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Abstract: Brain medical image classification is an essential procedure in Compu-
ter-Aided Diagnosis (CAD) systems. Conventional methods depend specifically
on the local or global features. Several fusion methods have also been developed,
most of which are problem-distinct and have shown to be highly favorable in
medical images. However, intensity-specific images are not extracted. The recent
deep learning methods ensure an efficient means to design an end-to-end model
that produces final classification accuracy with brain medical images, compromis-
ing normalization. To solve these classification problems, in this paper, Histogram
and Time-frequency Differential Deep (HTF-DD) method for medical image clas-
sification using Brain Magnetic Resonance Image (MRI) is presented. The con-
struction of the proposed method involves the following steps. First, a deep
Convolutional Neural Network (CNN) is trained as a pooled feature mapping
in a supervised manner and the result that it obtains are standardized intensified
pre-processed features for extraction. Second, a set of time-frequency features
are extracted based on time signal and frequency signal of medical images to
obtain time-frequency maps. Finally, an efficient model that is based on Differen-
tial Deep Learning is designed for obtaining different classes. The proposed mod-
el is evaluated using National Biomedical Imaging Archive (NBIA) images and
validation of computational time, computational overhead and classification accu-
racy for varied Brain MRI has been done.
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1 Introduction

Machine learning algorithms have the prospective to be reviewed enormously in all areas of medicine,
from medication finding to clinical decision making, extensively changing the way the medicine is
consumed. The progress of machine learning materials and methods at computer vision chores in the
current era has favorable time when medical records are progressively digitalized. Therefore medical
images are found to be an essential part of patient’s Electronic Health Records (EHRs) and examined by
human radiologists, who are found to be constrained specifically by momentum, tiredness and experience.
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Hence a delayed or incorrect diagnosis causes harm to the patient. In a novel CNN based approach with the
objective of classifying the sub-cortical brain structured in an accurate manner integrating both the
convolution and prior spatial features is presented and classification accuracy is also said to be improved.
With the objective of improving and enhancing the accuracy rate of the automated classification, the
network is trained by means of a restricted sample selection. With this, the most significant and inherent
structure parts are also learnt. Despite the improvement found in the accuracy, the computational
complexity involved in measuring intensity and therefore the error rate are not detailed in [1]. To address
this issue, in the present study, Histogram Intensity-oriented Pre-processing model that obtains
standardized pre-processed features, thereby reducing the error rate by mapping the image scale and
standard scale by means of normalization function is presented. Further, with the standardized pre-
processed features, the error rate is said to be also reduced with the reduction in the complexity by
transforming pre-processed brain MRI to time-frequency features.

Several medical image segmentation models are designed on the basis of the voxel classification in a
supervised manner. Such methods usually execute well when given with a training set that is
characteristic of the test images to segment. However, with different distributions being followed for
training and test data, the problem is said to arise.

A kernel learning method was investigated in [2] to minimize the discrepancy between training data and
test data and to measure the added value of kernel learning for weighting the corresponding images. A new
image weighting method is also presented to reduce the Maximum Mean Discrepancy (MMD) between
training and test data. In this way, an integrated optimization of image weights and kernel is said to be
achieved. Despite the error arising due to MMD is found to be reduced, with the variance normalization
constraint, many number of classifiers are not said to be formed and therefore compromising the
accuracy. To address this issue, in the present study, a Softmax medical image classification is applied to
the time-frequency features extracted, therefore minimizing the variance and hence improving the medical
image classification accuracy rate.

The main importance of this research work is time frequency feature extraction from brain MRI images
by reducing the variance of normalization and improving classification accuracy. The organization of the
paper is as follows. Discussion of prior research work on brain MR image classification and the
contribution of the present study are summarized in Section 2. In Section 3, the proposed methodology
for brain MR image classification is presented. In Section 4, the effectiveness of the method is
experimentally analyzed using the Brain MR images from NBIA. In Section 5, the concluding remarks
are provided.

2 Related Works

Segmentation and the successive evaluation of lesions in medical images give an insight into
information for analyzing neuropathology’s and are significant for designing strategies for treatment,
disease monitoring and patient prediction results. For a thorough comprehension of pathophysiology,
quantitative imaging provides the physicians with several most relevant indications pertaining to the
disease characteristics and the pros and cons on specific anatomical structures.

And, the recent research related to the brain image classification includes the implementation of 3D
CNN techniques. The three dimensional values include length, depth and height to generate activation
maps, which merges inert medical image intensities with spatial framework. And, 3D CNN techniques
have wide variety of applications in lung nodule detection, Alzheimer disease identification, brain
disorder in infants, etc., The usage of CNN in methodologies such as segmentation, classification,
retrieval using brain, chest, lung, colon and liver images are analyzed. The challenges involved in
implementation of CNN in various modalities and idea for future research has been discussed in [3].
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Also, Hierarchical Medical Image Classification (HMIC) approach has been used for multi-class
classification of biopsy images. Hierarchical structures of CNN architecture are generated to improve the
performance of multi-class classifier is presented in [4].

Deep learning is applied in CT images for classifying pulmonary artery vein [5] by means of 3D CNNs.
With this, the classification accuracy is found to be better and achieved 94% accuracy. However, CNNs
possess attributes and insufficient training samples which results in over-fitting and poor generalization.
To address this issue, a novel dual loss function [6] is designed ensuring both cardiac segmentation and
disease diagnosis. A novel variant of Bag of Words for medical image classification using chest images is
presented in [7].

Segmenting medical images, pixel identification from background medical images involving CTor MRI
images, is considered to be one of the most significant tasks in medical image processing for delivering most
vital information pertaining to organ shapes and volumes. In [8], deep learning techniques are applied and the
challenges involved are also addressed. However, the computational complexity involved in classification is
found to be high. To address this issue, in [9], connected random field is introduced to remove the false
positive and it is proved to be computationally efficient. Yet another work based on CNN is presented in
[10] from cardiac images, therefore improving accuracy.

The differentiation between images acquired via different scanners or different imaging techniques
provides a protocol that presents a paramount threat in automatic biomedical image classification.
Transfer learning is designed in [11], which can train a classification scheme by means of multi-site data,
consequently minimizing the classification error. However, the intra class and inter class variations are
not said to be addressed. To address this issue, a Large Margin Local Estimate (LBLE) classification
model is presented in [12]. Despite improving the accuracy and minimizing the error, automated detection
is not possible. Further, a two stage method using Deep CNN is proposed in [13].

Fusion of preceding awareness pertaining to organ shape and location is paramount to enhance the
performance of image analysis. However, in most current and favorable methods like CNN-based
segmentation, it is not crystal clear how to integrate such prior knowledge. A novel method incorporating
prior knowledge in CNN by means of regularization model is presented in [14] and obtained 83.3%
accuracy. An ensemble of classification models maximizing the likelihood function also is proposed in [15].

Strong and swift solutions for detecting anatomical object and object segmentation contribute to the
overall configuration starting from disease diagnosis, patient satisfaction and planning therapy to the
feedback process. Marginal Space Deep Learning that combines both the advantages of object
parameterization and automated feature design, therefore improving classification accuracy, is introduced
in [16]. Classification of retinal imaging data is done in [17]. In this, the one class support vector
machine is applied to identify both anomalous and healthy images.

Data augmentation involves the course of action for producing alternate images of each sample
pertaining to a small training data set. These alternate images are found to be highly required for
extracting features by means of deep learning technique for medical image classification. A stochastic
simulation procedure is designed in [18] for effective deep feature extraction and scored 78.57% for
133 benign images. Yet another hybrid architecture integrating, bag of words with representation power is
designed in [19], which, in turn, reveals the significance of supervised fine tuning. However, this hybrid
architecture does not work well for multimodal features.

To address the multimodal image registration issue, a 3D deformable image registration algorithm is
designed in [20], which, in turn, results in high quality labels, making efficient differentiation between
normal and anomalous images. However, the classification error involved during the classification of
images is not focused. To concentrate on this issue, an innovative training criterion is introduced in [21].
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This paves a way for maximum interval minimum classification error. A state-of-the-art work for brain MRI
classification using deep learning techniques is presented in [22].

A new CNN based multi-grade brain tumor classification is presented in [23]. In this, extensive data
augmentation is applied to ignore the lack of data problem while handling MRI classification. Likewise,
deep transfer learning is presented in [24] for categorizing the brain tumor. A discrete wavelet transform
is designed in [25] for brain tumor classification through the CNN. Partial differential diffusion filter also
is employed to eliminate the noise in the image. A new model for binary classification of brain tumor
MRI is introduced in [26] via deep learning algorithms. However, the computational time is not minimized.

An entropy-based multilevel image segmentation approach with differential evolution and whale
optimization algorithm is presented in [27] from which histogram is generated to calculate different levels
of threshold values in order to apply this hybrid method for the detection of brain tumor. Brain Tumor
segmentation and prediction of overall survival of patients, risk factors are analyzed using multimodal
MRI brain images. 3D CNN architectures are implemented for brain tumor segmentation with Random
Forest model and achieved classification accuracy of 61.0% for 285 patients [28]. Deep learning has its
relevance in liver disease classification [29] and Alzheimer’s detection [30] along with hybridized
optimization techniques in other health care applications also [31].

In this paper, a novel Histogram and Time-frequency Differential Deep (HTF-DD) method is designed
for Medical Image Classification which is computationally efficient. The contributions of proposed model are
summarized as follow:

A histogram intensity based pre-processing model is applied to the brain MR image by performing
convolutions on the input with different pooled features, therefore yielding pooled feature maps. A novel
image scale leveling and standard scale leveling in mapping is presented with normalization function
which reduces the computational complexity compared to standard image classification methods.

A methodology is proposed for time and frequency extraction from the pre-processed images used time
and frequency variation statistics of brain MR image. The approach of training the network on time and
frequency patches aids in the reduction of computational and memory requirement. For the brain MR
image classification, differential deep classification labels are used to measure MR parameters.
Differential Softmax based feature importance analysis is made to significantly perform the classification
process.

3 Methodology

Medical image classification is one of the hot research controls in medical computer vision field. CNN
has been extensively utilized in medical image classification, being able to recognize video streams, detect
objects and achieved height of excellence in different areas. In the current study, CNN specifically includes
convolutional layers for preprocessing, pooling layers with fully connected layers for extracting features.
Finally, the softmax layer is regarded as the classifier. The general architecture of CNN is represented in
Fig. 1.

In this section, the key components of the Histogram and Time-frequency Differential Deep (HTF-DD)
method for Medical Image Classification are highlighted, providing a description of the coding network and
the medical image pre-processing in Subsections 3.1 and medical image feature extraction in 3.2. In
Subsection 3.3, the actual medical image classification is detailed.

Fig. 2 shows the detailed procedure of the proposed HTF-DD method which involves three different
steps. In the first step, Histogram Intensity-oriented Pre-processing model is applied in the convolutional
layer where pooled feature mapping is performed with the histogram function, therefore generating
pooled feature maps (i.e., standardized intensified pre-processed features). Next, in the second step, time
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and frequency are applied in the pooling and fully connected layers, therefore extracting time-frequency
maps (i.e., optimal time-frequency feature extraction). Finally, softmax function is applied to the sample
features to obtain discrete probable distribution, which characterizes the probable results of a random
variable that can take on one of ‘n’ possible classes, with the probability of each class separately specified.

3.1 Histogram Intensity-Oriented Pre-Processing Model

In the present study, the classification of medical images for Brain MRI images is taken into
consideration. Though several researches have been conducted using these types of images, the main
issue to be addressed while classifying these types of images is the intensity that differs even for the
same protocol, body region, patient and scanner.

In this work, intensity is concentrated during the pre-processing stage itself, therefore reducing the error
rate (i.e., improving PSNR) involved in pre-processing. These Brain MR images are initially said to be

Figure 1: CNN architecture

Figure 2: Block diagram of histogram and time-frequency differential deep (HTF-DD) method
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standardized by means of histogram. The pseudo code representation of Histogram Intensity-oriented Pre-
processing is given as Algorithm 1.

With the above supposition, for a given brain image ‘I’, minimum intensity image scale, maximum
intensity image scale, minimum intensity standard scale and maximum intensity standard scale and
standard scale values are obtained by means of histogram. Then the image scale ‘IS’ and standard scale
‘SS’ are represented as given below in Eqs. (1) & (2).

IS ¼ a1I ; . . . ; s1I ; . . . ; li; . . . ; s2I ; . . . ; anI (1)

SS ¼ s1I ; . . . ; s1; . . . ; ls; . . . ; s2; . . . ; snI (2)

Then from the above equations, leveling is said to be performed between ‘IS’ and ‘SS’. The image scale
leveling ‘ISL’ and standard scale leveling ‘SSL’ is mathematically formulated as given below as Eqs. (3)
and (4).

ISL ¼ lI � a1I ;lI � a2I ; . . . ;lI � anIf g (3)

SSL ¼ fls � s1; ls � s2; . . . ; ls � sn g (4)

Finally, with these two equations, the standardized pre-processed features ‘PF’ with optimal intensity
are obtained as given below in Eq. (5) using the two conditions.

PF ¼
b

s1 � ls
a1I � lI

� �

b
s2 � ls
a2I � lI

� �
8>><
>>:

; if a1I � b � lI and lI � b � anI (5)

With the above standardized pre-processed features ‘PF’, the next section concentrates on the feature
extraction for medical brain image classification.

Algorithm 1: Histogram Intensity-oriented Pre-processing

Input: Brain Image ‘I = I1, I2, …, In’, Minimum intensity ‘a1’, Maximum intensity ‘an’, Minimum
intensity image scale ‘a1I’, Maximum intensity image scale ‘anI’, Minimum intensity standard scale
‘s1I’, Maximum intensity standard scale ‘snI’

Output: standardized intensified pre-processed features ‘PF = PF1, PF2, …, PFn’

1: Begin

2: For Brain Image ‘I’

3: Measure image scale and standard scale using Eqs. (1) and (2)

4: Measure image scale leveling and standard scale leveling using Eqs. (3) and (4)

5: Perform mapping with normalization function using Eq. (5)

6: Return (standardized intensified pre-processed features)

7: End for

8: End
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3.2 Medical Time-Frequency Feature Extraction

With the obtained pre-processed images, the part that is considered to be the most important for medical
image classification is feature extraction. Feature extraction refers to the utilization of a machine to extract
vital portion of images and determine its priority. The objective behind feature extraction therefore remains in
partitioning the image points into several subsets. Different types of features are present in the image and
based on several criteria, classifications will be made. The global or local features are said to persist
based on the feature size. As several researches have been conducted using local or global features, in the
present study, time-frequency algorithm is used for feature extraction to achieve faster training and testing
which is shown in Fig. 3.

The time-frequency algorithm for brain MRI images involves a concurrent processing model. Due to
this, the feature extraction is said to achieve faster training and testing. Based on the feature extraction of
target image in time domain and frequency domain, the depth extraction technique with standardized
intensified pre-processed features ‘PF’ extracts the target information from brain MRI images. To start
with, time-frequency signal models for multiple standardized intensified pre-processed features of brain
MRI images are created with the following Eqs. (6) and (7).

g PFð Þ ¼
ffiffiffi
S

p
f PF � sð Þ (6)

S ¼ ISL� SSL½ �= ISLþ SSL½ �
� �

(7)

From the previous equations, ‘S’ refers to the original pre-processed feature signal, called the image
scale factor, with the size of the feature signal being ‘s’ and ‘S(i, j)’, representing the ‘ith row’, ‘jth

column’ element in ‘S’ respectively. Referred to as scale, it represents the signal scaling change in the
original image time-frequency feature extraction algorithm. ‘√S’ is the normalized factor of image time-
frequency feature extraction algorithm. Next, the one-dimensional function is mapped to the two-
dimensional function ‘b(t)’ of the time proportion ‘i’ and the time conversion ‘j’. The time-frequency
transformation on the pre-processed brain MRI image using the quadrangle function is carried out as
given below in Eq. (8).

Figure 3: Block diagram of medical time-frequency feature extraction
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Wub i; jð Þ � b;uij �
Zþ1

�1
b tð Þ 1ffiffi

i
p u

t � j

i

� �
dt (8)

From the above equation, ‘ψij’ is ‘ψ (t)’ obtained by transforming ‘U (i ,j)’ via the affine group as given
below in Eq. (9).

uij tð Þ ¼ U i; jð Þu tð Þ½ � ¼ 1ffiffi
i

p u
t � j

i

� �
(9)

Finally, by substituting the variable of the pre-processed brain MRI image ‘f (PF)’ by ‘i = 1/s’ and j = τ’,
the above equation is re-written as given in Eq. (10).

fs; s tð Þ ¼ U
1

s
; s

� �
f tð Þ ¼

ffiffiffi
S

p
f t PF � s½ �ð Þ

� �
(10)

From Eq. (10), the less complex time-frequency features are extracted in a significant manner. With
these, time-frequency features are extracted, and finally, the brain MR images are classified using
differential deep image classification. The pseudo code representation of time-frequency feature extraction
is given below as Algorithm 2.

3.3 Differential Deep Medical Image Classification

Finally, a softmax function is used in the current study to classify ‘n’ different classes via measuring the
probability of belonging to each class. The softmax function is being utilized as the activation function in
output layer of CNN and it regularize the output of a network to forecast the probability distribution.
When compared with the sigmoid and ReLU [1], though the sigmoid functions are said to be applied in
an easy manner, despite, dealing with medical image classification, only two classes are said to be
obtained using the sigmoid function. Besides this, with ReLU, there is a positive bias in the network as
the mean activation is greater than zero. Though the application of ReLU is said to be computationally
efficient, the positive mean shift slows down learning. However, by applying the softmax function, a
large number of classes are said to be formed, squashing the outputs of each unit between 0 and 1. The

Algorithm 2: Time-frequency feature extraction

Input: pre-processed features ‘PF = PF1, PF2, …, PFn’

Output: Optimal time-frequency feature extraction ‘FE =FE1, FE2, …,FEn’

1: Begin

2: For each pre-processed features ‘PF = PF1, PF2, …, PFn’

3: Create time-frequency signal model using Eqs. (6) and (7)

4: Transform on pre-processed brain MRI image of image time-frequency using

Eq. (8)–vectorized time-frequency mapping

5: Extract time-frequency features using Eq. (10)

6: Return (time-frequency features)

7: End for

8: End
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softmax function includes a sample vector and weight vector. The sample vector is represented as ‘FE’ and
the weighted vector is represented as ‘θT’ and the function is mathematically expressed as given below from
Eqs. (11)–(15).

Dw ¼ @

@w

1

2
ðf að Þ � bÞ2

� �
(11)

¼ 1

2
2 � f að Þ � bð Þ � @

@w
f að Þ � bð Þ

� �
(12)

¼ f að Þ � bð Þ � @

@w
f að Þð Þ (13)

¼ f að Þ � bð Þ � @

@w

1

1þ e� wxþbð Þ

� �
(14)

¼ f að Þ � bÞ � f að Þ � 1� f að Þ � að Þ (15)

Prob b ¼ jja; hð Þ ¼ eDw FEð ÞPn
j¼1 e

Dw FEð Þ (16)

From the above equation, the sample vector in the present study represents the feature extracted from the
above section using time-frequency model and the weight vector is the differential result obtained from Eq. (16).
The pseudo code representation of Differential Deep Image Classification is mentioned below in Algorithm 3.

As given in Algorithm 3, for each sample vector image (i.e., time-frequency feature extractors), a weight
vector is obtained. The weight vector is evaluated by means of differential function. The purpose of using the
differential function is, that, as far as brain MRI is concerned, continuous changes are said to be observed at
different time intervals. The process of applying differential equations in image classification helps to relate a
vector of its independent variables, therefore improving the convergence speed.

4 Experimental Settings and Results

Brain medical image classification with MRI images is implemented using matlab toolbox that
implements CNN as well as extracts the time-frequency features. A series of experiments have been
designed to verify the effectiveness of HTF-DD method using NBIA Brain MRI images. To measure the

Algorithm 3: Differential deep image classification

Input: Optimal time-frequency feature extraction ‘FE = FE1, FE2, …, FEn’

Output: Deep image classification of ‘n’ images

1: Begin

2: For each optimal time-frequency feature extractors ‘FE’

3: Measure weight vector using (15)

4: Perform classification using (16)

5: Return classified portions (‘n’ classified images)

6: End for

7: End
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performance, three parameters are tested; computational complexity, computational overhead and
classification accuracy metrics. All the three experiments are conducted on a computer with i5-6500
3.2 GHz CPU, 32 G main memory and GTX1060 GPU. The two state-of-the-art works like convolutional
neural network based approach [a] and Kernel Learning method [b] are used for comparison.

4.1 Evaluation Measures

To evaluate the proposed HTF-DD method, three metrics that are commonly used in the literature are
selected. The computational complexity, computational time and classification accuracy parameters are
analyzed, which shows the performance of brain medical image classification. According to the objective
of HTF-DD method, i.e., to classify the brain medical image with higher accuracy with less time and
overhead, evaluation metrics are chosen. These metrics are computed with respect to the number of
images and the results are given Tabs. 2–4.

4.2 Dataset

NBIA comprises a searchable repository of vivo images that ensure the biomedical research persons,
industrial experts and academic profession to extract image archives to be utilized in the area of
development and validation of medical image classification. This is highly suitable for detecting lesion,
classifying the images, diagnosis, quantitative assessment, providing feedback and so on. The parameter
settings have the intensity values in the range of 0.2 to 1 which is tabulated in Tab. 1. The sample brain
images also are given below in Fig. 4.

The parameter settings of the proposed algorithm are shown in Tab. 1.

Table 1: Parameter settings

Parameters Values

Minimum intensity a1 0.2

Maximum intensity a2 1

Minimum intensity image scale a1I 0

Maximum intensity image scale a2I (Based on the image size)

Table 2: Computational overhead

Number of images Computational overhead (KB)

HTF-DD Convolutional neural network based approach [a] Kernel learning [b]

15 30 45 60

30 45 55 70

45 50 60 85

60 65 70 95

75 75 80 105

90 80 90 120

105 85 105 140

120 90 120 165

135 100 140 180

150 105 165 220
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4.3 Computational Complexity

Classification of medical images is of paramount importance for the success of disease diagnosis.
Computational complexity refers to the complexity involved in computing the classification process. The
lower the complexity, the more efficient the method is said to be and it is expressed in Eq. (17).

CC ¼
Xn
i¼1

Ii�MEM ICð Þ (17)

In the above equation, the computational complexity ‘CC’ is measured based on the number of brain MR
images considered for experimentation ‘Ii’ and the memory consumed in image classification ‘MEM(IC)’.
The computational complexity is measured in terms of Kilobytes (KB). The results are tabulated in Tab. 2.

Table 3: Computational time

Number of images Computational time (ms)

HTF-DD Convolutional neural network based approach [a] Kernel learning [b]

15 0.375 0.42 0.63

30 0.425 0.615 0.85

45 0.615 0.935 0.985

60 0.835 0.985 1.025

75 0.955 1.025 1.135

90 1.035 1.435 1.585

105 1.125 1.525 1.725

120 1.345 1.715 1.915

135 1.545 1.935 2.035

150 1.825 2.025 2.535

Table 4: Classification accuracy

Number of images Classification accuracy (%)

HTF-DD Convolutional neural network based approach [a] Kernel learning [b]

15 86.66 80 73.33

30 83.25 81.15 79.25

45 81.45 80.05 78.15

60 80.25 80.15 76.55

75 82.15 81.21 75.35

90 83.35 82.25 77.15

105 82.45 80.35 79.85

120 81.15 80.15 77.15

135 80.09 78.55 76.35

150 80 76.35 75.25
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From the calculation shown in Tab. 2, with ‘15’ numbers of images used for experimentation, the
computational complexity using HTF-DD is found to be ‘30 KB’ the computational complexity using
convolution neural network based approach [a] is found to be ’45’ and ’60 KB’ using Kernel Learning
[b]. The improvement in complexity using HTF-DD method is due to the incorporation of time-frequency
feature extraction model. By applying both the time and frequency for extracting the features, faster
training and testing are said to be achieved by means of vectorized time-frequency mapping. With this,
optimal time-frequency features are extracted, therefore minimizing the complexity incurred in
classification using HTF-DD method by 20% compared to [a] and 40% compared to [b].

4.4 Computational Time

The second most important metric for Brain MR medical image classification is the time involved in
classification. This is because with the minimum time incurred in classification, the convergence speed is
faster and maximum numbers of images are found to be classified and so the computational time is lower.
The computational time is measured as given below in Eq. (18).

CT ¼
Xn
i¼1

Ii�Time ICð Þ (18)

From Eq. (18), the computational time ‘CT’ is measured based on the number of brain MR images
considered for experimentation ‘Ii’ and the time consumed in image classification ‘Time(IC)’. The
computational time is measured in terms of milliseconds (ms) which are tabulated in Tab. 3.

From the table, it is inferred that the number of images is directly proportional to the computational time.
This is because of the reason that with the increase in the number of images, the image size increases and
obviously, the computational time involved in the classification of images also increases. This is evident
from the sample calculation where the computational time for classifying a single image being ‘0.025 n’
using HTF-DD method, the computational time for classifying single using [a] is found to be ‘0.028 n’
and ‘0.042 n’ by applying Kernel Learning. Therefore the overall classification time using the HTF-DD
method is found to be ‘0.25 n’, ‘0.42 n’ and ‘0.63 n’ using the existing methods. This is because of the
application of Histogram Intensity-oriented Pre-processing algorithm where standardized intensified pre-
processed features are obtained by means of mapping image scale leveling and standard scale leveling

Figure 4: Sample brain tumor images
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using a normalization function. Moreover, for extracting the features based on time and frequency, the
computational time using HTF-DD method is found to be reduced by 20% compared to [a] and 31%
compared to [b].

4.5 Classification Accuracy

Finally, the classification accuracy or the accuracy rate with which the medical images is being classified
is measured. The higher the classification accuracy, the more efficient the method is said to be. In other
words, the classification accuracy refers to the percentage ratio of medical images correctly classified to
the overall sample images considered for experimentation. It is mathematically expressed in the Eq. (19).

CA ¼ Icc�100
I

(19)

From Eq. (19), the classification accuracy ‘CA’ is measured according to the sample images provided as
input ‘I’ and the number of images correctly classified ‘ICC’. The classification accuracy is measured in terms
of percentage (%) and the results are shown in Tab. 4 and Fig. 5.

Fig. 5 illustrates the graphical representation of classification accuracy with respect to 150 different
numbers of images. With the increase in the number of images, the classification accuracy gets reduced.
Therefore the number of images is inversely proportional to the classification accuracy. From this, it is
inferred that the classification accuracy is found to be improved by applying the HTF-DD method. This is
because of the incorporation of DD classification algorithm. By applying this algorithm, two significant
things are said to happen. At first, vectors are considered; one sample vector and weight vector. In the
sample vector, the optimal features with standardized intensified pre-processed features are used. Next, in
the weight vector, a differential function is applied so that independent variables, irrespective of time, are
considered.

With these two factors, the classification is said to be performed in an efficient manner. Therefore the
classification accuracy using HTF-DD method is found to be better by 3% compared to [a] and 7%
compared to [b].

This accuracy results have been compared with previous works in [18] where CNN models like
AlexNet, ResNet-50 were implemented for lymph node images classification. The accuracy obtained
using sequential gaussian simulation in implementing AlexNet for 138 malignant lymph node images is
57.14% and for 133 benign images is 78.57%. Brain tumor and survival prediction are experimented with
benchmark dataset and achieved 61.0% of accuracy in [28]. While comparing these results, out research

Figure 5: Performance graph of classification accuracy
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work performs well in terms of classification accuracy. Also, the computational time needed for classification
in our research work is about 3.7 � 10−4 s for 15 images whereas in [21] the time needed is 15 � 10−4 s for
15 images. As mentioned in literature review, lot of methodologies with machine learning and deep learning
algorithms exists. But it is relatively difficult to compare all the models with different datasets. Since, most of
the methodologies reported accuracy and loss as the result, the same has been taken for comparison.

5 Conclusion

In this paper, a novel Brain MR Image classification method that integrates time-frequency feature
extraction from a Histogram Intensity Pre-processing network and classifies it via Differential Deep
Learning is presented. It is named as Histogram and Time-frequency Differential Deep (HTF-DD)
method. The proposed method is analyzed in terms of complexity and accuracy. To reduce the
complexity involved in the classification of medical images, Histogram Intensity-oriented pre-processing
is applied at first. Next, feature extraction is performed for the pre-processed features by applying the
time and frequency factors. With these two processes, the complexity involved in classification is
reduced. Finally, with the optimal pre-processed features, a deep learning model based on differential
factor is applied to classify the images into different classes. With this, the classification accuracy is said
to be enhanced as 80% for 150 images. A sufficient improvement in computational complexity and
classification accuracy is also seen from the experimental results. Although this research work HTF-DD
approach performs well when compared to conventional CNN and Kernal methods, it has to be evaluated
with other deep learning architectures to show its aggressive advantage.
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