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Abstract: In Underwater Acoustic Sensor Network (UASN), routing and propa-
gation delay is affected in each node by various water column environmental fac-
tors such as temperature, salinity, depth, gases, divergent and rotational wind.
High sound velocity increases the transmission rate of the packets and the high
dissolved gases in the water increases the sound velocity. High dissolved gases
and sound velocity environment in the water column provides high transmission
rates among UASN nodes. In this paper, the Modified Mackenzie Sound equation
calculates the sound velocity in each node for energy-efficient routing. Golden
Ratio Optimization Method (GROM) and Gaussian Process Regression (GPR)
predicts propagation delay of each node in UASN using temperature, salinity,
depth, dissolved gases dataset. Dissolved gases, rotational and divergent winds,
and stress plays a major problem in UASN, which increases propagation delay
and energy consumption. Predicted values from GPR and GROM leads to node
selection and Corona Virus Optimization Algorithm (CVOA) routing is per-
formed on the selected nodes. The proposed GPR-CVOA and GROM-CVOA
algorithm solves the problem of propagation delay and consumes less energy in
nodes, based on appropriate tolerant delays in transmitting packets among nodes
during high rotational and divergent winds. From simulation results, CVOA
Algorithm performs better than traditional DF and LION algorithms.

Keywords: Gaussian process regression (GPR); golden ratio optimization method
(GROM); corona virus optimization algorithm (CVOA); water column variation;
dissolved gases; acoustic speed; divergent wind; rotational wind

1 Introduction

UASN plays a vital role in monitoring and surveillance of ocean areas in various depths. The monitoring
and surveillance applications such as pollution monitoring, underwater exploration, seismic exploration,
underwater navigation and tracking, hydrography, oceanography, Unmanned Underwater Vehicle (UUV),
anti-submarine warfare needs efficient routing algorithms in different ocean environments and water
column variations. The ocean environments are depth, salinity, temperature, and pressure. The water
column variations are geometric and Doppler effects, rotational and divergent wind stress, dissolved
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gases, and sedimentation drift. Data transmission in water column variation is a challenging task in UASN,
due to frequent variations in the water column such as dissolved gas and rotational and divergent wind stress.
Efficient methodologies are needed for prediction and measurement of the ocean environment and water
column parameters. However, algorithms such as VODA [1], RVPR [2], glider-assist routing [3], DVOR
[4], DQELR [5], RCAR [6], DSR-SDN [7], EBOR [8] are having efficient routing in different ocean
environmental conditions, whereas for water column variations such as geometric spread, sedimentation
drift, and Doppler effect has only few UASN algorithms such as COCAN, LOCAN [9] are proposed. In
UASN, acoustic signals perform better than extreme Low frequencies (ELF) due to less attenuation in
underwater.

Data transmission between underwater sensor nodes depends on the water column, sound speed profile,
and dissolved gases in the sea. Data transmission and routing in UASN is influenced by ocean parameters
such as temperature, salinity, pressure, and depth of the sea. The pressure in the ocean increases as depth
increases, dissolved gases vary according to the depth of the ocean. The dissolved gases are high for low
salinity water, higher the pressure leads to higher dissolved gases in seawater. With the decrease in
temperature, dissolved gases are higher. The dissolved CO2 concentration is proportional to the acoustic
speed. Apart from CO2, the other gases such as H2S, CH4, and NH3 in water affects the data transmission
in UASN. Moreover, the data transmission varies for different ocean depths due to different concentration
of gases. The speed of sound is very fast for high temperature and low for thermocline regions where the
temperature drops. Similarly, the speed of sound is proportional to pressure. The sound travels at a high
speed in distilled water compared to ocean water. The high speed of sound in the ocean leads to high data
transmission. The Speed of sound depends on ocean temperature. For example, the speed of sound
increases by 4 m/s with a 1-degree increase in temperature, such an increase in temperature improves
channel bandwidth during data transmission.

1.1 Problem Statement

In UASN, data transmission is affected due to water column variations, pressure, depth, salinity,
temperature, sound profile, and dissolved gases. Many researchers developed various routing algorithms
for data transmission in UASN. The existing routing algorithms measures each parameter with a specific
sensor as optode, NDIR [10] is used for sensing dissolved gases. However, the energy consumption of
sensors in the node is more and need an alternative approach for measurement. For example, the optode
sensor consumes 1.8 W of power, and the response time for providing the result is about 3 min. Similarly,
delay in data transmission arises in underwater due to divergent and rotational wind environments. Nodes
in UASN needs efficient algorithm for prediction of ocean parameters such as divergent, rotational wind
environment. Furthermore, the number of sensors in nodes needs to be replaced with an empirical method
of calculation of dissolved gases in underwater and prevent more power consumption in each node. The
delay in the response time of each sensor leads to more delay in UASN, which needs to be addressed
along with divergent and rotational wind environment.

1.2 Contributions

Nodes in UASN needs a smaller number of sensors to reduce battery consumption. There are various
sensors for measuring the depth, temperature, pressure, salinity, wind direction, dissolved gas, wind
speed, sedimentation drift, Doppler Effect, and geometric spread. These sensors in a single node will
consume more energy, more response time and delay in packet delivery. To reduce the number of sensors
in node and improve the energy efficiency of the node through an empirical approach, the speed of sound
in underwater is estimated through the Mackenzie equation. Mackenzie equation replaces sensors such as
wind, wind direction, sedimentation drift, Doppler Effect, and geometric spread through the sound profile
calculation obtained from the Mackenzie equation. In this paper, a Modified Mackenzie equation (MME)
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is proposed for the estimation of dissolved gases. Modified Mackenzie equation replaces sensors in node and
estimates parameters of the ocean environment. In UASN, routing based on water column variations
especially for divergent and rotational wind environments are yet to be designed. With this as an
inspiration, this paper proposes a novel routing protocol that takes into account the ocean's parameters
like dissolved gases, depth, salinity, temperature, rotational, and divergent wind stress.

1. MME calculates the sound velocity of the node region, which includes dissolved gases. The node in
the region needs an average sound velocity of 1527 m/s is selected for routing. MME helps to
calculate the divergent and rotational wind through sound profile with Weather Observations
through Ambient Noise (WOTAN). So, a sensor such as optode, NDIR is not required in each node.

2. GROM and GPR predicts propagation delay of the nodes during the rotational and divergent wind
stress in ocean based on Dataset.

3. CVOA algorithm is applied for routing in UASN to avoid propagation delay due to dissolved gases,
sedimentation drift, and water column variations.

2 Related Work

The Tab. 1 shows different algorithms in UASN and its advantages and disadvantages

Table 1: Literature survey on different algorithms on UASN

/Year Problem (Under water
sensor network)

Methodology Advantages & disadvantages

[11]/2020 Routing protocol for 3D
UASNs

Game theoretic routing
protocol for forwarding
area, node degree in
forwarding area, game
theoretic based forwarding

Estimates the node degree in
the forwarding area.

[12]/2020 Localization Mobile-beacon based
iterative localization

Balanced energy conservation,
reduced localization error

[13]/2020 Localization – direct
position determination
method

A weighted MUSIC direct
source localization
approach

Direct position determination
of nodes

[14]/2019 Trust, energy balance in the
cluster

Energy-balanced trust
Cloud migration scheme
(ETCM)

Evaluates the trust value of
nodes

[15]/2020 Low location accuracy and
mobility, high consumption
of energy of the nodes and
communication overhead

MPL (movement
prediction location)

Mobile prediction and node
localization

[16]/2019 Trust model Synergetic trust model
based on SVM (STMS)

Trust evaluation through
machine learning such as SVM
and k-means

(Continued)
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Table 1 (continued).

/Year Problem (Under water
sensor network)

Methodology Advantages & disadvantages

[17]/2020 Route interruptions and
packet collisions

Collision and interruption
tolerant protocol (CITP):
integrated routing-MAC
design – adaptively forms
the route

Routing on the fly bypassing
the interrupted links

[18]/2020 Propagation delay and
localization of nodes under
different water current
parameters

Cooperative location aware
network

Eliminates the problems of
asynchronous clock,
stratification effect and
mobility of nodes

[19]/2020 Energy efficient and data
collection

Provides cluster-based
network and optimal
cluster head based on
energy efficiency

Data collection delay is
decreased.

[20]/2019 Hybrid attacks of channel
jamming and
eavesdropping

A bandit-based hybrid
attack.

Novel feedback observation
method, a virtual expert, a self-
detection step to keep away
from the traps

[21]/2018 MAC protocol avoid
collision

MC-UWMAC protocol:
control channel with grid-
based slot assignment and
2-hop conflict free data
channel, a quorum-based
data channel allocation
procedure is used

Collision-free data
communications of both
control channel and data
channels

[22]/2019 Maximize lifetime of
network

Most energy-efficient
transmission rate (MEETR)

Performs only for time division
multiple access

[23]/2020 Underwater acoustic
channel estimation

Static-dynamic
discriminative compressed
sensing (SDD-CS)

Models the hybrid channels to
static and time varying
components

[24]/2020 Trust model for underwater
node communication

iTrust model based on
isolation forest algorithm

Detection accuracy in
environmental noise such as
interference of channels

[25]/2021 Localization accuracy Localization with a mobile
beacon via motion
compensation in
underwater sensor
networks

Improved accuracy and
reliability

[26]/2020 Scalable networking
protocol

JOIN protocol to optimize
the framework

Network disruption due to
collision, when new node joins
in the network
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3 Methodology

In recent years, routing algorithms are proposed for UASN based on location-based and depth-based.
These routing algorithms never consider physical properties such as dissolved gases and effects of sound
velocity during underwater data transmission. Sound velocity in dissolved gases play a vital role in
underwater communication for efficient data transmission. In this paper, Modified Mackenzie Sound
Equation based sound velocity measurement, Gaussian process regression based CVOA (GPR-CVOA),
and Golden Ratio Optimization Method Based CVOA (GROM-CVOA) algorithms are proposed for
routing in dissolved gases with divergent wind environment for reducing propagation delay. The
proposed GPR-CVOA and GROM-CVOA considers underwater parameters such as temperature, depth,
salinity, pressure, along with major underwater parameters such as sound velocity, rotational, divergent
wind, and dissolved gases for routing and avoids propagation delay. For calculating sound velocity, the
modified Mackenzie equation uses the above underwater parameters. The traditional Mackenzie equation
considers only depth, salinity, and temperature, whereas the proposed modified Mackenzie equation in

Table 1 (continued).

/Year Problem (Under water
sensor network)

Methodology Advantages & disadvantages

[27]/2019 Delay in Data collection Prediction-based delay
optimization data
collection algorithm (PDO-
DC) based on kernel ridge
regression (KRR)

Data collection speeded-up by
visiting fewer clusters

[28]/2020 MAC design MAC based on
probabilistic SDMA - an
angle of departure (AOD)-
based solution for coarse
interval estimation and
estimation via unscented
Kalman filtering

Reduces interference and
retransmission probability

[29]/2020 Powering the UASN node Wireless recharge through
ultrasonic waves

Covers longer distances

[30]/2020 3D UASN cost effective
network design

ARQ under slotted
ALOHA MAC

Computational complexity is
reduced ARQ transmission
probability and the average
queueing delay of an
underwater sensor improved.

Proposed Rotational and divergence
wind, dissolved gases in
ocean, & water column
variation

(i) Modified mackenzie
sound equation measures
sound velocity
(ii) WOTAN measures
rotation and divergent wind
stress
(iii) GROM and GPR
predicts propagation delay

Propagation delay improves in
dissolved gases, sedimentation
drift and water column
variations environment.
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this paper, includes parameters such as dissolved CO2 and computes acoustic velocity. Acoustic velocity is
predicted for each node in the network for knowing environment behaviors and estimates propagation delay
through GPR or GROM due to dissolved gases and acoustic velocity underwater. The nodes in a high
acoustic velocity environment are selected for data transmission. In each node, the modified Mackenzie
equation calculates sound velocity for every 30 min and updates each node's database in UASN. The
node's database consists of the following sensor-measured parameters such as temperature, dissolved
gases, depth, and salinity and estimated parameters such as sound velocity, rotational wind stress, and
divergent wind stress. The Sound velocity is measured through a modified Mackenzie equation. Through
Sound velocity, rotational, divergent wind stress measured with Weather Observations through Ambient
Noise (WOTAN) estimation equation as discussed in the following section [31]. Each node database is
collected and applied in GPR or GROM for identification of propagation delay of each node based on the
water column environment. The propagation delay is estimated for each node and stored in each node's
database once in every 30 min. Nodes with less propagation delay are selected for routing by the CVOA
algorithm. However, propagation delay changes among the selected nodes, and such changes are handled
through delay-tolerant method of transmitting data in UASN. Fig. 1 shows Modified Mackenzie Sound
Equation, Gaussian process, and Golden Ratio Optimizations Based CVOA Algorithm Routing
implementation in UASN.

3.1 Modified Mackenzie Equation (MME)

Mackenzie Equation is as in Eq. (1) and measures c=acoustic velocity based on the T, S, and D.

CðD; S; TÞ ¼1448:96þ 4:591T � 5:304� 10�2T2 þ 2:374� 10�4T3 þ 1:340ðS � 35Þ
þ 1:630� 10�2Dþ 1:675� 10�7D2 � 1:025� 10�2TðS � 35Þ � 7:139� 10�13TD3 (1)

where T = temperature in degrees Celsius, S = salinity in parts per thousand, D = depth in meters, above
equation is modified as in Eq. (2)

Figure 1: Modified mackenzie sound equation, gaussian process and golden ratio optimizations based
CVOA algorithm routing in UASN

834 CSSE, 2022, vol.41, no.2



CðD; S; T ; fðDCO2ÞÞ ¼1448:96þ 4:591T � 5:304� 10�2T2 þ 2:374� 10�4T3 þ 1:340ðS � 35Þ
þ 1:630� 10�2Dþ 1:675� 10�7D2 � 1:025� 10�2TðS � 35Þ
� 7:139� 10�13TD3 þ f ðDCO2Þ (2)

where f(DCO2) = function of dissolved CO2. f(DCO2) represents the linear relationship between the
dissolved CO2 and acoustic speed in seawater, such that the acoustic speed increases by 1.0 m/sec for
every 2.5 mmol of dissolved CO2.

3.2 Weather Observations Through Ambient Noise (WOTAN)

In each node, environmental parameters such as temperature, depth, salinity, dissolved gases, pressure,
and sound velocity, is measured, and then rotational, and divergent wind is measured through WOTAN.
WOTAN measures wind speed based on underwater ambient noise. Underwater ambient noise is
produced due to the excitations on ocean/sea surface and changes in weather conditions. WOTAN
measures rotational, divergent wind stress estimated through the linear relationship between sound
velocity pressure and surface wind speed is exploited and measures wind speed, which is given as in Eq. (3):

sv ¼ oþ ðm � swsÞ (3)

where sv – sound velocity pressure measured by μPa, o is offset, measured by μPa, m is slope, measured by
μPa m−1s and sws is surface wind speed, measured by ms−1.

The sound pressure level 3 kHz 1/3-octave band shows an active response to the speed of wind which
varies from 2 to 21.5 m/s. 21.5 m/s is characterized as a strong wind level.

3.3 Gaussian Process Regression (GPR)

Every node has a dataset of all parameters such as temperature, depth, salinity, dissolved gases, pressure,
sound velocity (MME), is measured rotational, and divergent wind (WOTAN) then process with GPR for
propagation delay estimation. Fig. 2 depicts the relationship between depth and acoustic speed. Fig. 3
shows the relationship between temperature and acoustic speed. Fig. 4 shows the relationship between
salinity and acoustic speed.

Gaussian Process Regression (GPR) is a nonparametric regression model and uses the Bayesian concept.
GPR provides a better prediction for small datasets and provides the prediction's uncertainty estimation. GPR
distribution infers from function. Gaussian processes are treated as a prior to build predictive posterior
distribution given by Eq. (4).

f ðxÞ � GPðmðxÞ; kðx; x0ÞÞ (4)

Figure 2: Acoustic speed (m/sec2) vs. depth (m)
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where m(x) is the mean function and k(x, x’) is a covariance function. The Squared exponential kernel or
covariance function models smooth functions. The Squared exponential kernel provides infinitely many
derivatives from prior functions, which is given by Eq. (5).

kðx; x0Þ ¼ r2exp �ðx� x0Þ2
2l2

 !
(5)

where l smoothens the function and the output variance, σ2 checks the variation of function vertically.

The Eq. (6) shows relationship of acoustic velocity with depth, temperature and salinity.

C ¼ 1441:7913þ 0:0174� Dþ 4:2254� Tþ 0:1668� S (6)

where c is acoustic speed, D is depth, T is temperature, and S is salinity.

Tab. 2 shows the estimate and standard error for the regression model for acoustic speed and its
predictors depth, temperature, and salinity.

Figure 3: Acoustic speed (m/sec2) vs. temperature (C)

Figure 4: Acoustic speed (m/sec2) vs. salinity (PSU)

Table 2: Estimates and standard error for prediction of acoustic speed

Predictor Coefficient Estimate Standard error tt-statistic pp-value

Constant β0β0 1441.7913 3.4337 419.896 0

DD β1β1 0.0174 0.0001 333.0335 0

TT β2β2 4.2254 0.0328 129.0123 0

SS β3β3 0.1668 0.1034 1.6121 0.11
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Tab. 3 depicts the overall fit for the above discussed parameters

Fig. 5 shows histogram of residuals.

Fig. 6 shows normal probability of residuals.

GPR predicts the nodes with low propagation delay.

3.4 Golden Ratio Optimization Method (GROM)

GROM is a parameter-less meta-heuristic optimization method, which is inspired by the golden ratio or
golden mean found in the growth of plants and animals [32]. Fibonacci, a renowned mathematician,
formulated this ratio by a series of numbers generated from the sum of the previous two numbers. Except
for the first two numbers, all other numbers can be generated. The ratio of any two consecutive numbers
is approximately the same i.e., 1.618, and represented as Ф. This kind of pattern is common in the
arrangement of petals in flower, leaves, pinecones, shells, hurricanes. Any kth number x (a number in the

Table 3: Summary of overall fit

Residual standard error Overall FF-statistic Overall pp-value

0.4319 on 103 degrees of freedom. 108413.0879 on 3 and 103 degrees of freedom. 0

Figure 5: Histogram of residuals

Figure 6: Normal probability of residuals
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Fibonacci series), such that k >= 3, in the Fibonacci series is generated by using this golden ratio, 1.618,
which is given by Eq. (7):

xk ¼ �k � ð1� �Þkffiffiffi
5

p (7)

In GROM, the fitness mean of the population is computed and compared with the worst solution. To
increase the speed of convergence, worst solution is replaced by the mean solution, if the fitness of the
mean solution is better than the worst solution. A random vector from the population is selected for each
vector population. The fitness of these two vectors is compared with the mean solution. The solutions are
arranged as xbest, xmedium and xworst. The direction of movement of vectors and amount of movement is
given by Eq. (8).

!
xt

¼ !
xmedium

� !
xworst

(8)

The fitness function is given by Eq. (9)

Ft ¼ GF � �T � ð1� �ÞTffiffiffi
5

p (9)

where GF = 1.618 and T = t/tmax, t and tmax are iterations to perform global search initially and then to search
locally at the end.

The new vector is computed as in Eq. (10)

xnew ¼ ð1� FtÞ � xbest þ rand � Ft � xt (10)

Based on boundary conditions, xnew replaces the original solution, if the computed new solution is better
than the original. The second phase attempts to move for solutions closer to the best solution based on
Eq. (11),

xnew ¼ xold þ rand � 1

GF

� �
� ðxbest � xworstÞ (11)

where, 1/GF = 0.618

The boundary conditions are checked and the old vector replaces the newly computed values if the new
vector is better than the old one.

3.5 Corona Virus Optimization Algorithm (CVOA)

In recent times, many metaheuristic algorithms inspired by nature is proposed and finds the optimal
solution for different problems. COVID-19, Corona Virus Optimization algorithm (CVOA) [33] is one
such metaheuristic algorithm, which simulates Coronavirus spread and infects healthy individuals. Patient
zero (PZ) is the first infected individual, spreads the virus to other healthy individuals. The infected
individual may either die or spread infection. Initially, the infection spreads exponentially and later
decrease due to recovery or deaths in the population. The disease propagates from PZ. The initial
population is generated with prime infected individual PZ. PZ infects other individuals in the population.
Each infected individual die either based on probability P_DIE or spread infection. Based on probability
P_SUPERSPREADER, spreaders are differentiated into Ordinary spreaders and Super-spreaders. The
ordinary spreader spreads infection based on SPREADING_RATE, whereas super-spreader infects
population-based on SUPERSPREADING_RATE. CVOA assumes some of the infected individuals
travel for diversification. Each infected individual travel with probability P_TRAVEL. Based on this
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probability, the infected individual either travels with TRAVELER_RATE or if not travels in
ORDINARY_RATE. An infected individual can be both a super-spreader or a traveler.

In each generation, three types of population namely deaths, recovered, the new infected population are
observed and updated. The dead individuals are added to this population and cannot be reused. At the start of
every iteration, all infected populations are added to the recovered population. The individual recovered can
be reinfected with probability P_REINFECTION.When an individual is infected, he/she might be isolated to
follow social distancing norms. Such isolated individuals may be added to the recovered population with
probability P_ISOLATION. All infected population in each iteration is added to the new infected
population. The stop criterion is a pre-set number of iterations. In initial iterations, infections will grow
exponentially, along with it grows recovered population and dead population.

The below algorithm explains the use of the CVOA algorithm in UASN. In this paper, x is considered to
be the PZ and Sedimentation drift causes rotational, divergent wind stress and considered to be the virus that
affects the nodes in UASN. The sizeOf() returns the number of infected nodes and the noBattery() returns
true if there is no charge remaining in the battery of the infected node and the node is considered dead.
The infect () receives an infected node and returns the newly infected nodes into the system. The CVOA
algorithm is as below in Tab. 4.

4 Results and Discussion

Fig. 7 shows the system model. NS2 AquaSim simulator is used to simulate the underwater acoustic
environment. Tab. 5. shows the simulation parameters. For every 30 min, node parameters such as
temperature, pressure, salinity, dissolved gases, rotational and divergent wind stress is estimated using
Mackenzie equation and WOTAN estimation, such observed data are stored in node's database. The node
with an acoustic velocity greater than 1527 m/sec is selected for the next step.

Table 4: CVOA algorithm

1. input the required parameters
2. time ) 0
3. infectedNodes ) x
4. nextHop ) x
5. while (time < PANDEMIC_DUR and sizeOf(infectednodes)>0)
6. dead ) noBattery(infectednodes)
7. for each i in infectednodes

(i) aux ) infect (i, recovered, dead)
(ii) if notnull(aux) then
newInfectedNodes ) aux

8. currentNextHop ) selectNextHop(newInfectedNodes)
9. if fitness(currentNextHop) > fitness(nextHop) then

(i) nextHop ) currentNextHop
10. recovered )infectedNodes
11. clear(infectedNodes)
12. infectedNodes ) currentInfectedNodes
13. time ) time + 1
14. end while
15. return nextHop
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In this paper, Gaussian Process calculates propagation delay in each node based on the database in
respective node, and the nodes with less propagation delay are only considered for routing through the
CVOA algorithm as shown in Fig. 8. However, the performance of the GPR in the prediction of
propagation delay, in each node, is replaced with the GROM algorithm and then the CVOA algorithm is
applied. The selection of nodes, through the GPR algorithm and GROM algorithm, plays a vital role for
energy-aware routing in the network through appropriate node selections. The CVOA routing algorithm
applied in two scenarios such as

1. GPR and CVOA algorithm

2. GROM and CVOA algorithm

Figure 7: Routing using GPR, GROM and CVOA

Table 5: Simulation parameters

Parameter Value

Nodes 50

Temperature 1 to 30�C
Depth 0 to 1000 m

Salinity 25 to 40 PSU

DCO2 2.0 to 30.0 mmol/l
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4.1 GPR and CVOA Based Routing

CVOA finds the best route after selecting the nodes with less propagation delay. The source is
considered as PZ. Based on the acoustic velocity of each neighboring nodes’ region, the node is added to
the UASN network.

Sedimentation drift causes rotational, divergent wind stress and considered to be the virus that affects
nodes in the UASN. Each node is considered either as an ordinary spreader or a super-spreader
considering its battery level. The node with a high battery is considered to have high immunity and
considered to be an ordinary-spreader. The node with less battery level is a super-spreader as
sedimentation drift drains the sensor battery. The node that has no battery left is considered as a dead
node. If a node has a good acoustic velocity region and good battery level but away from the formed
UASN, then that node is considered as a node maintaining social distancing and will not be part of the
network. Fig. 8 shows the routing of CVOA.

The following Tab. 6 describes GPR and CVOA algorithm for routing selected nodes in UASN.

4.2 GROM and CVOA Based Routing

The following Tab. 7 describes GROM and CVOA algorithm for routing selected nodes in UASN.

Figure 8: CVOA in UASN for routing

Table 6: GPR AND CVOA algorithm

1. initialize the required parameters
x ) source

2. while (x is not destination)
3. append x to the route
4. for each neighbouring node of x, compute the acoustic velocity in its region using modified

Mackenzie equation and WOTAN estimation
5. Calculate the average AVavg of all the nodes computed in the previous step.
6. for each neighbouring node of x,

a. If node's acoustic velocity >= AVavg, then append this node in the list AV
7. for each node in AV, predict the propagation delay using GPR
8. Calculate the average propagation delay, PDavg of all the nodes computed in the previous step.
9. for each node in AV

a. if the node's propagation delay <= PDavg, then append this node in the list PD
10. apply CVOA to find the next hop with input population as PD and x as source

x ) nextHop
11. end while
12. return route

CSSE, 2022, vol.41, no.2 841



The performance of GPR-CVOA and GROM-CVOA is compared with the Direct Forwarding (DF)
algorithm and LION algorithm [10]. Fig. 9 illustrates the effects of the number of nodes on delay. GPR-
CVOA is performing better when compared to DF, GROM-CVOA, and LION. Fig. 10 analyses energy
consumption when the number of nodes varies. It is observed that energy consumption reduces as the
number of nodes in the network increases. The energy consumption of GROM-CVOA is close to that of
the LION protocol's energy consumption. Energy consumption is less in GPR-CVOA, GROM-CVOA
than DF and LION. Fig. 11 expresses the relationship between acoustic speed and delay and they are
inversely proportional to each other. GPR-CVOA outperforms other algorithms and has minimal delay
than other protocols like GROM-CVOA, DF, and LION. Fig. 12 illustrates throughput vs. the number of
nodes. The graph shows that GPR-CVOA has more throughput when compared to other protocols.
Fig. 13 illustrates the effect of dissolved gases vs. acoustic speed. Fig. 14 shows the effects of the number
of nodes on PDR is analyzed. Both GPR-CVOA and GROM-CVOA protocols has better PDR than
LION and DF. Both GPR-CVOA and GROM-CVOA protocols has a good initial PDR than DF as water-
column properties, dissolved gases, wind patterns are accounted for while calculating the route for packet
transmission. Fig. 15 illustrates Normalized Routing Overhead (NRO) versus time. NRO is less in GPR-
CVOA and GROM-CVOA than DF and LION. Fig. 16 shows that in presence of rotational wind,
propagation delay increases with an increase in the number of nodes. The GPR-CVOA and GROM-
CVOA protocols perform better than DF and LION. Fig. 17 illustrates the propagation delay versus the
number of nodes in presence of divergent wind. GPR-CVOA performs well than the GROM-CVOA
protocol but both are better than the other two protocols under study.

Performance of GPR-CVOA and GROM-CVOA shows that under changing wind patterns and
dissolved gases, protocols are robust and prove to be working better than DF and LION.

Table 7: GROM AND CVOA algorithm

1. initialize the required parameters
x ) source

2. while (x is not Destination)
3. append x to the route
4. for each neighbouring node of x, compute the acoustic velocity in its region using modified

Mackenzie equation and WOTAN estimation
5. Calculate the average AVavg of all the nodes computed in the previous step.
6. for each neighbouring node of x,

a. If node's acoustic velocity >= AVavg, then append this node in the list AV
7. for each node in AV, predict the propagation delay using GROM
8. Calculate the average propagation delay, PDavg of all the nodes computed in the previous step.
9. for each node in AV

a. if the node's propagation delay <= PDavg, then append this node in the list PD
10. apply CVOA to find the next hop with input population as PD and x as source

x ) nextHop
11. end while
12. return route
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Figure 9: Delay vs. number of nodes

Figure 10: Energy vs. number of nodes

Figure 11: Acoustic speed vs. delay
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Figure 12: Throughput vs. number of nodes

Figure 13: Dissolved gas vs. acoustic speed

Figure 14: PDR vs. number of nodes
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5 Conclusion

In UASN, routing and propagation delay is affected because of temperature, salinity, depth, dissolved
gases, sound velocity, divergent and rotational wind. MME is proposed to calculate sound velocity in

Figure 15: NRO vs. time (millisecs)

Figure 16: Propagation delay vs. number of nodes in the presence of rotational wind

Figure 17: Propagation delay vs. number of nodes in the presence of divergent wind
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each node region, which includes dissolved gases. MME helps to calculate the divergent and rotational wind
through sound profile with WOTAN. GROM and GPR predicts propagation delay of each node based on
dissolved gases, rotational and divergent wind stress. Predicted values from GPR and GROM leads to
node selection and among selected nodes CVOA routing is performed. The proposed GPR-CVOA and
GROM-CVOA algorithm solves the problem of propagation delay and consumes less energy in nodes
based on appropriate tolerant delays in transmitting packets among nodes during high rotational and
divergent winds. The proposed algorithms perform better than existing water column variation algorithms.
To reduce number of sensors in node and to improve the energy efficiency of the node, Mackenzie
equation - empirical method is applied. Mackenzie equation replaces sensors such as wind, wind
direction, sedimentation drift, Doppler Effect, and geometric spread through the sound profile calculation
obtained from the Mackenzie equation. The prediction algorithm can be applied with deep learning
algorithms for other water column variations, which consumes more power such as sand drift and turbulence.
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