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Abstract: Internet of things enables every real world objects to be seamlessly inte-
grated with traditional internet. Heterogeneous objects of real world are enhanced
with capability to communicate, computing capabilities and standards to interope-
rate with existing network and these entities are resource constrained and vulner-
able to various security attacks. Huge number of research works are being carried
out to analyze various possible attacks and to propose standards for securing com-
munication between devices in internet of things (IoT). In this article, a robust and
lightweight authentication scheme for mutual authentication between client and
server using constrained application protocol is proposed. Internet of things
enables devices with different characteristics and capabilities to be integrated with
internet. These heterogeneous devices should interoperate with each other to
accumulate, process and transmit data for facilitating smart services. The growth
of IoT applications leads to the rapid growth of IoT devices incorporated to the
global network and network traffic over the traditional network. This scheme
greatly reduces the authentication overhead between the devices by reducing
the packet size of messages, number of messages transmitted and processing over-
head on communicating devices. Efficiency of this authentication scheme against
attacks such as DoS (denial of service), replay attacks and attacks to exhaust the
resources are also examined. Message transmission time reduced upto 50% of
using proposed techniques.
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1 Introduction

IoT combines various technologies like embedded technology, wireless and wired communication
networks, data analytics, cloud computing and various protocols and standards to provide seamless and
secure integration. The ultimate goal of internet of things is to provide connectivity anytime, anywhere for
anything without human intervention by making ‘everything’ smart. It is being implemented in many
application areas such as healthcare, smart cities, manufacturing, logistics, transportation, e-governance,
infrastructure and many more [1]. These applications ranges from simple temperature monitoring, object
tracking and surveillance to more complicated applications like industry process automation and predicting
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events using machine learning. It is forecasted that 4100 crores of IoT devices are to be utilized in 2022 which
will cause 8.9 dollar trillion market as given by an international data corporation (IDC) report [2].

Internet of things enables devices with different characteristics and capabilities to be integrated with
internet. These heterogeneous devices should interoperate with each other to accumulate, process and
transmit data for facilitating smart services. The growth of IoT applications leads to the rapid growth of IoT
devices incorporated to the global network and network traffic over the traditional network. The existing
information and communication network is already facing many security challenges and the growth of
internet of things adds even more security challenges to the network and devices due to the limitations and
constraints of IoT devices such as limited power supply, open-environment deployment, mobility of
devices, lack of end-point autonomy and number of end point devices [3]. Many of the smart IoT devices
manufactured are not built with required security standards which leads to massive security breaches. IoT
networks will be targeted by 25% of known enterprise attacks by the year 2020, according to Gartner and
hence, IoT security requires universally accepted IoT standards which have not yet been proposed.

In this article contribution is as follows, a lightweight and efficient technique for authentication which
uses constrained application protocol (CoAP) between client and server is proposed. In this technique,
client's identity is verified by CoAP server and server's identity is verified by CoAP client and
authentication process is initialized by client. Authentication of devices by verifying their identity before
starting actual communication is very much needed. Otherwise, the participating devices can easily be
attacked and compromised by malicious user and the whole network may be compromised.

Our authentication mechanism takes only one round trip message to complete the authentication
between client and server which greatly reduces the number of messages transmitted between client and
server and hence the network traffic is reduced. This will also improve the performance of IoT nodes
because of the reduction of number of messages to be processed by nodes. In this proposed
authentication scheme, constrained application protocol based messages are transmitted between client
and server for authentication which can be used as an alternative for Datagram Transport Layer Security
(DTLS). Our authentication scheme replaces DTLS because of the computational complexity and high
resource consumption but also incorporates the features presented by DTLS protocol.

The paper is organized into following sections. The previous research works relevant to mutual
authentication between IoT devices are presented in section II. In section III, we illustrate proposed
lightweight authentication scheme for mutual authentication between CoAP server and CoAP client. In
section IV, the proposed technique is analyzed against various known attacks. In section V, the
performance of the proposed technique is discussed and the results obtained by evaluating the technique
are compared with various other existing authentication schemes. Section VI provides future directions
for this research work and concludes the work.

2 Related Work

Here, various research works related to security of IoT objects and protocols and standards used for
securing IoT objects are discussed. We also discuss about various authentication techniques used between
IoT devices and their advantages and disadvantages.

In traditional internet, the client request for resources using Hyper Text Transfer Protocol (HTTP). The
resource in the server is represented to reflect the present, past or desired state and this representation is
communicated using protocol and this implementation of HTTP is known as representational state
transfer (REST) [4]. HTTP request messages and HTTP response messages exchange data between HTTP
server and HTTP client. This protocol is inefficient and too heavy to be implemented on devices that are
powered by battery and constrained [5]. Hence, HTTP does not suit for the IoT devices as most of them
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are resource constrained. So there is a need for a protocol to be used in constrained devices those are
lightweight and robust. By keeping this in mind, the IETF (Internet Engineering Task Force) formed a
team to work on RESTful constrained environments. This team has developed a protocol named CoAP
(Constrained Application Protocol). This protocol is an application layer protocol optimized to Web of
Things smart objects which are mostly resource constrained and powered by batteries [6].

Colitti, et al. [7] have compared life of battery, power consumption and number of bytes transferred per
transaction while using CoAP protocol and HTTP protocol. The results are given as below in Tab. 1.

Hence, we choose CoAP protocol for the communication between IoT client, which need to observe the
resources and IoT server which sends data to the observer.

For securing communication using HTTP over TCP (Transmission Control Protocol), TLS (Transport
Layer Security) is employed. CoAP is secured over UDP (User Datagram Protocol) using DTLS
(Datagram Transport Layer Security). DTLS is same as TLS but with some added functionalities to
handle unreliable communication of UDP [8]. The applicability of a DTLS mode for an application based
on CoAP should be weighed by considering resources available in the constrained nodes, cipher suites
being used, session maintenance and the increased network overhead. All DTLS modes are not applicable
in some constrained nodes and networks with some specific cipher suites because of the added significant
implementation complexity and some handshake overhead for setting up security association between
communicating parties.

In [9], the proposed implementation of DTLS + CoAP is focusing only on communication between
android smartphones. The algorithms used in combination with DTLS are not suitable for limited
resource IoT nodes. Usage of DTLS for well constrained sensor devices is not suitable because of public
key crypto-system computational overhead and lengthy handshaking process overhead [10]. Even though
some security schemes with low overhead such as raw public key can be used, the minimum 25 bytes
per-packet overhead of DTLS occupies the one-third of usable frame. DTLS also imposes severe
limitation in terms of round-trip messages when retrofitted to CoAP [11]. The authors Raza et al. [12],
have proposed the idea of header compression to make CoAP-security lightweight. But this header
compression does not yield much gain in performance as the DTLS itself is computationally heavy. The
authors Freeman et al. [13] have proposed a scheme, which allows a client to delegate certificate path
construction and certification path validation to a server. But typical use of this protocol is expected to be
over HTTP. It relies on a third party other than communication parties and also imposes high
communication overhead. In [14], Kothmayr et al., have proposed an end-to-end architecture for IoT
security and authors have used DTLS and other existing standards and protocols. RSA is used in
combination with DTLS which incurs high computational complexity and network overhead. A fully
authenticated handshake in DTLS, where server and client should mutually authenticate each other, takes
more than three round-trip times.

Authors of [15] have proposed a lightweight authentication technique using symmetric key algorithm
Advanced Encryption Standard (AES). In this authentication technique, message payload is used to
challenge server and client mutually to ensure the genuineness of identity of devices. Four messages are

Table 1: Comparison of HTTP and CoAP on resource consumption (Source: Colitti et al.)

Protocol Bytes per transaction Power (in mW) Life time (in Days)

CoAP 154 0.744 151

HTTP 1451 1.333 84
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exchanged between server and client for the completion of authentication process. In [16], Park et al. have
proposed a system architecture that uses delegation method for end to end communication. In this system, the
handshake process is delegated to a Secure Service Manager (SSM). This architecture requires trust manager,
sensors and secure service manager to be located within the constrained networks. So, it is not feasible for all
types of IoT systems. In [17], Granjal et al. have proposed an end-to-end security scheme, using DTLS
handshaking. They have used Elliptic Curve Cryptography (ECC) for encrypting data in constrained
devices. Even though ECC consumes less power and memory than other public key encryption methods,
it consumes more power and memory than symmetric key encryption techniques [18]. Usage of complex
cipher suites lead to high consumption of energy. Authors proposed an authentication scheme for
resource constrained devices. They have replaced DTLS based authentication by payload based
authentication technique which uses AES symmetric key cryptography for encryption between CoAP
server and CoAP client in four-way handshake. The efficiency of this authentication scheme is not
evaluated using any experimental analysis. The four way handshake authentication using CoAP message
payloads. They have added two header options to the CoAP message header for enabling the secure
mode. In [19], authors have proposed an authentication technique using four-way handshake and have
modified header fields of CoAP messages. AES algorithm with 128 bit key is used to encrypt messages
between CoAP client and CoAP server. UDP protocol is used in transport layer without using DTLS for
achieving security. We have attempted to cut down the number of messages exchanged between server
and client during authentication process without compromising the efficiency.

DTLS protocol can be used in combination with many different cipher suites. But this protocol need to
be designed to support the devices with sufficient power supply and processing capabilities. So customizing
DTLS to suit constrained nodes does not yield better performance. Hence, alternate security schemes are
being proposed by various researchers. We propose an authentication technique without DTLS and
evaluate the performance of this authentication technique to show that it suits well for constrained
devices of IoT.

3 CoAP Payload Based Lightweight Authentication

In many of the applications of IoT, CoAP is used as a protocol in the application layer. CoAP protocol
does not implement any security for transmitting information between two nodes [20]. DTLS can be used for
securing the communication between CoAP server and CoAP client. But, as discussed in previous section,
DTLS imposes high processing complexity to the constrained nodes and network overhead. It also needs
more than four handshake messages to complete mutual authentication between communicating parties.

In this section, we propose an authentication technique between CoAP server and CoAP client using
CoAP message payload. It avoids the overhead of implementing additional protocol to secure the
communication. We use only two handshake messages to complete the mutual authentication between
devices. Total data bytes transmitted between client and server for authenticating each other is around
300 bytes only. Total authentication time includes one round-trip time and processing time spent on both
the constrained nodes.

We assume an IoT network with multiple clients and one server and the clients can observe the resources
in the server. Fig. 1 shows the network assumed to illustrate the scenario.

All the clients and server are using the CoAP protocol in the application layer for observing resources in
the server. To observe a resource, client should prove its genuineness of identity to the server. Once client is
authenticated by server, the server will create session for that client and responds to the client. Then, the client
will ensure the genuineness of server after receiving reply message from server. Once the server and client are
authenticated mutually, they can exchange application data between them using session key generated only
for that session.
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We use AES symmetric key algorithm for encrypting and decrypting data in CoAP client and CoAP
server. It is a block cipher algorithm with 128 bits of constant block size. It has key sizes of 256 bits,
192 bits and 128 bits length. It is believed that the 128 bit key is sufficient for encryption and decryption
in constrained devices of IoT system as they have low processing capabilities. AES encryption with
192 bit key and 256 bit key are having high computational complexity and demand advanced software
and hardware platforms [21–23]. 256 bit key AES encryption takes 1.5 times more energy than 128 bit
key AES encryption [18]. AES encryption technique is currently safe against brute force attack due to its
large key size and the attacks proposed in literature are still not computationally feasible in AES [24].

In our technique, the client and server are pre-shared with 128 bits AES key. The keys are hardcoded into
the devices during manufacturing phase and the end devices are assumed to be safe from physical attacks in
accordance with internet threat model [25]. All devices are having a 64-bit unique device identifier assigned
during manufacturing phase.

Our proposed authentication technique is having three steps namely one-time device configuration,
client authentication and server authentication.

In the one-time device configuration phase, 128 bit AES key is hardcoded to every device and a 64-bit
unique identifier is also assigned to every device. The server device is configured with a table which stores
device identities (IDi) and shared secret keys (Ki) of every devices. This table is used to verify the device
identity and find the AES key for that device and this is populated at the time of initial configuration of
server device.

In client authentication phase, the identity of client device is verified by server and authenticated by
server. The client generates a 64-bit nonce (Nc) and performs exclusive OR with the 64-bit device-ID
(IDi). The 64-bit nonce is also exclusive- ORed with least significant 64-bits of the 128 bits shared secret
of the client (KiL).

M1p ¼ IDi jj C1 (1)

where, C1 = E {Ki, ((Nc ⊕ IDi) || (Nc ⊕ KiL))}

Figure 1: Assumed scenario
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Where M1p is the payload of CoAP message sent by client i and KiL is the low order 8 bytes of pre-
shared key Ki of the client i. The total size of the message payload is 192 bits long including the unencrypted
64 bit long device identity. M1p is a CoAP confirmable message. Confirmable messages should be
acknowledged by the response from the receiver of the message. CoAP also uses acknowledgement, non-
confirmable and reset messages. The client sends the M1p to server. The Fig. 2 shows messages
transmitted between client and server during the authentication process.

On reception of the message M1p from client i, the server will read the device identity IDi from the
message and uses this 64 bit value to search the table kept in the server. The server will look for an entry
in the table with received device ID. If the device ID is not found in the table, the client will be replied
with the 4.01 unauthorized response. It will eliminate the burden of processing the message from a device
which is not enrolled. Otherwise, if the device identity is found in the table, the associated shared key is
fetched from the table.

P1 ¼ fDKi; C1g (2)

P1 is the 128 bit plaintext derived by decrypting C1 using the shared secret Ki

The most significant 64 bits of P1 is exclusive ORed with device identity of client IDi. It will return Nc if
the message was received from genuine client.

Nc ¼ IDi � P1M (3)

where P1M is the most significant 64 bits of P1. The Nc value is exclusive ORed with least significant
64 bits P1.

R1 ¼ Nc � P1L (4)

where R is 64 bit value and P1L is the least significant 64 bits of plain text. Now the value R1 is compared
with the least significant 64 bits of the secret key stored in server associated with the device identity IDi. If

Figure 2: Two way handshake authentication between CoAP client and CoAP server
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this value is matched with the KiL value, then the client will be authenticated. A session will be created in the
server to associate client with the server. This session resource will be created only after authenticating
the client successfully in server side. If, value R1 does not match with the least significant 64 bits (KiL)
of the shared secret key, the client will be replied with unauthorized message and no session will be created.

After the client is authenticated by server, the server will create a reply message for the confirmable
message received from client. The status code of this reply message will be set to ‘2.01 created’. Server
will create a nonce with the length of 64 bits long. The nonce created by server will be exclusive ORed
with the nonce from client Nc. Server's nonce will be concatenated with the 64 bit value derived by
concatenating client's nonce and server's nonce to generate 128 bit value. This 128 bit value is encrypted
using the AES encryption key. This encrypted content is set as payload for the reply message to be sent
to client i.

The payload of CoAP message is

M2p ¼ E fKi; ðNs jj ðNs � NcÞÞg (5)

where Ns is the 64 bit nonce generated by server. The message identity of response message is set to be same
as the message identity of the confirmable message received from the client i.

On reception of CoAP message with payload M2p by client, it decrypts the message using the shared
secret key Ki.

P2 ¼ fD Ki; M2pg (6)

P2 is the 128 bit plaintext derived by decrypting M2p.

Now the client will perform exclusive OR on the least significant 64 bits of P2 with the most significant
64 bits of P2.

R2 ¼ P2L � P2M (7)

Result of the operation (R2) is compared with the nonce generated by the client (Nc). If R1 is matched
with the value of Nc, then the server is authenticated by the client. Because only the intended server could
have decrypted the message sent by client and sent back the nonce value in encrypted form.

After mutual authentication of client and server, the session key will be generated by using the nonce
generated by the client and server. We have created the session key Ks as below.

Ks ¼ Nc jj Ns (8)

The server nonce and client nonce are concatenated to generate the 128 bit session key. This session key
is valid for only the current session. At this stage of authentication the key Ks is known to both client and
server. The data transmitted after authentication will be encrypted and decrypted using this session key. The
AES key shared during manufacturing phase will be used for authentication purpose only which increases the
security of the system.

4 Security Analysis of Proposed Scheme

The proposed technique for authentication is resistant against different known attacks. Here, various
possibilities of attacks are assumed and showed that the proposed technique is reliable over these attacks.

Our proposed technique is resistant against identity theft. Assume that a malicious user has anyway got
the device identity of a genuine client device, whose identity is already stored in server's table. The malicious
user may send the device identity to server and the server will look for received device identity in stored table
and will find a match. So it will perform decryption on the message payload using the associated secret key.
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After decryption, the server will use this device id to extract a part of secret key from the decrypted payload
by performing sequence of operations in the decrypted payload. If the payload was encrypted by the genuine
user, server will be able to extract a part of shared key from the decrypted payload. Otherwise, in case of
malicious user, server cannot extract a part of key from the decrypted message payload using device id
sent by the malicious user.

Our proposed authentication technique provides confidentiality and is also resistant to man-in-the-middle
attack where an unauthenticated malicious user enters into an online communication between two genuine
users, remains escaped from the two parties. The attacker in the middle often monitors and changes
information that was just realized by the two users. Assume that Ac and Bs are genuine client and genuine
server. Ca is attacker in the middle of Ac and Bs. We assume that Ca is capable of capturing and modifying
the messages between Ac and Bs. For authentication between client and server, the client Ac sends the
session creation request to server. As Ca is capable of capturing messages, it can read the device identity of
Ac. Even though, Ca has access to the message, it cannot read the nonce sent by the client Ac as the
message is encrypted using AES. If the attacker tries brute force attack on the received encrypted payload,
the attacker will be getting some predicted result Tk for every try k by using one key from set of 2128 keys.
But the result Tk cannot be verified for the correctness of the nonce created by the client. To verify the
correctness of predicted result Tk, the attacker will have to perform some additional steps for every Tk to
extract nonce from the Tk. So for retrieving nonce, the attacker will not only have to break the proven AES
algorithm but also have to undergo additional computational overhead. The attacker can succeed only if the
AES key is successfully determined. Otherwise, even if the attacker has determined the nonce sent by the
client, the attacker cannot get the nonce created by the server. Without knowing the nonce created by both
client and server, it is not feasible to predict or determine the session key. So, the attacker Ca cannot modify
or eavesdrop to the messages between client Ac and server Bs. Hence, our proposed authentication
technique is secure against man-in-the-middle attack and provides confidentiality.

The proposed authentication technique also provides integrity to the messages between client Ac and
server Bs.

Assume that K = K1K2

Where K is 128 bit AES key, K1 is high order 64 bit of the K and K2 is low order 64 bit of K.

M1 is message from Ac to Bs and M2 is message from Bs to Ac. We assume that attacker Ca can capture
messages M1 and M2. But the attacker cannot modify the payload of messages M1 andM2. If Ca modifies any
of the payloads of the messages, the receiver can easily detect that someone has modified or the message is
not from the intended sender. If the message M1 was modified by Ca, Bs will be able to detect it. After
reception of message M1, Bs will decrypt the payload of the message M1 using the secret key K. Then it
will fetch the 64 bit device id from the payload of M1. This Device id will be exclusive ORed with the
high order 64 bits of the decrypted payload of M1 after removing the device identity from the payload of
M1. The result of this exclusive OR operation will then be exclusive ORed with the low order 64 bits of
the decrypted payload of message M1 and this operation will result 64 bit value K2. If the attacker had
modified the message M1 or M1 was not created and encrypted by Ac, the above sequence of operations
will not result K2.

If the message M2 from server Bc to client Ac was captured and modified by the attacker Ca, that can also
be detected by the client Ac. Ac will decrypt the payload of message M2 using the secret key K. Ac will then
perform Exclusive OR operation between the high order 64 bit value and low order 64 bit value of the
decrypted payload of message M2. This operation will result the nonce that was created and sent to server
in message M1 by client. If the attacker had modified the message M2 or M2 was not created and encrypted
by Bs, the above sequence of operations will not result the nonce created by client. This way, the senders of
messages M1 and M2 can be authenticated and the integrity of these messages can be ascertained.
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5 Results and Discussion

We have implemented the proposed technique for authentication using cooja simulator, a wireless sensor
network simulator. We have used five client devices and a server device and these devices are emulated
versions of Tmote Sky device which is a wireless sensor module from moteiv. Tmote sky is a
MSP430 microcontroller based board with a cc2420 radio chip compatible to 802.15.4, 10 k RAM
memory and 48k flash memory. UDP protocol is used as transport layer protocol and CoAP is used as
application layer protocol. Fig. 3 shows the output window and Fig. 4 shows the network window of the
cooja simulator. Output window shows the serial port output of all nodes in the network. Network
window shows the network organization, all participating nodes, IPv6 addresses of each nodes, serial port
output messages and lines to indicate the message transfer between clients and server. Node-1 is the
server node and all other nodes are client nodes which will mutually authenticate with server node before
data transmission.

Figure 3: Output window

Figure 4: Network window
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We have analyzed the performance of our proposed scheme against other authentication techniques
proposed by Ukil et al. [10]. and Jan et al. [19,21] where authors have proposed authentication based on
CoAP protocol. Various performance metrics like number of operations, client node processing time,
transmit/receive hardware usage, packet size, number of hops and server response time were used to
compare the performance of proposed technique with other techniques.

5.1 Number of Operations Performed

In our authentication scheme, very simple operations like exclusive-OR are used, which greatly reduces
the processing overhead of the constrained devices. The operations and number of operations performed by
client devices and server devices in various authentication schemes proposed by [15,19,21] were compared.

The Tab. 2 compares the number and type of operations executed by client and server devices of
proposed scheme against three other authentication schemes which use CoAP payload authentication.
Both client and server devices are performing only one AES encryption and only one decryption while
other schemes perform three runs of AES algorithm. Executing the AES algorithm least number of times
improves the performance of the client and server and it also improves the power consumption of client
and server devices.

5.2 Node Processing Time

The time taken by client node to complete the mutual authentication is considered for comparing
processing time. This time includes the time taken to prepare CoAP message, AES encryption, AES
decryption and other operations except the message transmission time. The processing times of each of
the five client nodes were determined using the timeline window of cooja simulator. Average of these
values is used as the processing time of client node. Fig. 5 shows the comparison chart for client node
processing time of proposed technique against other similar authentication schemes. The proposed
technique roughly halves the client node processing time taken by other mutual authentication schemes.

5.3 Transmit and Receive Hardware Utilization

The client node, while sending authentication request message to server and receiving response from
server, will turn on the hardware for transmission and reception. This hardware ON duration will have
direct impact on the power consumption of battery operated devices and low power constrained network

Table 2: Comparison of number and type of operations performed in various authentication schemes

Operations Our proposed
scheme

Authentication
proposed by
Jan et al. in

[21]

Authentication
proposed by
Ukil et al. in

[15]

Authentication
proposed by
Jan et al. in

[19]

Client Server Client Server Client Server Client Server

AES 128 bit encryption 1 1 1 2 1 2 1 2

AES 128 bit decryption 1 1 2 1 2 1 2 1

128 bit Ex-OR 2 2 2 2 2 2 2 2

No. of CoAP messages handled (sent/
Received)

2 2 4 4 4 4 4 4

Session creation - 1 - 1 - 1 - 1
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devices. Cooja timeline window can be used to determine the hardware ON time in client nodes and in server
node. Fig. 6 compares the duration for which the transmitting and receiving hardware of client node is kept
ON during authentication in proposed technique and in similar other authentication techniques. As shown in
the graph, the hardware utilization in proposed scheme halves the hardware ON time in compared
authentication schemes.

5.4 Server Node Response Time

We tested the time taken by server node to process the client request for different number of client nodes.
This server response time includes the time taken to process the authentication request message from client,
verifying the genuineness of client node and preparing authentication request message to client. The server
response time is calculated from immediately after the reception of authentication request message from
client to the start of sending authentication message to client. We assessed the response time of server in
different test environment with 1, 5, 10 and 15 client nodes. In each of the test environment, we allowed
client nodes to simultaneously generate authentication request to server and assessed the response time
for every authentication request. Then, the average response time is calculated by taking average of all
these readings.

If N client nodes are in the network, the average response time (Ra) of server node is determined by

Ra = sum(t1, t2,…tN)/N where ti is the time taken by server node to respond node i.

Tab. 3 shows the average response time assessed for N = 1, 5, 10 and 15.

Figure 5: Client node processing time comparison
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5.5 Packet Size and Number of Hops

The size of the message and number of messages transmitted between authenticating devices play
important role in power consumption and network traffic especially in constrained devices network. Our
proposed scheme need to manipulate only two CoAP messages in client device and two CoAP messages
in server device, whereas other schemes manipulate four CoAP messages in client device and four CoAP
messages in server device. The comparison chart in Fig. 7 depicts the packet size and number of
authentication messages transmitted between client and server in proposed scheme and in other schemes
considered for comparison. The payload of the authentication request CoAP message occupies 24 bytes
and payload of response CoAP message from server occupies 16 bytes in proposed scheme, whereas
other schemes occupy 32 bytes of payload in each of the CoAP messages.

In our proposed scheme, number of messages exchanged between IoT devices for the accomplishment
of authentication is two only. In other authentication techniques, the number of messages exchanged to
complete handshaking between client and server is four. Hence, the obvious advantage in performance of
proposed scheme is reduction in round trip time as it takes only one round trip time. It reduces 50% of
the total time required to exchange messages between client and server by the authentication techniques
compared with our proposed technique. This message transmission time does not include the time taken
by client and server for processing messages.

6 Conclusion

In this paper, we have proposed a technique for authentication which is lightweight in terms of
processing and network overhead as we have used lightweight protocols, lightweight algorithms and
lightweight operations. In this technique, client and server share a common key in manufacturing and
deployment phase. The server and client authenticates mutually if the client needs to observe for any
resources in the server. For authentication, client and server use advanced encryption standard algorithm
with the pre-shared secret key for securing messages between server and client. Once the authentication is
completed, a unique identity will be created in the server for the client. Further communication will be
encrypted using the session key exchanged between client and server during authentication.

Table 3: Average server response time

Number of client nodes 1 5 10 15

Average response time (ms) 78 165 211 284
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Our scheme is good for the devices with very limited memory and processing resources. We have
reduced the number of messages exchanged between client and server during mutual authentication
between them. Reduction of number of messages improves the efficiency of network utilization, time
taken for authentication and power consumption by communicating devices. We have also shown that our
scheme has greater advantage of reducing the processing overhead in the resource constrained client
device and server device. The length of the random nonce used for authentication can be increased to
improve the security of the scheme based on the devices used for communication and the requirement of
the application. In future new authentication protocol can be used for better security.
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