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Abstract: Automated biomedical signal processing becomes an essential process
to determine the indicators of diseased states. At the same time, latest develop-
ments of artificial intelligence (AI) techniques have the ability to manage and ana-
lyzing massive amounts of biomedical datasets results in clinical decisions and
real time applications. They can be employed for medical imaging; however,
the 1D biomedical signal recognition process is still needing to be improved.
Electrocardiogram (ECG) is one of the widely used 1-dimensional biomedical sig-
nals, which is used to diagnose cardiovascular diseases. Computer assisted diag-
nostic models find it difficult to automatically classify the 1D ECG signals owing
to time-varying dynamics and diverse profiles of ECG signals. To resolve these
issues, this study designs automated deep learning based 1D biomedical ECG sig-
nal recognition for cardiovascular disease diagnosis (DLECG-CVD) model. The
DLECG-CVD model involves different stages of operations such as pre-proces-
sing, feature extraction, hyperparameter tuning, and classification. At the initial
stage, data pre-processing takes place to convert the ECG report to valuable data
and transform it into a compatible format for further processing. In addition, deep
belief network (DBN) model is applied to derive a set of feature vectors. Besides,
improved swallow swarm optimization (ISSO) algorithm is used for the hyper-
parameter tuning of the DBN model. Lastly, extreme gradient boosting
(XGBoost) classifier is employed to allocate proper class labels to the test ECG
signals. In order to verify the improved diagnostic performance of the DLECG-
CVD model, a set of simulations is carried out on the benchmark PTB-XL dataset.
A detailed comparative study highlighted the betterment of the DLECG-CVD
model interms of accuracy, sensitivity, specificity, kappa, Mathew correlation
coefficient, and Hamming loss.
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1 Introduction

Cardiovascular Disease (CVD) is the major reason for human mortality, which is accountable for thirty-
one percentage of global mortalities in 2016 [1], from which eighty-five percentage occurred because of heart
attack. The yearly burden of CVD on American and European economies is calculated to be $555 billion and
€210 billion, correspondingly. The conventional CVD diagnosis model is depending upon single person's
medicinal history and investigations. This result is interpreted based on set of quantitative medicinal
variables for classifying the person according to the taxonomy of medicinal disease. Medically,
cardiovascular diseases are frequently acquired using arrhythmia. Severe arrhythmia could result in heart
failure/sudden death [2]. Thus, accurate and timely recognition of arrhythmia is necessary and urgent.
Electrocardiogram (ECG) is a 1-dimensional physiological signal which describes the state of the heart, is
very important to detect and diagnose arrhythmia.

ECG analyses were determined as the fundamental cardiovascular pathology diagnoses in the present
century. The ECG signal reflects the electrical activity of the heart. Therefore, heart rhythm disorder/
alteration in the ECG waveform is evidence of basic cardiovascular issues like arrhythmias. Non-invasive
arrhythmia diagnoses are depending upon typical twelve leading ECGs that measure electrical potential
from ten electrodes located at distinct portions of the body surface, 6 in the chest, and 4 in the limbs. To
give an efficient medication for arrhythmias, an earlier diagnosis is significant. Globally millions of ECG
records are gathered yearly, mostly analyzed automatically and interpreted via computers [3,4]. It
executes the need for ECG interpretation approaches for accurate and fast however person and device
autonomous. The extensive digitization of ECG information combined with the growth of DL techniques
that could process huge number of raw data has presented novel opportunities to improve the automatic
ECG interpretation. In fact, DNN has currently attained cardiologist level classification efficiency if
trained on a huge (n = 91,232) dataset of raw ECG records. But, presented ECG datasets are frequently
lesser that creates complexity for attaining required efficiency level.

Earlier recognition of specific kinds of transient, short-term/infrequent arrhythmias needs long-term
observing (over 24 h) of electrical activity of the heart. The rapid growth of digital industry was enabled
to improvement of data acquisition, devices, and CAD approaches. The open-access to ECG database has
result in the improvement of several approaches and techniques for CAD ECG arrhythmia classification
in past few years, raising the productive cross disciplinary effort where the physicists’ engineers, and
nonlinear dynamics scientists are no strangers [5]. Nearly each CAD ECG classification method includes
4 major phases, such as FS, pre-processing of ECG signal, feature extraction, classification creation, and
heartbeat recognition. Recently, they have observed significant developments in automated ECG
interpretation methods. Particularly, DL based techniques have attained or exceeded cardiologist level
efficiency for certain sub-tasks [6,7] or allowed statements are highly complex for making cardiologists,
for instance, precisely infer age and gender from the ECG. Because of obvious easiness and decreased
dimension related to imaging data, the broader ML communities have attained several attentions in ECG
classification as recorded via several studies.

This study designs automated deep learning based 1D biomedical ECG signal recognition for
cardiovascular disease diagnosis (DLECG-CVD) model. The DLECG-CVD model involves different
stages of operations namely pre-processing, feature extraction, hyperparameter tuning, and classification.
At the same time, improved swallow swarm optimization (ISSO) algorithm based deep belief network
(DBN) model is applied to derive a set of feature vectors. In addition, extreme gradient boosting
(XGBoost) classifier is employed to allocate proper class labels to the test ECG signals. For examining
the enhanced diagnostic outcome of the DLECG-CVD model, a series of experimentations take place on
the benchmark PTB-XL dataset.
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The key contribution of the paper is given as follows.

▪An efficient 1D biomedical ECG signal recognition model using DLECG-CVDmodel is presented for
cardiovascular diseases. To the best of our knowledge, the DLECG-CVD model has been never
presented in the literature.

▪ A novel ISSO based feature selection technique is introduced by incorporating the concepts of levy
flight to the SSO algorithm in order to avoid the local optima problem. The design of ISSO algorithm
shows the novelty of the work.

▪ Besides, the inclusion of ISSO algorithm as a hyperparameter optimizer helps to improve the
classification performance of the DLECG-CVD model for unseen data.

▪ A detailed experimental validation process takes place using PTB-XL dataset and examined the
outcomes under several dimensions.

The organization of the paper is given as follows. Section 2 reviews the recent state of art ECG
recognition techniques. Section 3 discusses the materials and methods involved in the proposed model.
Next, section 4 offers the detailed experimental analysis and section 5 draws the conclusions.

2 Literature Review

This section offers a comprehensive survey of recently developed ECG recognition and classification
models. In Li et al. [8], the morphology and rhythm of heartbeats are merged to 2D data vector to
process consequently using CNN which includes biased dropout and adaptive learning rate approaches.
The result demonstrates the projected CNN module is efficient to detect abnormal heartbeats/arrhythmias
by automated feature extraction. Weimann and Conrad [9] used DCNN for classifying raw ECG records.
But, training CNN for ECG classification frequently needs a huge number of annotated instances that are
costly to obtain. In this study, they address the issue with the help of TL technique. Initially, they pretrain
CNN on the large public dataset of continued raw ECG signals. Then, they fine-tune the network on a
smaller dataset for classification of Atrial Fibrillation that is one of the popular heart arrhythmia.

In Pandey et al. [10], an 11-layer DCNN module is presented to classification of MIT-BIH arrhythmia
database into five classes based on ANSI AAMI principles. In this CNN module, they implemented a
comprehensive end to end structure of the classification technique and employed with no other denoising
processes of the database. The main benefit of the novel method was presented in the several
classifications that would decrease and should identify, and segmented the QRS complex, avoided. This
MIT-BIH database was artificially over-sampled for handling the minority class, class imbalance
challenge utilizing SMOTE method. Jeon et al. [11] presented a baseline module with RNN for ECG
classification. Moreover, they proposed a light weighted module with combined RNN to accelerate the
predictive time on CPU.

Shaker et al. [12] presented a new data augmentation model utilizing GAN technique for restoring the
balance of dataset. The 2 DL an end-to-end method and a 2-phase hierarchical approach depending upon
DCNN is utilized for eliminating hand engineering features with the combination of feature reduction,
classification, and feature extraction to a single learning technique. Nurmaini et al. [13], DL is presented
in the fine-tuning and pre-training stages for producing an automatic feature depiction to multi class
classification of arrhythmia condition. In pre-training stage, stacked DAE and AE are utilized to feature
learning; in fine-tuning stage, DNN is designed as classifiers. Huang et al. [14] presented an accurate
classification model based on intelligent ECG utilizing FCResNet. In this introduced system, the
MOWPT gives a comprehensive time scale paving pattern and possesses time invariance features that are
employed for decomposing the real ECG signal to sub signal samples of various scales. Then, the sample
of five arrhythmia forms is employed as input to the FCResNet; hence, ECG arrhythmia types are
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categorized and recognized. Han et al. [15] enhanced a technique for constructing a smoothed adversarial
instance to ECG tracing which is not visible to human expert's analysis and shows that the DL technique
to detect arrhythmia from single lead ECG is vulnerable to adversarial attacks. Furthermore, they offer
common method to collate and perturb known adversary instances for creating many novel ones.

Wang et al. [16] presented an automated ECG classification technique depending upon Continuous
Wavelet Transform (CWT) and Convolutional Neural Network (CNN). The CWT is utilized for
decomposing ECG signals to attain various time frequency modules, and CNN is utilized for extracting
features in two-dimensional scalogram consist of aforementioned modules. Consider the nearby R peak
interval (named RR interval) is beneficial to diagnose arrhythmia, 4 RR interval features are combined
and extracted by CNN features to input for fully connected (FC) layer to ECG classification. Peimankar
et al. [17] proposed a DL module for real time segmentation of heartbeats. The presented DENS ECG
technique, integrates LSTM and CNN module for detecting offset, onset, and peak of distinct heartbeat
waveforms like NW, T-waves, P-waves, and QRS complexes. By utilizing ECG as input, the module
learns for extracting higher level feature by trained procedure that contrasting to other traditional ML
based techniques, removes the feature engineering stage. In Wang et al. [18], a new CNN with NCBAM
is presented for classifying automatic ECG heartbeats. Approaches: this presented technique contains 33-
layer CNN framework accompanied by NCBAM module. At first, pre-processed ECG signals are provide
for CNN framework for extracting the channel and spatial features. Additionally, longer range
dependences of illustrative features together with channel and spatial axes are taken using non-local
attention. Lastly, the temporal, spatial, and channel data of ECG is combined using learned matrix.

3 Materials and Methods

3.1 Dataset Used

This study utilizes PTB-XL dataset [19] which comprises 21837 ECG signals of 10 s duration from
18885 persons in which 52% of persons are male and the remaining 48% of the persons are female. The
ECG data employed for annotation follows the SCP-ECG standard and are allocated to 3 non-mutually
exclusive classes such as diagnostic, form, and rhythm. Totally, 71 distinct records have existed that
decomposed into 44 diagnostics, 12 rhythm, and 19 form statements. Moreover, the PTB-XL data
encompasses 5 classes such as normal ECG (NORM), conduction disturbance (CD), myocardial
infarction (MI), hypertrophy (HYP), and: ST/T changes (STTC). Furthermore, a total of 24 subclass
labels are also provided.

3.2 Overall System Architecture

The overall system architecture of the presented model is illustrated in Fig. 1. The figure showcases that
the input ECG signals are primarily pre-processed to convert into a compatible format. Then, the DBNmodel
is applied to extract a useful set of feature vectors. At the same time, the ISSO algorithm is employed to
optimize the hyperparameters of the DBN model. At last, the XGBoost classifier is used to allocate the
class labels of the input ECG signals. These processes are briefly discussed in the succeeding subsections.

3.3 Data Pre-Processing

During data pre-processing, a collection of 3000 ECG signals is used for experimental analysis. As a set
of 35 ECG signals include NULL as class label, they get eliminated from the dataset and the remaining
2965 ECG records are employed for simulation. In addition, a sampling rate of 100 is selected among the
two sampling rates of 100 and 500 from the dataset.
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3.4 Structure of DBN Model

Once the 1-D ECG signals are processed, they are inputted to the DBN model to filter the required
feature vectors. The DBN presented by Hinton et al. [20] is a typical DNN method that has various
RBMs and classifier layers. In standard DNNs, the trained DBN has unsupervised pre-trained of deep
RBMs and supervised fine-tuned of the classifier layer. The DBN depicts an optimal feature extraction
efficiency and most suitable to feature learning in data. The DBN is a representative FC networks which
is simpler than other classic DNNs. It allows the presented model in rule extraction and insertion as to
DBN for ECG signal recognition. All RBMs are combined of visible layer which includes the visible unit
v ¼ fv1; v2; . . . ; vig, and hidden layer which has of hidden unit h ¼ fh1; h2; . . . ; hjg: To
provide the model parameter of DBN h ¼ ½W ; b; a�, the energy function is provided as follows.

Eðv; h; hÞ ¼ �
XI
i¼1

XJ
j¼1

vijvihj �
XI
i¼1

bivi �
XJ
j¼1

ajhj (1)

where ωij refers the connection weight amongst visible units vi if whole number is I and hidden units h. When
the whole number is J, bi and aj represents the bias terms of visible and hidden units correspondingly [21].
The joint distribution of the entire units is estimated dependent upon the energy function E (v, h; θ) as given in
Eq. (2):

pðv; h; hÞ ¼ exp ð�Eðv; h; hÞÞ
Z

(2)

Figure 1: The working process of DLECG-CVD model
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where Z ¼P
h;v

expð�Eðv; h; hÞÞ implies the partition function. The conditional probability of hidden and

visible unit h and v are estimated as follows:

pðhi ¼ 1jv; hÞ ¼ d
XI
i¼1

vijvi þ aj

 !
(3)

pðvi ¼ 1jv; hÞ ¼ d
XJ
j¼1

vijhi þ bi

 !
(4)

where δ denotes the logistic function, for instance, δ(x) = 1/1 + exp(x). The RBMs are trained for maximizing
the joint probabilities. It is formed by stacking multiple RBMs, in which the output of lth layer (hidden units)
is employed as input of l + 1th layer (visible units). The trained process of DBN is generalized as to 2 stages
like pre-training and fine-tuning. During the pre-training stage, the data is provide for visible layers of an
initial RBM and changed into hidden layers that are frequently applied from next RBM. Next, the layer-
to-layer unsupervised trained is complete, and feature learnt automatic by DBN in the provided data is
feed as to classifier layer of DBN. Lastly, fine-tuning is carried out on the classifier layer for enhancing
DBN. Fig. 2 demonstrates the architecture of DBN model.

3.5 Design of ISSO Algorithm for Hyperparameter Optimization

For improving the performance of the DBNmodel, its hyperparameters are optimally tuned by the use of
ISSO algorithm. SSO is a population based metaheuristic dependent technique presented by Neshat et al.
[22]. Initially, in all iterations, the population is sorted depending upon the value of objective functions.
Afterward, the subsequent parts are allocated as follows:

1) The head leader (HL) is the particles with an optimal value of objective functions;
2) The local leaders (LL) are l particles which follow the HL according to the value of objective

functions;

Figure 2: The structure of DBN
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3) The random particles are k particle with worse value of objective functions;
4) Explorers are every particle.

At the present iteration, HLs do not transfer, performing as beacons to explore particles that,
sequentially, explores the search space among the adjacent LL and HL. The explorer particle varies its
locations with the following equations:

heðz þ 1Þ ¼ heðzÞ þ V ðzþ 1Þ (5)

Vðzþ 1Þ ¼ VHLðzþ 1Þ þ VLLðzþ 1Þ (6)

VHLðzþ 1ÞVHLðzÞ þ randð0; 1Þ ðhbeste ðzÞ � heðzÞÞ þ randð0; 1ÞðhHLðzÞ � heðzÞÞ (7)

VLLðzþ 1Þ ¼ VLLðzÞ þ randð0; 1Þ ðhbeste ðzÞ � heðzÞÞ þ randð0; 1Þ ðhLLðzÞ � heðzÞÞ (8)

where θe implies the location of explorers, θHL represents the location of HL, θLL refers the location of LL
adjacent to explorers, hbeste signifies the optimal location, V denotes the velocity vector of particles, VHL
stands for the velocity vector of particles move to HL, and VLL defines the velocity vector of particles
move to adjacent LL [23]. It resolves not for selecting the parameters αHL, βHL, αLL and βLL that are
utilized for computing the velocity vectors interms of HL and LL. The equation to change the locations
of random particles is also changed as the original equation is effort particles to collect at the boundary of
search space or even go beyond it. This equation decreases the probabilities of this performance and also
permits explorer particle to somewhat affects the performance of random particles. For changing the
location of random particle, the subsequent equations are utilized:

hOðzþ 1Þ ¼ randð0:5; 2Þ � VSS (9)

VSS ¼
PN�k

j¼1 ujeðzÞ
N � k

(10)

where θO implies the location of random particles, θj refers the location of j-th particle, N represents the entire
number of particles from the population, and k signifies the number of random particles. When the end
criteria are met, the technique returns the location of HL as novel solution.

The presented techniques give extraordinary optimal solutions. SSO technique is general to their
simplicity and their exploitation ability to search for global or near-global solutions. Also, the SSO
technique gives an enhanced local search model with optimal first evaluates for resolving the filtered
proposal problems. The technique also lies within the model of exploitation, for avoiding the local
minimal, to get a global or near-global solution. At this point, additional numbers of younger swallow
birds are exploited for searching optimal feed arbitrarily, thus it is never stuck off with local minimal. It
gives them exploited birds. At times, it also gives us helpful global data [24]. The product � represents
the entrywise multiplication. From this sense, an improved exploitation feature is combined in presented
the ISSO technique that is explained under. Eqs. (11)–(14) are similar to the regular SSO mathematically
forms that cause the enhanced solutions. These enhanced solutions are more refined by Eq. (15) with the
model of Levy distribution function.

Vkþ1
HLi ¼ Vk

HLi þ aHLrandð ÞðXbestki � X k
i Þ þ bHLrandð ÞðHLk

i � X k
i Þ (11)

Vkþ1
LLi ¼ Vk

LLi þ aLLrandð ÞðXbestki � X k
i Þ þ bLLrandð ÞðLLk

i � X k
i Þ (12)

Vkþ1
i ¼ Vkþ1

HLi þ Vkþ1
LLi (13)
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X kþ1
i ¼ X k

i þ Vkþ1
i (14)

Xkþ1
i ¼ Xkþ1

i þ a� Levyð�Þ (15)

Levy ð�Þ ¼ u

ðvÞ l
ð��1Þ

Oiþ1 ¼ Oj þ rand ðf�1; 1gÞ� randðmins; maxsÞ
lþ randð Þ

� �
(16)

where α refers the step size recently established in this technique, Levy (λ) is attained in the Levy distribution.
Here, Mantegna's technique is utilized. The step size α is selected to optimize exploitation of local search
space. At every equation, the coefficients are computed utilizing the mathematically expression is given.
The adding of Levy term as in Eq. (15) uses to update the location earlier by exploiting the optimal
solution in the solution space. The features of Levy flight create the step size adaptive outcome from
faster selective of the optimal solution.

3.6 XGBoost Based Classification

At the final stage, the extracted features from the 1-D ECG signals are fed as to XGBoost model to
determine the class labels of the input ECG signals. The XGBoost is extreme gradient boosting that
signifies their recent benefits from the investigation of ML. Additional benefits are maximum accuracy of
standard boosting methods, along with use of sparse data effectually and apply distributed with parallel
calculating adaptably. For achieving the target variable computing, the XGBoost technique creates a
series of DTs and allocates all leaf nodes a quantized weight [25]. For a given n*m feature matrix of
trained data, the forecaster utilizes the K additive functions for the ensemble outcomes.

ŷi ¼ FðxiÞ ¼
XK
k¼1

fkðXiÞ; fk 2 ’ (17)

where Xi refers the majority instances (i = 1, 2, …, n), f ¼ f f ðxÞ ¼ wsðxÞgðs :Rm ! T; ws 2 RTÞ
implies the ensemble of trees, all trees f(x) contain their structural parameter s and leaf weight w, wi

implies the i-th leaf, Tr represents the number of leaves from tree, K denotes the number of trees that are
utilized for ensemble the outcomes and ŷi indicates the forecast label.

For getting the minimal loss function, the greedy search rules are utilized for reducing one of loss, the
loss function is demonstrated as:

LðtÞ ¼ argmin
Xn
i¼1

lðyi; ŷðt�1ÞÞ þ giftðxiÞ þ 1

2
hif

2
t ðxiÞ

� �
þ �ðftÞ (18)

gi ¼ @ŷðt�1Þ lðyi; ŷðt�1ÞÞ (19)

hi ¼ @2
ŷðt�1Þ lðyi; ŷðt�1ÞÞ (20)

�ðftÞ ¼ cTr þ 1

2
�kwk2 (21)

where gi and hi are the 1st and 2nd order gradient statistics on loss function, lð Þ implies the loss function.
The last term Ω(ft) is the penalty, around as to γ and λ are the parameters which manage the difficulty of tree,
the normalization term is utilized for avoiding over-fit by smoothing the final learned weight. The loss
reduction when splitting is provided as:
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Lsplit ¼ 1

2

P
i2IL gi

� �2
P

i2IL hi þ �
þ

P
i2IR gi

� �2
P

i2IR hi þ �
þ

P
i2I gi

� �2P
i2I hi þ �

2
64

3
75 ---c (22)

where I ¼ IL [I
R; IL and IR are the sample groups of left and right nodes subsequently splitting. For getting

the significance of all split nodes from the tree, it is computed as significance of node comparative variables
from XGBoost method. A significance of all split nodes is determined as:

I2j ðTrÞ ¼
XJ�1

t¼1

î2t lðvt ¼ jÞ (23)

where l signifies the indicator function that is connected to squared-influence, vt denotes the split variable
related to node t, and î2t stands for the empirical enhancement of square error produced by the split, î2t is
determined as:

î2t ¼ i2ðRl;RrÞ ¼ wlwr

wl þ wr
ðyl þ yrÞ2 (24)

where yl and yr are the mean of weight of left and right children node of t, wl and wr are sum of weights. For a
set of DTs fTrmgM1 , boosting is attained by the generalization of the average over every tree from the
sequence. So, Eq. (24) is redefined as:

Î2t ¼ 1

M

XM
m�1

Î2t ðTrM Þ (25)

4 Performance Validation

This section validates the performance of the proposed model. The simulation process take place using
Python 3.6.5 tool and the results are examined. A detailed comparative results analysis is performed to
highlight the superior performance of the proposed model.

A set of confusion matrices generated by the DLECG-CVD model on the classification of five classes
under three different runs are shown in Fig. 3. Figs. 3a–3c depicts the confusion matrix produced by the
DLECG-CVD model on the classification of CD class labels under execution run 1. Figs. 3d–3f depicts
the confusion matrix produced by the DLECG-CVD model on the classification of HYP class labels
under execution run 1. Figs. 3g–3i depicts the confusion matrix produced by the DLECG-CVD model on
the classification of MI class labels under the execution run 1. Figs. 3j–3l depicts the confusion matrix
produced by the DLECG-CVD model on the classification of NORM class labels under the execution
run 1. Figs. 3m–3o depicts the confusion matrix produced by the DLECG-CVD model on the
classification of STTC class labels under the execution run 1.

A brief ECG recognition analysis of the proposed DLECG-CVD model under different runs is shown in
Tab. 1. The resultant values demonstrated that the DLECG-CVD model has effectively classified all the
different classes of the ECG signals under distinct runs.

Fig. 4 depicts the ECG recognition result analysis of the DLECG-CVD model under execution run 1.
The DLECG-CVD model has classified the CD class with the sens. of 0.9769, spec. of 0.5746, accuracy
of 0.8924, precision of 0.8962, F-measure of 0.9348, and kappa of 0.2862. In addition, the DLECG-CVD
model has classified the HYP class with the sens. of 0.9989, spec. of 0.6487, accuracy of 0.9616,
precision of 0.9597, F-measure of 0.9789, and kappa of 0.3643. Also, the DLECG-CVD model has
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classified the MI class with the sens. of 0.9917, spec. of 0.5054, accuracy of 0.8998, precision of 0.8959, F-
measure of 0.9414, and kappa of 0.2802. Additionally, the DLECG-CVD model has classified the NORM
class with the sens. of 0.7178, spec. of 0.8358, accuracy of 0.7818, precision of 0.7868, F-measure of 0.7507,
and kappa of 0.1699. Besides, the DLECG-CVD model has classified the STTC class with the sens. of
0.9691, spec. of 0.5277, accuracy of 0.8698, precision of 0.8761, F-measure of 0.9202, and kappa of 0.2582.

Figure 3: Continued
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Figure 3: Confusion matrix of proposed DLECG-CVDmodel on different classes (a–c) CD class under runs
1-3, (d–f) HYP class under runs 1-3, (g–i) MI class under runs 1-3, (j–l) NORM class under runs 1-3 and
(m–o) STTC class under runs 1-3

Table 1: Result analysis of proposed DLECG-CVD model in terms of different measures

Measures Sensitivity Specificity Accuracy Precision F-Score Kappa

Run-1

CD 0.9769 0.5746 0.8924 0.8962 0.9348 0.2862

HYP 0.9989 0.6487 0.9616 0.9597 0.9789 0.3643

MI 0.9917 0.5054 0.8998 0.8959 0.9414 0.2802

NORM 0.7178 0.8358 0.7818 0.7868 0.7507 0.1699

STTC 0.9691 0.5277 0.8698 0.8761 0.9202 0.2582

Average 0.9308 0.6184 0.8810 0.8829 0.9052 0.2717

Run-2

CD 0.9851 0.5811 0.9002 0.8984 0.9397 0.2974
HYP 0.9996 0.6171 0.9589 0.9563 0.9775 0.3545
MI 0.9938 0.4643 0.8938 0.8885 0.9382 0.2657

(Continued)
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Fig. 5 showcases the ECG recognition outcome analysis of the DLECG-CVD model under execution
run 2. The DLECG-CVD model has classified the CD class with the sens. of 0.9851, spec. of 0.5811,
accuracy of 0.9002, precision of 0.8984, F-measure of 0.9397, and kappa of 0.2974. Moreover, the
DLECG-CVD technique has classified the HYP class with the sens. of 0.9996, spec. of 0.6171, accuracy
of 0.9589, precision of 0.9563, F-measure of 0.9775, and kappa of 0.3545. Furthermore, the DLECG-
CVD approach has classified the MI class with the sens. of 0.9938, spec. of 0.4643, accuracy of 0.8938,
precision of 0.8885, F-measure of 0.9382, and kappa of 0.2657. In the meantime, the DLECG-CVD
model has classified the NORM class with the sens. of 0.7163, spec. of 0.8408, accuracy of 0.7838,
precision of 0.7915, F-measure of 0.752, and kappa of 0.1706. At the same time, the DLECG-VD model
has classified the STTC class with a sens. of 0.9721, spec. of 0.5337, accuracy of 0.8735, precision of
0.8778, F-measure of 0.9226, and kappa of 0.2635.

Fig. 6 portrays the ECG recognition result analysis of the DLECG-CVD technique under execution run
3. The DLECG-CVDmodel has classified the CD class with the sens. of 0.9851, spec. of 0.5907, accuracy of
0.9022, precision of 0.9005, F-measure of 0.9409, and kappa of 0.301. Meanwhile, the DLECG-CVDmodel
has classified the HYP class with the sens. of 0.9992, spec. of 0.6076, accuracy of 0.9575, precision of

Table 1 (continued)

Measures Sensitivity Specificity Accuracy Precision F-Score Kappa

Run-1

NORM 0.7163 0.8408 0.7838 0.7915 0.752 0.1706
STTC 0.9721 0.5337 0.8735 0.8778 0.9226 0.2635
Average 0.9333 0.6074 0.8820 0.8825 0.9060 0.2703

Run-3

CD 0.9851 0.5907 0.9022 0.9005 0.9409 0.301
HYP 0.9992 0.6076 0.9575 0.9553 0.9768 0.3501
MI 0.9933 0.4929 0.8988 0.8938 0.9409 0.2772
NORM 0.7296 0.8346 0.7865 0.7882 0.7577 0.1737
STTC 0.9743 0.5427 0.8772 0.8801 0.9248 0.2691
Average 0.9363 0.6137 0.8844 0.8835 0.9082 0.2742

Figure 4: Result analysis of DLECG-CVD model under run-1
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0.9553, F-measure of 0.9768, and kappa of 0.3501. In line with, the DLECG-CVD model has classified the
MI class with the sens. of 0.9933, spec. of 0.4929, accuracy of 0.8988, precision of 0.8938, F-measure of
0.9409, and kappa of 0.2772. Simultaneously, the DLECG-CVD model has classified the NORM class
with the sens. of 0.7296, spec. of 0.8346, accuracy of 0.7865, precision of 0.7882, F-measure of 0.7577,
and kappa of 0.1737. Eventually, the DLECG-VD methodology has classified the STTC class with the
sens. of 0.9743, spec. of 0.5427, accuracy of 0.8772, precision of 0.8801, F-measure of 0.9248, and
kappa of 0.2691.

An average results analysis of the DLECG-CVD model on the ECG signal classification is given in
Fig. 7. The DLECG-CVD model has effectively classified the ECG signals at round 1 with the maximum
average sens. of 0.9308, spec. of 0.6184, accuracy of 0.8810, precision of 0.8829, F-measure of 0.9052,
and kappa of 0.2717. Similarly, the DLECG-CVD model has effectively classified the ECG signals at
round 2 with the maximum average sens. of 0.9333, spec. of 0.6074, accuracy of 0.8820, precision of
0.8825, F-measure of 0.9060, and kappa of 0.2703. Likewise, the DLECG-CVD model has effectively
classified the ECG signals at round 3 with the maximal average sens. of 0.9363, spec. of 0.6137,
accuracy of 0.8844, precision of 0.8835, F-measure of 0.9082, and kappa of 0.2742.

Figure 5: Result analysis of DLECG-CVD model under run-2

Figure 6: Result analysis of DLECG-CVD model under run-3
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A comparative study of the DLECG-CVD model with existing techniques takes place in Tab. 2 and
Fig. 8 [5]. The results showcased that the DT model has failed to show effective results with an accuracy
of 0.279. Then, the LR model has attained a slightly increased result with an accuracy of 0.3738.
Likewise, the KNC technique has obtained moderate performance with an accuracy of 0.6689. Afterward,
the 1-DCNN and RF models have demonstrated closer results with the accuracy of 0.73 and
0.7983 respectively. Simultaneously, the DL-ECGA and GBT models have exhibited competitive
accuracy values of 0.847 and 0.8498 respectively. At last, the DLECG-CVD model has outperformed the
other methods with a maximum accuracy of 0.8824. Besides, the inclusion of the ISSO algorithm as a
hyperparameter optimizer helps to enhance the classification performance of the DLECG-CVD model for
unseen data. From the above-mentioned results, it is apparent that the DLECG-CVD model has been
found to be an appropriate tool to recognize the 1D-ECG signals.

Figure 7: (a) Run-1, (b) Run-2, (c) Run-3: Average analysis of DLECG-CVD model
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5 Conclusion

This paper has designed a 1-D ECG signal recognition model named DLECG-CVD. The presented
model involves pre-processing, DBN based feature extraction, ISSSO based parameter tuning, and
XGBoost based classification. A novel ISSO based feature selection technique is introduced by
incorporating the concepts of levy flight to the SSO algorithm in order to avoid the local optima problem.
Besides, the inclusion of the ISSO algorithm as a hyperparameter optimizer helps to enhance the
classification performance of the DLECG-CVD model for unseen data. A detailed experimental validation
process takes place using PTB-XL dataset and examined the outcomes under several dimensions. The
comparative study of the DLECG-CVD model highlighted better performance over the existing
techniques with the maximum accuracy of 0.8824. As a part of future scope, the performance of the
DLECG-CVD model can be further increased by utilize of DL based classification models instead of
XGBoost technique.

Funding Statement: The authors received no specific funding for this study.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

Table 2: Comparative analysis of existing with proposed DLECG-CVDmodel with respect to different measures

Methods Accuracy

DLECG-CVD 0.8824

DL-ECGA 0.8470

GBT Model 0.8498

RF Model 0.7983

1-DCNN 0.7300

LR Model 0.3738

DT Model 0.2790

KNC Model 0.6689

Figure 8: Accuracy analysis of DLECG-CVD model with recent methods
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