for testing the quality of the solution
[24]. The FF consist of the tri-objectives such as the RC, the MS, and the MFT. It is calculated in Eq. (24),
whereas the weights W1, W2, & W3 indicate the connotation of the objectives in the meta task scheduling
problems.

Fitness ¼ W1 MakespanþW2 Mean Flow TimeþW3 Reliability Cost (24)

The CSGOA-RS technique has tested the FF using the distinct weight values and hence concludes with
the values of 0.4, 0.4 and 0.2 for the weights W1, W2, & W3 respectively, it further provides the optimal
results in the meta task scheduling problems.

Make span (MS)

It calculates the throughput of the distributed system, assume Cij(iε{1, 2, …, n}, jε{1, 2, …, m})
represents the implementation time to perform the ith task in the jth processor and Wj jε{1, 2, …, m}
indicates the prior task of Pj. Based on the above-mentioned description, it is evaluated using Eq. (25):

MS ¼ max
X
ij

Cij þWj

( )
jEð1; 2; . . . ; mÞ (25)

Mean flow time (MFT)

It measures the QoS of the distributed systems. The value of MFT is utilized for evaluating the flow time.
Let k represent the overall amount of tasks allocated to the processor Pi and Fji represent the executing time of
the task Tj on a processor Pi; ðiEf1; 2; . . . ; mg; jEf1; 2; . . . ; ngÞ, the MFT can be estimated using the
following Eqs. (26) and (27):

MFT ¼
Pm

i¼1 M�Flowi
m

(26)

M � Flowi ¼
Pk

j¼1 Fji

ki
(27)

Reliability cost (RC)

RC is the indicator of how reliable a provided system is if a set of tasks are allocated to it. It is indirectly
proportionate to reliability. It is the summation of link reliability and processor reliability. The RC can be
determined using Eq. (28), whereas X(Ti) = j represents the task Ti that is assigned to Pj and λj indicates
the failure rate of the processor Pj.

RC ¼
Xm
j¼1

X
X ðTiÞ¼j

�jCijðTiÞ (28)
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5 Results and Discussion

This section examines the resource scheduling performance of the CSGOA-RS technique in terms of
different aspects. The results are inspected in terms of the following attributes, namely, the make span,
the mean flow time, and the reliability cost. The experimental results have been investigated under
varying number of instances and resources. A brief MS analysis of the CSGOA-RS technique takes place
under distinct number of instances as represented in Tab. 1 and Fig. 3.

The simulation results point out the enhanced performance of the CSGOA-RS technique with that of the
existing techniques with the maximum make span. For instance, with c_lo_lo instances, the CSGOA-RS
technique has accomplished an increased MS of 41150 whereas the EDG and ACO algorithms have
resulted in a reduced MS of 13247 and 31229. Simultaneously, with c_hi_lo instances, the CSGOA-RS
technique has accomplished an increased MS of 47298 whereas the EDG and ACO algorithms have
resulted in a reduced MS of 11220 and 20331. Concurrently, with i_lo_lo instances, the CSGOA-RS
technique has accomplished an increased MS of 43963 whereas the EDG and ACO algorithms have
resulted in a reduced MS of 25225 and 32161.

A brief MFT analysis of the CSGOA-RS technique takes place under distinct number of instances as
portrayed in Tab. 1 and Fig. 4. The simulation outcomes thus point out the enhanced performance of the
CSGOA-RS technique with that of the existing techniques with the maximum make span. For instance,

Table 1: Makespan, mean flow time analysis and reliability cost analysis of the CSGOA-RS model

No. of
Instances

Make span Mean flow time Reliability cost

EDF ACO CSGOA-RS EDF ACO CSGOA-RS EDF ACO CSGOA-RS

c_lo_lo 13247 31229 41150 6264 7484 4653 0.187 0.140 0.128

c_lo_hi 25325 31331 41954 11762 35135 33300 0.462 0.442 0.430

c_hi_lo 11220 35182 47298 6086 7629 5738 0.182 0.227 0.172

c_hi_hi 17227 20331 31195 12127 24341 22139 0.466 0.491 0.451

i_lo_lo 25225 32161 43963 13287 23115 21840 0.306 0.441 0.295

Figure 3: Make span cost analysis of the CSGOA-RS model
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with c_lo_lo instances, the CSGOA-RS technique has accomplished an increased MFT of 4653 whereas the
EDG and ACO algorithms have resulted in a reduced MFT of 6264 and 7484.

Simultaneously, with c_hi_lo instances, the CSGOA-RS technique has accomplished an increased MFT
of 5738 whereas the EDG and ACO algorithms have resulted in a reduced MFT of 6086 and 7629.
Concurrently, with i_lo_lo instances, the CSGOA-RS technique has accomplished an increased MFT of
21840 whereas the EDG and ACO algorithms have resulted in a reduced MFT of 13287 and 23115.
A reliability cost analysis of the CSGOA-RS technique with the other techniques has been represented in
Tab. 1 and Fig. 5. The experimental outcomes thus demonstrate that the CSGOA-RS technique has
gained effectual outcomes with the RC values. For instance, with the instance of c_lo_lo, the CSGOA-RS
technique has offered a lower RC value of 0.128 whereas the EDF and ACO algorithms have obtained
higher RC values of 0.187 and 0.140 respectively.

Eventually, with the instance of c_hi_lo, the CSGOA-RS technique has offered a lower RC value of
0.172 whereas the EDF and ACO algorithms have obtained higher RC values of 0.182 and
0.227 respectively. Meanwhile, with the instance of i_lo_lo, the CSGOA-RS technique has offered a

Figure 4: Mean flow time analysis of the CSGOA-RS model

Figure 5: Reliability cost analysis of CSGOA-RS model
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lower RC value of 0.295 whereas the EDF and ACO algorithms have obtained a higher RC value of
0.306 and 0.441 respectively. A detailed SR analysis of the CSGOA-RS technique with the other existing
techniques takes place under a distinct number of processors and resources as represented in Tab. 2 and
Fig. 6. Fig. 6a investigates the SR analysis of the CSGOA-RS technique with the EDG and the ACO
algorithms with two processors and varying resources. The figure thus portrays that the CSGOA-RS
technique has resulted in effective performance with the maximum SR under varying resources.

For instance, with 4 resources, the CSGOA-RS technique has gained improved outcomes with a higher
SR of 90% whereas the EDF and ACO algorithms have obtained a decreased outcome of 84% and 86%
respectively. Similarly, with 10 resources, the CSGOA-RS method has reached the maximum result with
a higher SR of 35% whereas the EDF and the ACO algorithms have achieved a minimum result of 6%
and 20% correspondingly. Fig. 6b examines the SR analysis of the CSGOA-RS approach with the EDG
and the ACO algorithms with three processors and different resources. The figure depicts that the
CSGOA-RS technique has resulted in effective performance with the maximum SR under varying
resources. For example, with 4 resources, the CSGOA-RS approach has reached the maximum outcome
with the superior SR of 92% whereas the EDF and the ACO algorithms have reached a decreased
outcome of 80% and 85% correspondingly. In addition, with 10 resources, the CSGOA-RS technique has
gained improved outcomes with the superior SR of 35% whereas the EDF and the ACO methodologies
have obtained a lesser outcome of 2% and 20% correspondingly.

Fig. 6c demonstrates the SR analysis of the CSGOA-RS technique with the EDG and the ACO methods
with five processors and varying resources. The figure thus portrays that the CSGOA-RS technique has
resulted in effective performance with the maximal SR under varying resources. For instance, with
4 resources, the CSGOA-RS technique has gained enhanced outcomes with the higher SR of 94%
whereas the EDF and the ACO methodologies have achieved a decreased outcome of 82% and 84%
correspondingly. At the same time, with 10 resources, the CSGOA-RS approach has gained higher
outcomes with a higher SR of 40% whereas the EDF and the ACO algorithms have reached a decreased
outcome of 3% and 24% respectively. A comprehensive ECU analysis of the CSGOA-RS approach with
the other recent methodologies takes place under different number of processors and resources as
represented in Tab. 3 and Fig. 7.

Table 2: Comparative analysis of the CSGOA-RS model in terms of SR

%SR

No. of
Resources

Number of Processor = 2 Number of Processor = 3 Number of Processor = 5

EDF ACO CSGOA-RS EDF ACO CSGOA-RS EDF ACO CSGOA-RS

2 100 100 100 100 100 100 100 100 100

4 84 86 90 80 85 92 82 84 94

6 20 30 42 45 60 70 50 53 75

8 12 35 40 20 30 50 24 35 55

10 6 20 35 2 20 35 3 24 40
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Figure 6: Comparative analysis of the CSGOA-RS model in terms of SR (a) 2 processors, (b) 3 processors,
and (c) 5 processors

Table 3: Comparative analysis of the CSGOA-RS model in terms of ECU

%ECU

No. of
Resources

Number of Processor = 2 Number of Processor = 3 Number of Processor = 5

EDF ACO CSGOA-RS EDF ACO CSGOA-RS EDF ACO CSGOA-RS

2 50 50 50 50 50 50 50 50 50

4 75 75 76 60 60 63 63 63 65

6 60 70 74 20 38 45 20 25 40

8 21 45 50 10 22 30 5 20 35

10 4 18 25 2 18 32 1 37 39
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Fig. 7a examines the ECU analysis of the CSGOA-RS method with that of the EDG and the ACO
algorithms with two processors and varying resources. The figure thus demonstrates that the CSGOA-RS
method has resulted in effectual efficiency with the maximal ECU under varying resources. For example,
with 4 resources, the CSGOA-RS technique has attained enhanced results with the superior ECU of 76%
whereas the EDF and the ACO algorithms have obtained a decreased outcome of 75% and 75%
correspondingly. At the same time, with 10 resources, the CSGOA-RS technique has obtained enhanced
results with the maximum ECU of 25% whereas the EDF and the ACO algorithms have gained a reduced
outcome of 4% and 18% correspondingly.

Fig. 7b inspects the ECU analysis of the CSGOA-RS approach with the EDG and the ACO techniques
with three processors and varying resources. The figure thus demonstrates that the CSGOA-RS method has
resulted in efficient performance with enhanced ECU under varying resources. For instance, with
4 resources, the CSGOA-RS technique has gained improved outcomes with a higher ECU of 63%
whereas the EDF and the ACO algorithms have obtained a decreased outcome of 60% and 60%
respectively. Also, with 10 resources, the CSGOA-RS method has gained enhanced outcomes with an
increased ECU of 32% whereas the EDF and the ACO algorithms have obtained a minimal outcome of
2% and 18% correspondingly. Fig. 7c showcases the ECU analysis of the CSGOA-RS technique with the

Figure 7: Comparative analysis of the CSGOA-RS model in terms of ECU
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EDG and the ACO algorithms with five processors and different resources. The figure thus exhibits that the
CSGOA-RS method has resulted in effective performance with the higher ECU under distinct resources. For
example, with 4 resources, the CSGOA-RS technique has gained improved outcomes with a higher ECU of
65% whereas the EDF and the ACO algorithms have obtained a decreased outcome of 63% and 63%
correspondingly.

Finally, with 10 resources, the CSGOA-RS approach has gained improved outcomes with a higher ECU
of 39% whereas the EDF and ACO methodologies have gained minimal results of 1% and 37%
correspondingly. By observing the details of the result analysis, it is clearly understood that the CSGOA-
RS technique has gained effective performance due to the fitness function that involves the following
three parameters namely the make span, the reliability cost, and the MFT for the allocation of resources.

6 Conclusion

This paper has developed an effective CSGOA-RS technique for scheduling the resources proficiently in
the distributed robotic control system. The CSGOA-RS technique is primarily designed for allocating the
resources in such a way that the transfer time is minimized and resource utilization is increased. The
CSGOA-RS technique has derived a fitness function involving three parameters namely the make span,
the reliability cost, and the mean flow time (MFT) for the allocation of resources in such a way that the
resource utilization can be considerably improved. The integration of the chaotic map concepts into the
SGO algorithm significantly boosts the overall performance of the CSGOA technique. The performance
of the CSGOA-RS technique can be examined under different aspects and the results of the same can be
discussed extensively. The experimental results showcased the significant outcomes of the proposed
CSGOA-RS technique over the other existing techniques. In future, the CSGOA-RS technique can be
extended to the design of load balancers and route planning techniques for the distributed robotic control
system.
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