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Abstract: We study in this manuscript a new one-parameter model called sine
inverse Rayleigh (SIR) model that is a new extension of the classical inverse
Rayleigh model. The sine inverse Rayleigh model is aiming to provide more fit-
ting for real data sets of purposes. The proposed extension is more flexible than
the original inverse Rayleigh (IR) model and it hasmany applications in physics
and medicine. The sine inverse Rayleigh distribution can havea uni-model and
right skewed probability density function (PDF). The hazard rate function
(HRF) of sine inverse Rayleigh distribution can be increasing and J-shaped. Sev-
eral of thenew model’s fundamental characteristics, namely quantile function,
moments, incompletemoments, Lorenz and Bonferroni Curves are studied. Four
classical estimation methods forthe population parameters, namely least squares
(LS), weighted least squares (WLS), maximum likelihood (ML), and percentile
(PC) methods are discussed, and the performanceof the four estimators (namely
LS, WLS, ML and PC estimators) are also compared bynumerical implementa-
tions. Finally, three sets of real data are utilized to compare the behavior of the
four employed methods for finding an optimal estimation of the new distribution.

Keywords: Sine generated family; inverse Rayleigh distribution; classic
estimation methods; applications

1 Introduction

Reference [1] investigated a significant distribution in analysis of lifetime, namely the inverse Rayleigh
(IR) model. The IR model’s considered probability density function (PDF) and the corresponding
distribution function (CDF) are given by

g() =20y 2, 0>0, y>0. (1)
and
GO)=e 2, >0, y>0. @)

Much effort has been invested in the literature on estimating the IR model; see, for instance, [2—10].

In last years, several extensions for the IR model were established by means of various
generalization methods such as beta IR, transmuted IR (TIR), modified IR, transmuted modified IR,
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Kumaraswamy exponentiated IR, weighted IR and odd Fréchet IR and half logistic IR models as mentioned
in [2-9].

In the last years, many different statisticians are attracted by generated families of distributions as: sine
generated (S-G) by [10], Type II half logistic-G by [11], odd Frechet-G by [12], truncated Cauchy power-G
by [13], transmuted odd Fréchet-G by [14], exponentiated M-G by [15], Topp-Leone odd Fréchet-G studied
in [16], among others.

For instance, for S-G the CDF and the PDF are

Fly;€) = sin[3Gv 9], xer 3)
and
F0:8) =Tl Eeos| G0z &), xer, @

where g(y; ) considers a PDF of baseline distribution.
Now, we put forward a novel lifetime model with one parameter named sine inverse Rayleigh (SIR)
distribution, whose CDF with parameter 0 is obtained by employing (2) in (3) as

0

F(y) :sin[gefy_z], y>0, 0>0, (5)

Likewise, by combining (1), (2) and (4), one obtains the corresponding PDF to (5) as

0

0 _0
f(y):%e ;cos{ge yg:|7 y>0, 9>0, (6)

where 6 is a scale parameter.

When the random variable Y has an SIR model, one can define X’s hazard rate function (HRF), reversed
HRF, cumulative HRF, and survival function (SF) as

0

R(y)=1—sin [5 ef.fv_z] ,

)

—e)cos{ i|
4

") = 1 — sin {2 e_(_z]

H(y) = —1n<1 — sin [ge_l%])

Figs. 1 and 2 present the PDF and HRF plots of the SIR distribution, respectively, for various 8 values.

Figs. 1 and 2 exhibit that the SIR distribution can have a uni-model and right skewed PDF, while its
HRF can be J-shaped and increasing.
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Figure 2: Plots of the HRF the SIR distribution

The remaining parts of this manuscript are presented as follows. Section 2 introduces structural
characteristics of SIR distribution including; quantile function, moments, incomplete moments, and
Lorenz and Bonferroni curves. Section 3 discusses some estimators for SIR distribution parameters on the
basis of four different methods of estimations of least squares (LS), weighted least squares (WLS),
maximum likelihood (ML), and percentile (PC). Simulation schemes are performed in Section 4. Three
sets of data for real-life applicationare utilized for comparing the behavior of the four methods of

estimating the new distribution in Section 5. Several concluding remarks close the work.
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2 Fundamental Properties
We study in this part several statistical characteristics of the SIR model.

2.1 Quantile Function
If Y~SIR then, the quantile function of SIR is

o= o )]

and by taking u =0.5 we get the median (M) as M = 1/ 0[In(3)] " .

2.2 Moments
Theorem 1: Assume that Y is an r.v. from SIR, thus the #" moment of SIR distribution is

. erlcr( ”)
2 r
; YRS . 5 <L (7)

th

Proof: Assume that Y is an r. v. with pdf (6). One can determine " moments of SIR distribution from

o0

_ i L S
—/yrf(y)dy—z/y e«cos{ze-}dy,
0

0

By inserting the expansion cos[G(y)] = > 2, (

3 O [ B

i=0 0

The last equation can be rewritten as

ic/ooy 21+1)< >dy.
0

i=0

(;l.l))![ [G()]*, n to the previous equation then,

where C = i 9(—'1.)" (%)2141.
i=0
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The mgf of Y is
' r
, re'er(1-7)
N 2

M= T =

r=0 ri=

X

¢ 27120+ 1)

obtain the incomplete moments, denoted by ¢(f), of the SIR distribution as follows, where ¢(¢), defined by
t
(1) = / f; @)dy. ®)
0

Using (8), ¢4(?) will be as given

i=0 =0 2(2i + 1)17

S 0
t ef—lcr(l 2 i 1)(-))
o o5 @it (4 s 2’ £2
o =3¢ [y g3 —, ©
0

where T'(s, ¢) = fot y*~le™dy denotes the lower incomplete gamma function.

The Lorenz curve and the Bonferroni curve are generated, respectively, from following equations

- eﬁcr(%, (2i+1)<g>> - CFG, (2i+1)<§>>

i=0

=

L) = 210) _ - 2(2i 4 1) _ Qi+ 1) |
E(Y) 07 :CT G) >0 21y Cﬁ)l
o0 2i+1)2
2iso 2(2i + 1)}
and
) CFG, (2i + 1)(%))
Boe) = L0)__ 2o (2i+ 1)
UG e) g CVE (sinfZe#] ) |
iy 2
The Zenga curves are given by
)
A0 =150
where
1 (x) = Lr(v)
and
) = Jo G e)dy

[—F()
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3 Statistical Inference

The population parameters involved in the SIR model can be estimated by using four different methods
of estimation namely; ML, LS, WLS and PC methods.

3.1 ML Estimators

To obtain the MLESs of the SIR model with a parameter 6, let Y7 ,..., Y, be observed values of this model.
The log-likelihood function denoted by £, can be expressed as

l= nlogg + nlogh — 3 ; log(yi) — Qizzl(yi)—Z + lzzl log(COS [ge—ﬁ(yf)*z] )

The ML equation of the SIR model then becomes

ag n B n B B ~
90 g - ;0’1‘) T g;()’z) 27000 " tan Ee’g(yf) 2]

The MLEs of 6 are then obtained by equating 00/06 with zero and solving simultaneously these
equations.

3.2 LS and WLS Estimators

Let Yy, V>, ..., Y, be an n-sized random sample (RS) from SIR model and denote the ordered samples in
the RS by Yy, Y(2), ..., Y. The expectation and variance of this model do not depend the unknown
parameter given by
i(n—i+1)

E(F(Y)) = ﬁ, and var(F(Y(;)) = m7

In the above equations, F(Y(;) represents the CDF of the model while Y;) represents the i™ order statistic
(OS). Thus, the LSEs can be determined by obtaining the least sum of squared errors as follows,

n

2 [F(f)(y) _nil]z’

i=1

regarding 6. Thus, the LSEs of the population parameter 0 of SIR follow by calculating the minimum of the
sum

zn: in| > _<"<i>2 i )’
sin|=e "0 | —
2 n+1]"’

i=1

regarding 6. Moreover, the LSEs of 6 can be determined from

n __0 . __0 0
Z [sin Fe %)2} ! ] #e 0" cos Fe “’m’z] = 0.
=L 12 n 1\ (vy)? 2

The WLSEs of 0 can then be derived by calculating the minimum of the sum

n 2 0 . 2
Z(n; L)(n +2) sin|me b0l | — 1|
i(n—i+1) 2 n+1

i=1
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regarding 0. Moreover, one can determine the WLSEs of 6 from

n 2 0 . __0 __0
Z(” F1(nt2) sin|Ze v07 | — 1 e "0cos|Ze W | | =o.
—~ jn—i+1) 2 n+ 1\ (vy) 2

i=1

3.3 PC Estimator (PCEs)

Let Y;,...,Y, denote an RS taken from SIR and assume that Y(;)< ¥(5)<...<Y, is the corresponding OS.
The PCEs of parameter 6 are calculated by minimizing the next

n . 0 2
2eln(er) o))

regarding 6.

4 Numerical Results
We generate 3000 RS Y1, ..., Y, of sizes n =10, 20, 30 and 50 from SIR were generated. Three different
values of the parameter 0 are chosen:

The parameter 6’s ML, LS, WLS and PC estimates are calculated. Subsequently, the MSEs of the
estimate of the unknown parameter are determined. Numerical results are mentioned in Tabs. 1-3 and the
following observations can be made.

e The MSEs of ML estimates of 0 are the lowest among all determined MSEs in almost every case.
e The MSEs of all the estimates decrease with increasing sample sizes.

Table 1: Statistical inference of SIR model for ML, LS, WLS and PC estimates when 6 = 0.5

n MLEs LSEs WLSEs PCEs

Estimates MSEs Estimates MSEs Estimates MSEs Estimates MSEs

10 0.527 0.018 0.521 0.023 0.519 0.022 0.458 0.020
20 0.513 0.008 0.509 0.009 0.511 0.009 0.473 0.010
30 0.509 0.005 0.506 0.006 0.503 0.006 0.475 0.007
50 0.506 0.003 0.505 0.004 0.504 0.0032 0.477 0.004

Table 2: Statistical inference of SIR model for ML, LS, WLS and PC estimates when 6 = 0.8

n MLEs LSEs WLSEs PCEs

Estimates MSEs Estimates MSEs Estimates MSEs Estimates MSEs

10 0.841 0.047 0.836 0.061 0.834 0.057 0.742 0.052
20 0.821 0.021 0.821 0.027 0.810 0.0213 0.745 0.026
30 0.814 0.013 0.811 0.015 0.808 0.014 0.751 0.017

50 0.807 0.008 0.805 0.009 0.807 0.0084  0.763 0.010
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Table 3: Statistical inference of SIR model for ML, LS, WLS and PC estimates when 6 = 1.5

n MLEs LSEs WLSEs PCEs

Estimates MSEs Estimates MSEs Estimates MSEs Estimates MSEs

10 1.585 0.169 1.555 0.201 1.553 0.182 1.386 0.177
20 1.543 0.077 1.533 0.080 1.521 0.078 1.404 0.083
30 1.525 0.048 1.522 0.061 1.519 0.052 1.413 0.064
50 1.516 0.027 1.512 0.034 1.510 0.030 1.434 0.037

5 Applications to Real Data

Further we employ three real data sets for assessing the goodness-of-fit of the SIR model with the
purpose of comparing the performance of the considered estimation methods.

We consider criteria including maximum likelihood (denoted by —f,) (B1), the Akaike information
criterion (AIC) (B2), the consistent AIC (B3), the Schwarz criterion (B4) and the Hannan-Quinn
information criterion (B5). The model that has lowest B1-B5 values is deemed the best one with respect
to fitting the real data.

The first data set: contains the survival time (days) of 72 guinea pigs with virulent tubercle bacilli
infection, originally presented in [17].

The second data set: consists the waiting time (minutes) of 100 bank customers before they were
served, as presented in [18].

The third data set: contains 100 results on the breaking stress (Gba) of carbon fibers, as presented in [19].

The parameters of SIR are estimated by the four estimation methods, namely the ML, LS, WLS and PC
estimation methods. The efficiency of the estimation methods is the same in the three data sets as shown in
Tabs. 4-6. We see that among the estimation methods adopted, ML provides the best results for the included
data sets.

Table 4: The goodness of fit statistics for parameters estimated under various methods for the first data set

Method 0 Bl B2 B3 B4 BS
MLE 0.783 264.046 530.092 529.95 562.968 530.149
LSE 2.377 388.36 778.72 780.435 782.533 778.894
WLSE 2.3774 388.394 778.789 780.503 782.601 778.963
PCE 0.051 517.874 1038 1039 1042 1038

Table 5: The goodness of fit statistics for parameters estimated under various methods for the second data set

Method 0 Bl B2 B3 B4 BS

MLE 21.51 523.491 1049 684.806 686.915 1050
LSE 66.133 693.104 1388 1390 1392 1388
WLSE 66.097 692.908 1388 1390 1392 1388

PCE 4.117 684.116 1370 1051 1053 1370
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Table 6: The goodness of fit statistics for parameters estimated under various methods for the third data set

Method 0 Bl B2 B3 B4 BS

MLE 4.806 246.367 494.734 496.734 495.789 494.775
LSE 6.799 258.26 518.52 520.52 522.628 518.643
WLSE 6.4747 255.018 512.036 512.036 513.09 512.077
PCE 1.368 348.028 698.056 698.056 699.11 698.097

6 Conclusion

We study a new model called SIR. Some fundamental characteristics of the model are investigated. We
estimate the model parameters according to the ML, LS, WLS and PC methods. Numerical experiments are
carried out in order to comparatively explore the performance of the four different estimation methods.
Numerical results show that ML performs better than LS, WLS and PC in almost all considered
situations. Applications on three sets of real data indicate that the the ML method is superior in terms of
the fits to the LS, WLS and PC methods.
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