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Abstract: Moments of generalized order statistics appear in several areas of
science and engineering. These moments are useful in studying properties of
the random variables which are arranged in increasing order of importance, for
example, time to failure of a computer system. The computation of these moments
is sometimes very tedious and hence some algorithms are required. One algorithm
is to use a recursive method of computation of these moments and is very useful
as it provides the basis to compute higher moments of generalized order statistics
from the corresponding lower-order moments. Generalized order statistics pro-
vides several models of ordered data as a special case. The moments of general-
ized order statistics also provide moments of order statistics and record values as a
special case. In this research, the recurrence relations for single, product, inverse
and ratio moments of generalized order statistics will be obtained for Lindley–
Weibull distribution. These relations will be helpful for obtained moments of gen-
eralized order statistics from Lindley–Weibull distribution recursively. Special
cases of the recurrence relations will also be obtained. Some characterizations
of the distribution will also be obtained by using moments of generalized order
statistics. These relations for moments and characterizations can be used in differ-
ent areas of computer sciences where data is arranged in increasing order.

Keywords: Generalized order statistics; Lindley–Weibull distribution; recurrence
relations; moments

1 Introduction

Several situations arise where the ordering of the data is of great importance. For example arrangement
of Olympic records or magnitude of the earthquake measured on a Richter scale etc. The distributional
properties of such data are studied by using specialized methods known as ordered random variables.
Ordered random variables are classified into several categories but two popular models are order
statistics, discussed in detail by [1], and record values, introduced by [2].

Order statistics and record values are special cases of a more general class of models for ordered data,
known as generalized order statistics (gos). The gos is a unified model for ordered random variables and has
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widespread applications in many areas of life. The gos has been introduced by [3] and have been further
extended by [4]. The joint density function of gos, introduced by [3], is

fr:n;~m;kðx1; x2; . . . ; xnÞ ¼ k
Yn�1

j¼1

cj

 !
½1� FðxnÞ�k�1f ðxnÞ

Yn�1

i¼1

f ðxiÞf1� FðxiÞgmi

" #
; (1)

where m;
i s are constants and ~m ¼ ðm1; m2; . . . ; mn�1Þ for n ≥ 2 and γj = k + (n − r) +Mr with

Mr ¼
Pn�1

j¼r mj; 1 � r � n� 1. The marginal distribution of a single gos and joint distribution of two
gos have been studied in two different contexts, namely when γi = γj; i ≠ j and when γi ≠ γj; i ≠ j.

The marginal distribution of rth gos when γi = γj; i ≠ j is given by [3] as

fr:n;m;kðxÞ ¼ Cr�1

ðr � 1Þ! f ðxÞf1� FðxÞgcr�1gr�1
m ½FðxÞ� (2)

where Cr�1 ¼
Qr

j¼1 cj; r ¼ 1; 2; . . . ; n, and

gmðxÞ ¼ hmðxÞ � hmð0Þ ¼
h
1� ð1� xÞmþ1

i
=ðmþ 1Þ; m 6¼ �1

� lnð1� xÞ m ¼ �1:

(

The joint density function of two gos for γi = γj is given by [3] as

fr;s:n;m;kðx1; x2Þ ¼ Cs�1

ðr � 1Þ!ðs� r � 1Þ! f ðx1Þf ðx2Þf1� Fðx1Þgmgr�1
m fFðx1Þg

� f1� Fðx2Þgcs�1½hmfFðx2Þg � hmfFðx1Þg�s�r�1; �1, x1 , x2 ,1:

(3)

where

hmðxÞ ¼ �ð1� xÞmþ1=ðmþ 1Þ; m 6¼ �1
� lnð1� xÞ m ¼ �1:

�

The marginal density function of a single gos and joint density function of two gos when γi ≠ γj; i ≠ j is
given by [4] as

fr:n;~m;kðxÞ ¼ Cr�1f ðxÞ
Xr
i¼1

aiðrÞ½1� FðxÞ�ci�1; (4)

where ~m ¼ ðm1; m2; . . . ; mn�1Þ and aiðrÞ ¼
Qr

j 6¼i¼1 ðcj � ciÞ�1; 1 � i � r � n. The joint density of two
gos for γi ≠ γj; i ≠ j; is given by [4] as

fr;s:n;m;kðx1; x2Þ ¼ Cs�1

Xs
i¼rþ1

aðrÞi ðsÞ
�Fðx2Þ
�Fðx1Þ
� �ci ! Xr

i¼1

aiðrÞ½�Fðx1Þ�ci
 !

f ðx1Þf ðx2Þ
�Fðx1Þ�Fðx2Þ ; (5)

for x1 < x2 and aðrÞi ðsÞ ¼Qs
j6¼i¼rþ1 ðcj � ciÞ�1; r þ 1 � i � s � n. More details about gos can be found in

[5,6]. The gos reduces to order statistics if mi = 0 and k = 1 and it reduces to kth record values for mi = −1.

Since the development of gos, several authors have studied the distributional properties of gos for
specific probability distributions. Recurrence relations for moments of gos have been an interesting area
of research within the domain of gos. Various authors have developed recurrence relations for moments
of gos for certain probability distributions. Recurrence relations for moments of gos for a general class of
probability distributions have been obtained by [7]. The relations for moments of gos for Marshall–Olkin
extended Weibull distribution has been obtained by [8]. The recurrence relations for moments of gos for
Kumaraswamy distribution have been obtained by [9]. Reference [10] has obtained relations for moments
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of gos for a generalized Pareto distribution. The recurrence relations for moments of gos for Kumaraswamy
Pareto distribution have been obtained by [11]. Reference [12] has studied the relations for moments of gos
for power Lomax distribution whereas the relations for moments of gos for power Lindley distribution
have been explored by [13] among others. More details on recurrence relations for moments of gos can
be found in [6].

The Weibull distribution, introduced by [14], has been a popular distribution in many areas of life. The
distribution has been extended and studied by several authors. The relations for moments of gos for Weibull
distribution have been given in [5,6] among others. Recently, [15] has introduced a generalization of
Weibull distribution called the Lindley–Weibull distribution. The density and distribution function of the
Lindley–Weibull distribution are, respectively

f ðxÞ ¼ bh2

hþ 1
½abxb�1 þ a2bx2b�1� exp½�hðaxÞb�; x; a; b; h. 0 (6)

and

FðxÞ ¼ 1� exp½�hðaxbÞ� 1þ h
hþ 1

ðaxÞb
� �

; x; a; b; h. 0: (7)

The density and distribution function of the Lindley–Weibull distribution are related as

1� FðxÞ ¼ hþ 1

h2b

X1
j¼0

ð�1Þjabj�1xbj�bþ1 þ 1

hb

X1
j¼0

ð�1Þjabjxbjþ1

" #
f ðxÞ: (8)

The relation (8) is very useful in recursive computation of moments of gos for the Lindley–Weibull
distribution.

We will, now, derive expressions for recursive computation of moments of gos when a sample from the
Lindley–Weibull distribution is available. These relations are obtained in the following sections.

2 Recursive Computation of the Simple Moments

The pth moment of gos for a random sample from F(x) is given as

lpr:n;~m;k ¼
Z 1

�1
xpfr:n;~m;kðxÞdx ¼

Z 1

�1
xpCr�1f ðxÞ

Xr
i¼1

aiðrÞ½1� FðxÞ�ci�1dx (9)

These moments are not easy to compute for most of the distribution and hence the recursive computation
is used for these moments. An expression for recursive computation of moments of gos for the Lindley–
Weibull distribution is given in the following theorem.

Theorem 1: The simple moments of gos for the Lindley–Weibull distribution are related as

lpr:n;~m;k ¼ lpr�1:n;~m;k þ
pCr�1

crhb
hþ 1

h

X1
j¼0

ð�1Þjabj�1lbj�bþp
r:n;~m;k þ

X1
j¼0

ð�1Þjabjlbjþp
r:n;~m;k

" #
: (10)

Proof: A general relation for recursive computation of moments from any distribution is given by [7] as

lpr:n;~m;k � lpr�1:n;~m;k ¼ pCr�2

Z 1

�1
xp�1

Xr
i¼1

aiðrÞ½1� FðxÞ�cidx: (11)
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The above expression can be written as

lpr:n;~m;k � lpr�1:n;~m;k ¼ pCr�2

Z 1

�1
xp�1½1� FðxÞ�

Xr
i¼1

aiðrÞ½1� FðxÞ�ci�1dx:

Now, using (8) in the above equation, we have

lpr:n;~m;k � lpr�1:n;~m;k ¼ p
Cr�1

cr

Z 1

�1
xp�1 hþ 1

h2b

X1
j¼0

ð�1Þjabj�1xbj�bþ1 þ 1

hb

X1
j¼0

ð�1Þjabjxbjþ1

" #
f ðxÞ

�
Xr
i¼1

aiðrÞ½1� FðxÞ�ci�1dx

Simplifying and re-arranging the above expression we have

lpr:n;~m;k ¼ lpr�1:n;~m;k þ
p

crhb
hþ 1

h

X1
j¼0

ð�1Þjabj�1lbj�bþp
r:n;~m;k þ

X1
j¼0

ð�1Þjabjlbjþp
r:n;~m;k

" #
;

and hence the result.

Corollary 1: Replacing p with “–p” in (11), the recurrence relation for inverse moments of gos for the
Lindley–Weibull distribution is

l�p
r:n;~m;k ¼ l�p

r�1:n;~m;k �
p

crhb
hþ 1

h

X1
j¼0

ð�1Þjabj�1lbj�b�p
r:n;~m;k þ

X1
j¼0

ð�1Þjabjlbj�p
r:n;~m;k

" #
: (12)

Corollary 2: The simple and inverse moments of order statistics for the Lindley–Weibull distribution
are related, respectively, as

lpr:n ¼ lpr�1:n þ
p

hbðn� r þ 1Þ
hþ 1

h

X1
j¼0

ð�1Þjabj�1lbj�bþp
r:n þ

X1
j¼0

ð�1Þjabjlbjþp
r:n

" #
(13)

and

l�p
r:n ¼ l�p

r�1:n �
p

hbðn� r þ 1Þ
hþ 1

h

X1
j¼0

ð�1Þjabj�1lbj�b�p
r:n þ

X1
j¼0

ð�1Þjabjlbj�p
r:n

" #
: (14)

Corollary 3: The simple and inverse moments of kth record values for the Lindley–Weibull distribution
are related, respectively, as

lpKðrÞ ¼ lpKðr�1Þ þ
p

hbk
hþ 1

h

X1
j¼0

ð�1Þjabj�1lbj�bþp
KðrÞ þ

X1
j¼0

ð�1Þjabjlbjþp
KðrÞ

" #
; (15)

and

l�p
KðrÞ ¼ l�p

Kðr�1Þ �
p

hbk
hþ 1

h

X1
j¼0

ð�1Þjabj�1lbj�b�p
KðrÞ þ

X1
j¼0

ð�1Þjabjlbj�p
KðrÞ

" #
; (16)
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3 Recursive Computation of the Joint Moments

The (p, q)th moment of gos for a random sample from F(x) is given as

lp;qr;s:n;~m;k ¼
Z 1

�1

Z 1

x1

xp1x
q
2 fr;s:n;~m;kðxÞdx2dx1

¼
Z 1

�1

Z 1

x1

xp1x
q
2Cs�1

Xs
i¼rþ1

aðrÞi ðsÞ
�Fðx2Þ
�Fðx1Þ
� �ci ! Xr

i¼1

aiðrÞ½�Fðx1Þ�ci
 !

f ðx1Þf ðx2Þ
�Fðx1Þ�Fðx2Þ dx2dx1:

In the following, we will obtain an expression for recursive computation of product moments of gos for
the Lindley–Weibull distribution.

Theorem 2: The product moments of gos for the Lindley–Weibull distribution are related as

lp;qr;s:n;~m;k ¼ lp;qr;s�1:n;~m;k þ
q

crhb

X1
j¼0

ð�1Þjabj�1 hþ 1

h
lp;bj�bþq
r;s:n;~m;k þ alp;bjþq

r;s:n;~m;k

� �" #
: (17)

Proof: Following [6], a relation for recursive computation of product moments from any distribution is

lp;qr;s:n;~m;k � lp;qr;s�1:n;~m;k ¼ qCs�2

Z 1

�1

Z 1

x1

xp1x
q�1
2

Xs
i¼rþ1

aðrÞi ðsÞ
�Fðx2Þ
�Fðx1Þ
� �ci !

�
Xr
i¼1

aiðrÞ½�Fðx1Þ�ci
 !

f ðx1Þ
�Fðx1Þ dx2dx1:

(18)

The above expression can be written as

lp;qr;s:n;~m;k � lp;qr;s�1:n;~m;k ¼ qCs�2

Z 1

�1

Z 1

x1

xp1x
q�1
2

Xs
i¼rþ1

aðrÞi ðsÞ
�Fðx2Þ
�Fðx1Þ
� �ci ! Xr

i¼1

aiðrÞ½�Fðx1Þ�ci
 !

� f ðx1Þ
�Fðx1Þ�Fðx2Þ

�Fðx2Þdx2dx1:

Now, using (8) in the above equation, we have

lp;qr;s:n;~m;k � lp;qr;s�1:n;~m;k ¼
qCs�1

cs

Z 1

�1

Z 1

x1

xp1x
q�1
2

Xs
i¼rþ1

aðrÞi ðsÞ
�Fðx2Þ
�Fðx1Þ
� �ci ! Xr

i¼1

aiðrÞ½�Fðx1Þ�ci
 !

� f ðx1Þf ðx2Þ
�Fðx1Þ�Fðx2Þ

1

hb

X1
j¼0

ð�1Þjabj�1 hþ 1

h
xbj�bþ1
2 þ axbjþ1

2

� �" #
dx2dx1:

Simplifying the above expression we have

lp;qr;s:n;~m;k ¼ lp;qr;s�1:n;~m;k þ
q

cshb

X1
j¼0

ð�1Þjabj�1 hþ 1

h
lp;bj�bþq
r;s:n;~m;k þ alp;bjþq

r;s:n;~m;k

� �" #
;

and hence the result.
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Corollary 4: The recursive relation for ratio moments of gos for the Lindley–Weibull distribution is

lp;�q
r;s:n;~m;k ¼ lp;�q

r;s�1:n;~m;k �
q

crhb

X1
j¼0

ð�1Þjabj�1 hþ 1

h
lp;bj�b�q
r;s:n;~m;k þ alp;bj�q

r;s:n;~m;k

� �" #
: (19)

Corollary 5: The joint and ratio moments of order statistics for the Lindley–Weibull distribution are
related as

lp;qr;s:n ¼ lp;qr;s�1:n þ
q

hbðn� sþ 1Þ
X1
j¼0

ð�1Þjabj�1 hþ 1

h
lp;bj�bþq
r;s:n þ alp;bjþq

r;s:n

� �" #
(20)

and

lp;�q
r;s:n ¼ lp;�q

r;s�1:n �
q

hbðn� sþ 1Þ
X1
j¼0

ð�1Þjabj�1 hþ 1

h
lp;bj�b�q
r;s:n þ alp;bj�q

r;s:n

� �" #
: (21)

Corollary 6: The joint and ratio moments of kth records for the Lindley–Weibull distribution are related
as

lp;qKðr;sÞ ¼ lp;qKðr;s�1Þ þ
q

hbk

X1
j¼0

ð�1Þjabj�1 hþ 1

h
lp;bj�bþq
Kðr;sÞ þ alp;bjþq

Kðr;sÞ

� �" #
(22)

and

lp;�q
Kðr;sÞ ¼ lp;�q

Kðr;s�1Þ �
q

hbk

X1
j¼0

ð�1Þjabj�1 hþ 1

h
lp;bj�b�q
Kðr;sÞ þ alp;bj�q

Kðr;sÞ

� �" #
: (23)

4 Characterizations

In this section, we will give some characterizations for the Lindley–Weibull distribution in terms of
simple and product moments of gos. These characterizations are given when mi =m and in this case, the
relation (11) reduces to

lpr:n;m;k � lpr�1:n;m;k ¼
pCr�1

crðr � 1Þ!
Z 1

�1
xp�1½�FðxÞ�crgr�1

m ½FðxÞ�dx; (24)

where �FðxÞ ¼ 1� FðxÞ: The relation (21) will be helpful to obtain the characterizations. The
characterizations are given in the following theorems.

Theorem 3: A necessary and sufficient condition for a random variable X to have density and
distribution functions (6) and (7) respectively is that the moments of its gos are related as

lpr:n;m;k � lpr�1:n;~m;k ¼
p

crhb

X1
j¼0

ð�1Þjabj�1 hþ 1

h
lbj�bþp
r:n;~m;k þ albjþp

r:n;~m;k

� �" #
:

Proof: The necessary condition immediately follows from Theorem 1. To prove the sufficient condition
consider the relation (21) and hence we have

pCr�1

crðr � 1Þ!
Z 1

�1
xp�1½�FðxÞ�crgr�1

m ½FðxÞ�dx ¼ p

crhb

X1
j¼0

ð�1Þjabj�1 hþ 1

h
lbj�bþp
r:n;~m;k þ albjþp

r:n;~m;k

� �" #
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or

p

cr

Cr�1

ðr � 1Þ!
Z 1

0
xp�1½�FðxÞ�crgr�1

m ½FðxÞ�dx ¼ p

crhb

X1
j¼0

ð�1Þjabj�1

"

� Cr�1

ðr � 1Þ!
Z 1

0
xp�1f�FðxÞgcr�1gr�1

m f�FðxÞg hþ 1

h
xbj�bþ1 þ axbjþ1

� �
f ðxÞdx

�
or

p

cr

Cr�1

ðr � 1Þ!
Z 1

0
xp�1½�FðxÞ�cr�1gr�1

m ½FðxÞ�½�FðxÞ

� 1

hb

X1
j¼0

ð�1Þjabj�1 hþ 1

h
xbj�bþ1 þ axbjþ1

� �
f ðxÞ

#
dx ¼ 0

Using Müntz–Száz; see [16]; to above equation we have

�FðxÞ ¼ 1

hb

X1
j¼0

ð�1Þjabj�1 hþ 1

h
xbj�bþ1 þ axbjþ1

� �" #
f ðxÞ;

which is (8) and hence the theorem.

Theorem 4: A necessary and sufficient condition for a random variable X to have density and
distribution functions (6) and (7) respectively is that the product moments of its gos are related as

lp;qr;s:n;m;k � lp;qr;s�1:n;m;k ¼
q

crhb

X1
j¼0

ð�1Þjabj�1 hþ 1

h
lp;bj�bþq
r;s:n;m;k þ alp;bjþq

r;s:n;m;k

� �" #
: (25)

Proof: The necessary part immediately follows from Theorem 2. For sufficient part, we consider the
following relation between product moments of gos for any distribution F(x) when mi =m, given by [7],

lp;qr;s:n;m;k � lp;qr;s�1:n;m;k ¼
qCs�1

csðr � 1Þ!ðs� r � 1Þ!
Z 1

�1

Z 1

x1

xp1x
q�1
2 f ðx1Þ½�Fðx1Þ�mgr�1

m ½FðxÞ�

� ½hmfFðx2Þg � hmfFðx1Þg�s�r�1½�Fðx2Þ�csdx2dx1:
Now using the above relation in (22) we have

qCs�1

csðr � 1Þ!ðs� r � 1Þ!
Z 1

0

Z 1

x1

xp1x
q�1
2 f ðx1Þ½�Fðx1Þ�mgr�1

m ½Fðx1Þ�½hmfFðx2Þg � hmfFðx1Þg�s�r�1

� ½�Fðx2Þ�csdx2dx1 ¼ q

cshb
hþ 1

h

Xn
j¼1

ð�1Þjabj�1 Cs�1

ðr � 1Þ!ðs� r � 1Þ!
Z 1

0

Z 1

x2

xp1x
q�1
2 f ðx1Þf�Fðx1Þgm

"

� gr�1
m fFðx1ÞgfhmðFðx2ÞÞ � hmðFðx1ÞÞgs�r�1fFðxÞgcs�1 hþ 1

h
xbj�bþ1
2 þ axbjþ1

2

� �
dx2dx1

�
or
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qCs�1

csðr � 1Þ!ðs� r � 1Þ!
Z 1

0

Z 1

x1

xp1x
q�1
2 f ðx1Þ½�Fðx1Þ�mgr�1

m ½Fðx1Þ�½hmfFðx2Þg � hmfFðx1Þg�s�r�1

� ½�Fðx2Þ�cs�1 �Fðx2Þ � 1

hb

Xn
j¼1

ð�1Þjabj�1 hþ 1

h
xbj�bþ1
2 þ axbjþ1

2

� �
f ðx2Þ

" #
dx2dx1 ¼ 0

Using Müntz–Száz; see [16]; to above equation we have

�Fðx2Þ ¼ 1

hb

Xn
j¼1

ð�1Þjabj�1 hþ 1

h
xbj�bþ1
2 þ axbjþ1

2

� �
f ðx2Þ;

which is (8) and hence the theorem.

5 Numerical Study

In this section, we have given the numerical study for moments of order statistics when the sample is
available from the Lindley–Weibull distribution. We have computed mean and variance of order statistics
for the Lindley–Weibull distribution using various combinations of parameters. The results are given in
Tabs. 1 and 2 in Appendix A.

Tab. 1 contains mean of order statistics for the Lindley–Weibull distribution for various combinations of
the parameters. From this table we can see that, for fixed α, β, θ and n, the mean of order statistics increases
with an increase in the value of r. Also for fixed α, β, θ and r the mean of order statistics decreases with an
increase in the value of n. Further, from Tab. 1, we can see that for fixed β, θ, n and r the mean of order
statistics decreases with an increase in the value of α and for fixed values of α, β, n and r the mean
decreases with increase in θ. This table also shows an interesting effect of the parameter β on the mean of
order statistics. We can see from this table that for fixed α, θ, n and increase in β, the mean increases for
r ≤ (n + 1)/2 + 1 and decreases for r > (n/2) + 2.

Tab. 2 contains variances of order statistics for the Lindley–Weibull distribution for various
combinations of parameters. The effect of α, θ, n and r on variance are the same as their effect on the
mean. We can see from this table that for fixed α, θ, n and increase in β the variance increases for r ≤ (n
− 1)/2 + 1 and decreases for r > (n/2) − 2.

6 Conclusions

In this paper, we have derived expressions for recursive computation of single, product, inverse and ratio
moments of gos when the sample is available from the Lindley–Weibull distribution. The derived relations
provide relations for moments of order statistics and record values as a special case. These relations are useful
to compute the moments for any value of the parameters. The mean and variance of order statistics for the
Lindley–Weibull distribution are computed for different values of parameters. It is observed that for fixed n
the mean and variance of order statistics increases with an increase in r and for fixed r the mean and variance
decreases with an increase in n. We have also obtained the characterizations of the Lindley–Weibull
distribution using single and product moments of gos.
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Appendix A

Table 1: Mean of order statistics for Lindley–Weibull distribution

n ða ¼ 0:5; b ¼ 1:5; h ¼ 1:5Þ
r = 1 r = 2 r = 3 r = 4 r = 5 r = 6 r = 7 r = 8 r = 9 r = 10

1 1.1635

2 0.7587 1.5683

3 0.5886 1.0988 1.8031

4 0.4908 0.8822 1.3154 1.9657

5 0.4258 0.7507 1.0795 1.4726 2.0890

6 0.3789 0.6602 0.9317 1.2274 1.5951 2.1877

7 0.3431 0.5933 0.8276 1.0704 1.3452 1.6951 2.2699

8 0.3148 0.5413 0.7492 0.9582 1.1827 1.4426 1.7793 2.3399

9 0.2917 0.4996 0.6876 0.8726 1.0651 1.2768 1.5256 1.8518 2.4009

10 0.2725 0.4651 0.6374 0.8045 0.9747 1.1556 1.3575 1.5976 1.9154 2.4549

n ða ¼ 1:5; b ¼ 1:5; h ¼ 1:5Þ

r = 1 r = 2 r = 3 r = 4 r = 5 r = 6 r = 7 r = 8 r = 9 r = 10

1 0.3878

2 0.2529 0.5228

3 0.1962 0.3663 0.6010

4 0.1636 0.2941 0.4385 0.6552

5 0.1419 0.2502 0.3598 0.4909 0.6963

6 0.1263 0.2201 0.3106 0.4091 0.5317 0.7292

7 0.1144 0.1978 0.2759 0.3568 0.4484 0.5650 0.7566

8 0.1049 0.1804 0.2497 0.3194 0.3942 0.4809 0.5931 0.7800

9 0.0972 0.1665 0.2292 0.2909 0.3550 0.4256 0.5085 0.6173 0.8003

10 0.0908 0.1550 0.2125 0.2682 0.3249 0.3852 0.4525 0.5325 0.6385 0.8183

n (α = 1.5, β = 2.5, θ = 1.5)

r = 1 r = 2 r = 3 r = 4 r = 5 r = 6 r = 7 r = 8 r = 9 r = 10

1 0.3889

2 0.3005 0.4774

3 0.2578 0.3858 0.5232

4 0.2310 0.3382 0.4335 0.5532

5 0.2120 0.3069 0.3851 0.4658 0.5750

6 0.1976 0.2840 0.3525 0.4177 0.4898 0.5920

7 0.1862 0.2663 0.3283 0.3848 0.4424 0.5088 0.6059

8 0.1767 0.2521 0.3092 0.3600 0.4095 0.4621 0.5244 0.6176

9 0.1688 0.2402 0.2937 0.3404 0.3846 0.4295 0.4783 0.5375 0.6276

10 0.1620 0.2300 0.2806 0.3241 0.3647 0.4046 0.4461 0.4922 0.5489 0.6363

(Continued)
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Table 1: (continued).

n (α = 1.5, β = 2.5, θ = 3.0)

r = 1 r = 2 r = 3 r = 4 r = 5 r = 6 r = 7 r = 8 r = 9 r = 10

1 0.1398

2 0.1068 0.1728

3 0.0911 0.1381 0.1901

4 0.0813 0.1203 0.1559 0.2015

5 0.0745 0.1088 0.1377 0.1681 0.2098

6 0.0693 0.1004 0.1255 0.1499 0.1772 0.2163

7 0.0652 0.0939 0.1165 0.1375 0.1591 0.1844 0.2217

8 0.0618 0.0887 0.1095 0.1282 0.1467 0.1666 0.1903 0.2261

9 0.0590 0.0844 0.1038 0.1209 0.1374 0.1542 0.1728 0.1954 0.2300

10 0.0566 0.0808 0.0990 0.1149 0.1299 0.1448 0.1605 0.1780 0.1997 0.2333

Table 2: Variance of order statistics for Lindley–Weibull distribution

n ða ¼ 0:5; b ¼ 1:5; h ¼ 1:5Þ

r = 1 r = 2 r = 3 r = 4 r = 5 r = 6 r = 7 r = 8 r = 9 r = 10

1 1.4815

2 0.6409 1.9944

3 0.3902 0.9687 2.3418

4 0.2734 0.6257 1.2180 2.6107

5 0.2070 0.4545 0.8174 1.4233 2.8316

6 0.1647 0.3528 0.6090 0.9822 1.5988 3.0196

7 0.1356 0.2857 0.4812 0.7457 1.1271 1.7524 3.1836

8 0.1145 0.2385 0.3950 0.5975 0.8687 1.2568 1.8893 3.3292

9 0.0986 0.2035 0.3332 0.4958 0.7039 0.9807 1.3743 2.0127 3.4603

10 0.0862 0.1768 0.2869 0.4218 0.5894 0.8021 1.0834 1.4817 2.1253 3.5795

n ða ¼ 1:5; b ¼ 1:5; h ¼ 1:5Þ

r = 1 r = 2 r = 3 r = 4 r = 5 r = 6 r = 7 r = 8 r = 9 r = 10

1 0.1646

2 0.0712 0.2216

3 0.0434 0.1076 0.2602

4 0.0304 0.0695 0.1353 0.2901

5 0.0230 0.0505 0.0908 0.1581 0.3146

6 0.0183 0.0392 0.0677 0.1091 0.1776 0.3355

7 0.0151 0.0317 0.0535 0.0829 0.1252 0.1947 0.3537

8 0.0127 0.0265 0.0439 0.0664 0.0965 0.1396 0.2099 0.3699

9 0.0110 0.0226 0.0370 0.0551 0.0782 0.1090 0.1527 0.2236 0.3845

10 0.0096 0.0196 0.0319 0.0469 0.0655 0.0891 0.1204 0.1646 0.2361 0.3977

(Continued)
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Table 2: (continued).

n (α = 1.5, β = 2.5, θ = 1.5)

r = 1 r = 2 r = 3 r = 4 r = 5 r = 6 r = 7 r = 8 r = 9 r = 10

1 0.1121

2 0.0676 0.1409

3 0.0501 0.0917 0.1592

4 0.0404 0.0705 0.1083 0.1726

5 0.0341 0.0582 0.0854 0.1210 0.1831

6 0.0297 0.0499 0.0716 0.0971 0.1312 0.1918

7 0.0264 0.0440 0.0621 0.0823 0.1067 0.1398 0.1991

8 0.0238 0.0394 0.0552 0.0721 0.0914 0.1149 0.1471 0.2054

9 0.0218 0.0358 0.0498 0.0644 0.0806 0.0991 0.1220 0.1536 0.2110

10 0.0201 0.0329 0.0455 0.0585 0.0724 0.0879 0.1059 0.1282 0.1593 0.2160

n (α = 1.5, β = 2.5, θ = 3.0)

r = 1 r = 2 r = 3 r = 4 r = 5 r = 6 r = 7 r = 8 r = 9 r = 10

1 0.0492

2 0.0288 0.0674

3 0.0210 0.0430 0.0788

4 0.0168 0.0326 0.0527 0.0869

5 0.0141 0.0266 0.0411 0.0601 0.0933

6 0.0122 0.0227 0.0341 0.0477 0.0661 0.0985

7 0.0108 0.0199 0.0294 0.0401 0.0532 0.0710 0.1029

8 0.0097 0.0177 0.0260 0.0349 0.0452 0.0578 0.0753 0.1066

9 0.0089 0.0161 0.0233 0.0310 0.0396 0.0495 0.0619 0.0790 0.1100

10 0.0081 0.0147 0.0212 0.0280 0.0354 0.0437 0.0533 0.0654 0.0823 0.1129
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