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Abstract: A proper detection and classification of defects in steel sheets in real
time have become a requirement for manufacturing these products, largely used
in many industrial sectors. However, computers used in the production line of
small to medium size companies, in general, lack performance to attend real-time
inspection with high processing demands. In this paper, a smart deep convolu-
tional neural network for using in real-time surface inspection of steel rolling
sheets is proposed. The architecture is based on the state-of-the-art SqueezeNet
approach, which was originally developed for usage with autonomous vehicles.
The main features of the proposed model are: small size and low computational
burden. The model is 10 to 20 times smaller when compared to other networks
designed for the same task, and more than 700 times smaller than general net-
works. Also, the number of floating-point operations for a prediction is about
50 times lower than the ones used for similar tasks. Despite its small size, the pro-
posed model achieved near-perfect accuracy on a public dataset of 1800 images of
six types of steel rolling defects.
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1 Introduction

Steel sheets are one of the main products of iron and steel industry sector. They are produced by
thousands a day, and some defects, such as surface crazing, inclusions, patches, pitting, rolled-in scale
and scratches are almost unavoidable. Since these defects affect the sheet abrasion and corrosion
resistance, fatigue strength and appearance, their proper detection and classification in real time have
become a requirement for any production line. To fulfill these needs, computer vision and machine
learning (ML) are slowly becoming the industry standard techniques for surface defect classification.
However, computers used in the production line of small to medium size companies, in general, lack
performance to attend real-time inspection with high processing demands. In these contexts, the use of
models with small size and low computational burden, but still accurate, is an actual need.

Spanning from the early 1990°s until this date, many papers have addressed the challenges of automating
visual quality control [1-6]. From the literature, it is clear that the paradigm of vision-based ML is slowly
shifting from handcrafted codes such as feature extraction + classifier (support vector machines, or fully
connected neural network) to more general approaches such as deep convolutional neural networks (DCNN).
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A comprehensive study on support vector machines (SVM) for image classification can be found in the work
of Burges [7]. This traditional way of image recognition relies deeply on feature engineering which in turn
requires domain-specific expertise. The main arguments against this approach are: (1) need for feature
engineering; (2) design of features is done separately from the classifier, complicating the process; (3) features
may vary significantly from one application to another; (4) poor accuracy when compared to modern DCNN.

The two key ideas of deep learning for computer vision are the convolutional neural network and the
backpropagation algorithm. Even though these theories were well developed by late 1980°s, only recently
(around 2012) the technology was able to take off. The five main enabling technologies/causes are:
(i) advances in graphical processing unit (GPU) computing, driven by the gaming industry; (ii) very large
public datasets, mainly driven by the growth of the internet; (iii) better activation functions, weight
initialization schemes and optimization algorithms; (iv) a wave of investment, both from public and
private sources; and (v) democratization of knowledge.

With a basic knowledge of Python, R or any similarly high-level computer language, one can do almost
anything with deep learning. This was driven mainly due to the development of symbolic tensor-
manipulation frameworks such as Theano or TensorFlow. All this together brought a hype around deep
learning in the past few years. A comprehensive review of the history of deep learning has been done by
Schmidhuber [8]; for a gentle introduction to the technical details one can read the work of LeCun et al.
[9]; and for a hands-on approach the books of Chollet [10] and Chollet et al. [11], which give the reader
a fast paced introduction to deep learning with plenty of applications.

2 Related Works

Several papers address the identification of surface defects using machine learning, some of them are
briefly discussed in this section.

One of the first works that used DCNN for solving surface defects detection task is presented by Macsci
et al. [12]. However, at that time (2012), this research field was relatively young and techniques limited. In
that work it was proposed a simple architecture consisting in alternating convolutional and max-pooling
layers followed by a two fully connected layers. This type of architecture was the standard one at early
days of DCNN. Also, they used fanh activation functions in all layers but the last one, that used a
softmax. Today, almost all deep networks use rectified linear units (ReLu) as activation function to avoid
the vanishing gradient problem [13]. ReLu also provides low computational cost, which is one of the
goals of the present work. Masci et al. [12] used stochastic gradient descent as the optimization scheme
with annealed learning rate, however, none of the optimization parameters were disclosure. No
regularization layer was used by the model, so that architecture is probably susceptible to overfitting.
Indeed, the authors reported that reducing the model capacity, by freezing the weights of the first
convolutional layer at random values, the generalization power of their network improved when not using
data augmentation. To avoid overfitting issues, the authors used random translation of 15% as data
augmentation. Their best-reported result was 93.03% of accuracy on a dataset that is not publicly
available. That simple architecture is used as a performance baseline to our tests.

A similar, but more recent work, is presented by Zhou et al. [14]. They also use a standard DCNN to
classify defects on steel sheets, but a model with much more capacity is used (more filters on the
convolutional layer). The architecture is shown in Fig. 2. Since it is a recent work, the authors use
dropout as regularization (standard technique nowadays). To reduce the computational burden by
reducing network size, the authors re-scaled the input images from 200 x 200 to 40 % 40 using average
pooling (window and stride of 5 x 5). For 200 training samples (similar size of what is performed on the
present work) the authors reported an accuracy of 96.43%. Since that network is relatively small (365k
trainable parameters), it is a good comparison to the one proposed in the present work.
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A generic deep-learning-based approach for automated surface inspection is presented by Ren et al. [6].
The work is based on repurposing a DCNN for the given task (transfer learning). A network called DeCAF
[15] is used. However, on the DeCAF webpage' it is stated that DeCAF is deprecated, also, all related pages
are offline and it was not possible to download the pre-trained network. The reported parameters are not
shown in the article, however, evaluating by the presented architecture it is probably larger than the one
used by Zhou et al. [14].

Ensemble of neural networks is a popular technique nowadays. Chen et al. [16] used an ensemble-based
approach to achieve over than 99.8% classification accuracy for steel surface defects (NEU dataset). The
authors used three state-of-the-art neural networks: ResNet-32 [17], WRN-28-10 and WRN-28-20 [18].
These networks are also larger than the ones used by Zhou et al. [14], for example, ResNet-32 have more
than 460 k parameters while WRN-28-10 have about 36.5 M (this is 122.9 MB of memory space).

Ye et al. [19] employed an architecture based on AZ-Net model [20] containing five convolutional layers
and two fully connected ones in order to perform the classification of surface defects of touch panels made of
glass. As of almost all modern networks, the activation function used is the ReLU. The used architecture is
similar (but deeper) than the one used by Zhou et al. [ 14]. The training set was not publicly available and had
the size of 100 samples and data augmentation (cropping and rotation) was used to generate 4000 artificial
training samples. An interesting approach employed in this work was the usage of multi-classification task
where the authors managed to classify an image with several defects. The reported classification accuracy
was roughly 96%, however, the methodology used to measure this was not described in the paper.

3 Proposed Model Architecture

The proposed architecture is based on the SqueezeNet (SN) [21], which has been little used to date for
automate surface inspection, according to the authors’ knowledge. Fu et al. [22] is one of the few and recent
works in this line.

Our architecture allows to be 500 times smaller than some state-of-the-art ones, like AlexNet, while
keeping roughly the same accuracy. The core feature of SN is to use 1 x 1 convolutional filters to reduce
the number of parameters and serve as a bottleneck layer to squeeze the information. The building block
of SN is the so-called fire module (Fig. 1), which is made of two convolutional layers (one for squeezing
and other for expanding data). The 1 x 1 convolution acts like a point-wise fully connected layer, so it
only works on depth information (filter dimension) and not spatial information. Usually, the number of
output filters of the squeeze layer is small, the net effect of this is compressing the information before
passing it to the expand layer, thus reducing the number of parameters and increasing speed.
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Figure 1: Fire block with three hyper-parameters: number of squeeze filters, number of expand filters of
1 x 1, and number of expand filters 3 x 3
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Figure 2: Architectures investigated

To illustrate the fire model, consider an input tensor of size 100 % 100 % 40 (that could be the output of a
previous convolutional layer with 40 filters) and a fire module with s; « ; =4, e; « 1 =8 and e3 « 3 = 8. The
squeeze layer would perform a point-wise convolution over the depth dimension, resulting in an output of
size 100 x 100 x 4. Then, both left and right side of the expand layer would output tensors of size 100 x
100 x 8 (the left side would perform depth convolution, while the right side would perform spatial and
depth convolution). The output is then concatenated (on the depth dimension) resulting in a final output
tensor of size 100 x 100 x 16.
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The SqueezeNet (SN) macro-architecture is composed of a convolutional network followed by several
fire modules and max-pooling layers. To avoid gradient degradation, SN uses bypass layers in the same
manner of ResNet [17]. Another important feature of SN is the lack of a fully connected layer at the end
of the model (classification layer). This is achieved by gradually reducing the spatial dimension of the
input with max-pooling layers. Given a classification problem with N classes, at the tail of the model, a
1 x 1 convolutional layer with N filters reduces the depth to the same size as the number of target
classes. Finally, a spatial-wise averaging-pooling layer is applied to transform the output into a tensor of
size 1 x 1 x N which in flattened and activated with softmax.

Since the classification task at the present work is simpler than the ImageNet [23] challenge, we reduced
the number of filters across all layers. The proposed architecture, as well as the architectures of Masci et al.
[12] and Zhou et al. [14] (used here for performance comparison) are presented in Fig. 2. In this figure, the
boxes are layers, [n x n conv, m] means m convolutional filters of size n x n and [fire, a, b, c] means a
squeeze, b expand (1 x 1) and ¢ expand (3 x 3).

4 Experiments
4.1 Dataset of Surface Defects

To test the models, a public dataset from the Northeastern University (NEU [5]) is used. This dataset
contains 300 of each six types of defects for hot-rolled steel strip surfaces. The defects are: crazing (Cr),
inclusion (In), patches (Pa), pitted surface (PS), rolled-in scale (RS) and scratches (Sc). Typical images of
each type of damage can be seen in Fig. 3. It is clear that the inter-class divergence is small, while the
intra-class is large.

In o RS  sc

Figure 3: Samples of six kinds of typical surface defects on the NEU dataset. Each row shows one example
for each defect class

4.2 Data Augmentation and Pre-Processing

The data was split into training and test data in a ratio of 2:1. To allow easier reproducibility, the training
data was chosen to be the first 200 images (of each class) of the original dataset. The number of training data
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was artificially expanded using full quadrant rotation (0°, 90°, 180° and 270°) and flipping (top-bottom and
right-left) resulting in a training dataset of size 7200 (200 images with six transformations in six classes). The
test data were unaltered by this, remaining a total of 600 images (100 per class). All images were normalized
into zero-mean and unit-variance.

4.3 Training Procedure

The training procedure followed the recommendations given by Chollet [10]. The kernel initialization
scheme was the Glorot uniform initializer [24]. The loss function is the categorical cross-entropy. The
optimizer is the RMSprop with default parameters (learning rate of 0.001, decay factor of 0.9, and zero
decay). Since the dataset is relatively small, no validation data were used. Thus, the stopping criteria for
training is simply 200 epochs. To evaluate the influence of random initialization, 10 independent runs
were performed for each architecture. Also, to evaluate training progress, the models were stored every
10 epochs.

The experiments were performed using the keras open-source library [25] with the tensorflow back-end
[26]. Training was done on a standard desktop with an NVIDIA GTX 1060 6GB GPU. All models were
trained using the same procedure.

4.4 Results
In this subsection, a qualitative comparison among the studied models is performed.

In Tab. 1, we compare the size and speed of the models. Two size measurements are considered, number
of trainable parameters and disk space needed to store the model on a hierarchical data format (.h5) file. The
execution speed is measured by the number of floating-point operations (FLOPs) of a forward pass. Note that
the values presented for ResNet-34 are just illustrative since those architectures have 224 x 224 x 3 inputs
(colored images).

Table 1: Architecture size and speed comparison

Architecture Trainable parameters  Disk size (bytes) = FLOPs

Proposed 48 k 520 k 479 k
Proposed (S) 14k 251 k 135k
Zhou 384 k 296 M 3.8 M
Masci 697 k 535 M 7.0 M
ResNet-34 22M 83.25M 5G

To evaluate the Squeeze Net architecture capacity, we built an even smaller model than the proposed one
(called here Proposed (S)). This model uses half the number of filters on the fire and convolution layers.

From Tab. 1, one can see that the proposed architectures are about 10 to 20 times smaller and up to
50 times faster than the ones presented by Zhou et al. [14] and Masci et al. [12]. When compared to
traditional state-of-the-art image recognition networks such as ResNet-34, the size of the tested models is
significantly smaller. One can see that the proposed model used about 500 times less trainable parameters
and about 10,000 times less floating point operations (FLOP) than ResNet-34.
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In addition, the size of the proposed model could be reduced even further using Deep Compression (DC)
technique [27]. Even though it is shown that DC can reduce the size of models up to 10 times with less than
1% accuracy loss, this test is out of the scope of the present work.

Using the test set (100 samples of each defect), the mean accuracy rate across all predictions for the
multiclass classification task is evaluated. This accuracy is calculated by summing the number of right
classifications divided by the total number of samples (600). For reference, by random guessing one
would expect to achieve an accuracy of 1/6. Fig. 4 compares the result obtained for the studied
architectures (Masci, Zhou and Proposed). The thin lines represent each one of the 10 independent
training runs. The smooth bold line is constructed using locally weighted scatterplot smoothing (LOESS)
regression of all 10 runs.
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Figure 4: Performance tests comparison of the investigated architectures

The proposed model has overall higher accuracy, and the Zhou’s model [14] the lower one. The authors
believe this is due to the choice of the linear activation functions. Even though it is reported by Zhou et al.
[14] that the linear activation functions outperformed the rectified ones (ReLu), this finding is contradictory
to the literature [28—30]. To verify this issue, a modified version of Zhou’s model with ReLu is investigated.
The results are shown in Fig. 5.
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Figure 5: Comparison of train (dashed) and test (solid) performance of Zhou’s architecture against the same
architecture with ReL.u
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Fig. 5 shows clearly that given the same architecture, the usage of ReLu activation functions results in
significantly higher accuracy (85% to 95% of test set). This finding is in line with what is observed in most of
the literature.

To investigate if we could reduce even further the computational cost of the predictions, the small
version (S) of the proposed model is tested. Fig. 6 compares the two versions (original and small size) of
the proposed architecture. Also, to evaluate overfitting, train and test performance are shown with dashed
and solid lines, respectively. From the figure, no overfitting is noted. Although the performance of the
small architecture is good, the larger version outperforms it on all epochs. However, for applications with
severely limited memory space or computational power, the small model still manages to classify the
defects with above 97% accuracy.
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Figure 6: Comparison of train (dashed) and test (solid) performances of the two proposed architectures
For a more reliable way of comparison, the data accuracies are also shown in Tab. 2. The mean accuracy

at every 10 epochs is shown. Also, within parentheses, the uncertainty of the last digits is shown. For
example, 0.898 (65) means 0.898 £ 0.065 and 0.946 (9) means 0.946 = 0.009.

Table 2: Accuracy comparison

Masci Zhou Proposed
Epoch Test Train Test Train Test Train
10 0.898 (65) 0.948 (57) 0.822 (34) 0.931 (46) 0.875 (75) 0.921 (72)
50 0.944 (13) 0.992 (7) 0.844 (10) 0.987 (8) 0.951 (54) 0.974 (46)
100 0.938 (17) 0.992 (8) 0.838 (34) 0.972 (15) 0.979 (7) 0.995 (8)
150 0.950 (10) 0.997 (2) 0.840 (24) 0.971 (20) 0.972 (25) 0.994 (16)
200 0.954 (10) 0.998 (1) 0.835 (21) 0.973 (11) 0.972 (15) 0.993 (10)

It was observed a performance difference between the Masci’s model presented in the original paper [12]
and the one calculated here. In the original paper the authors reported an accuracy of 0.92 (1), but in the
present work an accuracy of 0.95 (1) was achieved for the same dataset. We believe this improvement is
not by chance and is mainly due to the use of a more modern weight initialization and optimization schemes.
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If more data were available, one could use a validation set to early-stop the training procedure. If that is
the case an accuracy of over 98% to 100% could be achieved by the proposed model. Tab. 3 shows the best
results obtained at each run and the respective epoch it happened. Note that since the models were only saved
at each 10 epochs, it is very likely that better models than the ones saved were lost. So, the authors believe
that all runs could have achieved near-perfect test accuracy. Also, the results show that using a smaller model
causes negligible accuracy loss. However, the results also suggest that the smaller models take more epochs
to train, so increasing the number of maximum epochs could yield in better accuracy.

Table 3: Maximum test accuracy of each run for proposed architecture

Proposed Proposed (small)
Run Accuracy Epoch Accuracy Epoch
#1 0.98 70 0.98 140
#2 0.99 60 0.98 140
#3 0.99 170 0.98 160
#4 1.00 140 0.98 120
#5 0.99 150 0.98 140
#6 0.99 200 0.98 200
#71 0.99 50 0.99 140
#8 0.99 160 0.99 180
#9 0.98 160 0.98 110
#10 1.00 120 0.99 190

5 Final Remarks

e Usually, industrial computers (installed in a production line) lack performance in favor of robustness.
In this context, a reduction of 10 to 20 times of memory usage and 50 times of processing needs could
be significant for real-time measurement.

e The employment of state-of-the-art algorithms improved the accuracy obtained by the Masci’s model
[12] from 0.92 (1) to 0.95 (1). This is an average error reduction of around 37% (from 8% to 5%).

e The present paper could not reproduce the accuracy reported by Zhou et al. [14] using linear
activation function. However, when using ReLu activation, the results are compatible with the
reported ones.

e The proposed smart deep convolutional neural network for real-time surface inspection was shown to
be more accurate and less computer demanding when compared to other networks designed for the
same task.

e Using a state-of-the-art deep neural network such as ResNet-34, the obtained accuracy was over
99.99%. However, the focus of the present work is to provide cheaper-to-evaluate solutions that
could be computed in real time without using machines with GPUs.
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