
Novel Power-Aware Optimization Methodology and Efficient Task Scheduling
Algorithm

K. Sathis Kumar1,* and K. Paramasivam2

1Department of Computer Science and Engineering, Bannari Amman Institute of Technology, Sathyamangalam, 638401, Tamilnadu,
India

2Department of Electrical and Electronics Engineering, Kumaraguru College of Technology, Coimbatore, 641049, Tamilnadu, India
*Corresponding Author: K. Sathis Kumar. Email: sathishresearchk@gmail.com

Received: 16 April 2021; Accepted: 12 June 2021

Abstract: The performance of central processing units (CPUs) can be enhanced
by integrating multiple cores into a single chip. Cpu performance can be improved
by allocating the tasks using intelligent strategy. If Small tasks wait for long time
or executes for long time, then CPU consumes more power. Thus, the amount of
power consumed by CPUs can be reduced without increasing the frequency. Lines
are used to connect cores, which are organized together to form a network called
network on chips (NOCs). NOCs are mainly used in the design of processors.
However, its performance can still be enhanced by reducing power consumption.
The main problem lies with task scheduling, which fully utilizes the network.
Here, we propose a novel random fit algorithm for NOCs based on power-aware
optimization. In this algorithm, tasks that are under the same application are
mapped to the neighborhoods of the same application, whereas tasks belonging
to different applications are mapped to the processor cores on the basis of a series
of steps. This scheduling process is performed during the run time. Experiment
results show that the proposed random fit algorithm reduces the amount of power
consumed and increases system performance based on effective scheduling.

Keywords: Random fit algorithm; network on chips; processor cores; power-
aware optimization

1 Introduction

An MPSoC can be defined as a system-on-a-chip with multiple processors. Similarly, networks on chips
(NOCs) can be defined as a subsystem that has scalable communication and high bandwidth. At present,
embedded systems use NOC-based MPSoCs because of its improved performance and energy efficiency.
With the rapid development of semiconductor technology in recent years, a single chip is built in a
manner that it can integrate multiple transistors. For efficient power consumption [1], the frequency of a
processor must be increased. In recent years, hardware manufacturers have started moving toward on-chip
systems. The advantage of multiprocessor systems is that system performance is increased without
increasing the frequency of the central processing unit (CPU). To establish a connection between on-chip
systems, bus-based communication is used. This type of communication is fast, but the requirement for

This work is licensed under a Creative Commons Attribution 4.0 International License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original
work is properly cited.

Computer Systems Science & Engineering
DOI:10.32604/csse.2022.019531

Article

echT PressScience

mailto:sathishresearchk@gmail.com
http://dx.doi.org/10.32604/csse.2022.019531
http://dx.doi.org/10.32604/csse.2022.019531


on-chip size is high. When the communication requirement is high, using bus-based communication can be
considered a bottleneck that stalls the CPU, as well as the transmission speed and power consumption. As a
result, the performance of the system degrades. This issue can be resolved with the help of NOCs [2–4].

With the advancement of integrated circuit processes, the feature size is greatly reduced, and the memory
components, along with the processing cores, can be integrated over a single chip. Traditional bus-based
communication is inefficient due to its scalability issues and its inability to handle tasks between the
processing cores. Hence, NOCs are used because of its better scalability and seamless transmission of
data between the processing cores. Some of the chip's properties, such as latency and power
consumption, affect the scheduling results, which are a vital part of NOCs. Obtaining a scheduling
scheme that consumes minimal power and has less latency is difficult due to the scheduling problem,
which is NP hard, in NOCs.

In a typical NOC architecture, the processor cores are connected with memory blocks and several other
processing units [5]. The architecture consists of processor cores that are distributed not via bus connection
but via lines [6,7]. On-chip systems use on-chip routers to communicate with each other and achieve high
efficiency.

NOCs divide applications into several tasks so that multiple applications can run simultaneously on
multiple cores. Task partitioning is essential for multicore systems to improve efficiency [8]. The
necessary requirements for NOCs are different traffic characteristics of different applications. System
performance is sometimes affected by heavy traffic and long latency. The main portion on the system
power is consumed by such traffic [9]. The performance of multiple tasks entails high power
consumption and system performance because the tasks are distributed to NOCs, which are essential in
reducing power consumption and enhancing system performance to achieve reduced traffic.

The main contributions of this article are as follows:

1. This research proposes a novel approach to map online tasks, which have been proposed to achieve higher
efficiency. In accordance with the analysis results, the tasks are remapped by the proposed algorithm.

2. To reduce power consumption, all tasks belonging to a single application are mapped tasks having higher
communication.

This paper is organized as follows: Section 2 presents related work. Section 3 describes the system
model of NOCs. Section 4 presents the design of the algorithm. Section 5 describes and discusses the
experiments and results. Lastly, Section 6 presents future work and conclusions.

2 Related Work

The basic infrastructure for any NOC is the on-chip network. Task requirements must be provided to
distribute the network communication process. NOCs provide on-chip networks as the basic
infrastructure. Communication is distributed to the network as per the task requirements [10–13].
Compared with the bus structure, other modes of communication consume more time. These types of
communication cause performance bottlenecks, which are a major problem to consider. This problem can
be solved by properly scheduling the tasks to the cores. Several solutions, including scheduling
algorithms based on heuristics [14], genetic algorithms [15], QoS-based algorithms [16], and several
others [17], have been provided to address this problem. These algorithms determine the scheduling
process before the system operation is determined, thus providing improved optimization and
performance. Defining situations at run time to perform is difficult because as the situation changes, the
process of scheduling must be repeated, thus consuming a substantial amount of time and becoming difficult.

210 CSSE, 2022, vol.41, no.1



Online scheduling has been investigated recently. By contrast, run-time scheduling refers to the one
performed by the operating system. It assists with the dynamic scheduling of tasks. The author [18]
proposed his work based on the characteristics of NOCs. It also deals with the resource allocation process
and the immigration of threads at run time. Considered the sequence of tasks being constructed in
accordance with the user's habit, which is then used for the prediction and allocation of tasks. The author
[19] performed task allocation based on the assumption that each processor core is associated with
various levels of power consumption. Thus, the core having the lowest level of power consumption is
mapped with the tasks. The author [20] performed scheduling based on the scenarios’ transactions.
According to run-time analysis, these approaches aim at scaling down the voltage and frequency is such a
way that the entire system's power consumption can be reduced.

The tasks in NOCs are associated with certain requirements for communication [21] to achieve this
target. Task scheduling determines traffic density. Hence, it is made an overview from the related works
that, to estimate the performance of NOC, the scheduling algorithm plays a vital role. Power consumption
can be reduced by an optimized scheduling algorithm [22]. The scheduling algorithm [23] proposed by
the paper relies on the analysis of the traffic in an on-chip network at run time. The candidate
optimization algorithm (COA) produces minimal network transmission delay with a small number of
resources consumed [24] and minimal power consumption.

3 System Model

NOCs have various designs [25] and new exciting features, considering the general architecture,
application, and algorithm provided. In this section, we take a deep dive on the system model and other
related topics, including routing policy, network topology, and energy models. The above mentioned are
the base and principal elements of the scheduling algorithm.

3.1 On-Chip Network Topology

NOCs have an unconventional design prototype of SOC, whereas SOCs have advantages over
traditional bus communication. On-chip communication provides better performance and has great
improvement on efficiency when connected with on-chip devices. Although several topologies, such as
ring and mesh [26], have been recommended for NOCs, the mesh is considered to be the best performing
choice for the design of NOCs, as depicted in Fig. 1.

The structure of a mesh is similar to that of a matrix. The tiles that are considered nodes are connected by
wires, as shown in Fig. 1. Every tile in the mesh includes the following components: routers, processor cores,
input/output (I/O) interfaces, and on-chip memory (either a cache or an SPM), as depicted in Fig. 1. Data
forwarding and communication between interfaces is taken care of by the routers and I/O interfaces,
respectively. Tiles may also contain processing elements (PE) that are used for special purposes and
operations. The cache and SPM act as local memory for all cores.

3.2 Routing Policy

Routing policies determine the path to be taken from the initial source nodes to the destination nodes.
Problems, such as deadlock and congestions, can be solved; certainly, the performance of an on-chip
communication on an NOC can be improved to an extent by a routing algorithm. Routing algorithms
generally fall under two categories: deterministic and adaptive routing algorithms.

By using a deterministic routing algorithm, one can determine the path traveled from the initial node to
the destination node in a network. By contrast, adaptive routing uses the run-time environments to choose the
routing direction. However, this has a great effect on the design of the router and leads to increased
complexity.

CSSE, 2022, vol.41, no.1 211



Mesh-based NOCs can be determined with the help of the X–Y routing algorithm. In X–Y routing, the
mesh runs in the X and Y directions, as shown in Fig. 2. The initial routing occurs in the X direction where
the packets are forwarded, and then the routing proceeds with the Y direction. This prevents the deadlock
from occurring for a given destination, in turn depicting high simplicity. In this study, the X–Y routing
algorithm is chosen to achieve the least effect on the routing algorithm.

Figure 1: NOC mesh topology

Figure 2: X–Y routing

212 CSSE, 2022, vol.41, no.1



The important characteristic for transferring on NOC is the switching mode. One of the popular and
effective switching modes used now is a packet-based switching technique. Here, the packets are divided
into flits, which are considered to be the smaller chunks. These flits are then transferred via a network.
This flit can be forwarded and buffered by a router if a single flit has enough buffers. This method is
known to reduce network latency and save buffer space. Moreover, if any of the flits are found to be
blocked, then the router forwards the other flits by which the network throughput is increased. In this
study, the switching mode is wormhole switching. However, wormhole switching has its own
disadvantage as it may lead to latency when traffic is heavy. However, these occurrences are rare and
have minimal effect on the results. Fig. 1 shows the mesh topology for NOCs.

3.3 Task Model

In case of offline analysis, the application can be represented with the help of an application control
graph (ACG) [16]. The application can be represented in the form of vertices V and edges E, where E
represents the edge that connects the two vertices. Thus, the representation is of the form G(V,E). Each
vertex of the task represents the task Vi. The tasks cannot be subdivided into smaller partitions. The
connection between the two vertices Vi and Vj can be represented using the edge notation Eij. The traffic
between the two tasks can be represented using the function F(Eij). The total traffic off each individual
task Vi and Vj can be represented as F(Ei) and F(Ej), respectively. The ACG for the given application can
be obtained on the basis of the CETA method. By contrast, real-time traffic for the tasks within the
application can be obtained using the SIMICS method. The application set is represented as S = {S0, S1,
S2,…….,Sm}. Here, each application in the application set has N(Si) number of tasks. The task model is
represented as M = {M0, M1, M2,…….,Mn}.

3.4 Energy Model

Several processor cores or elements are present within the NOC, which establishes communication
among the tasks with the help of on-chip lines. These PEs consume energy for computing these tasks.
The amount of energy consumed for computing these tasks is referred to as computation energy. The
energy consumed in establishing communication between the tasks Vi and Vj can be represented as

RðEijÞ ¼ RlðEijÞ þ RrðEijÞ (1)

where Rr represents the amount of energy that the router consumes. Similarly, Rl represents the amount of
energy that the lines, which are present between the tasks, consume. Fig. 3. represents the coordinate
system for the NOC topology. The coordinates corresponding to the core A1 is represented as A1(0, 0).
Thus, the coordinates corresponding to the tile Ai is represented as Ai(X,Y). Here, X and Y represent the
horizontal and vertical coordinates, respectively.

Fig. 4 depicts the ACG. In consideration of the tasks in the above ACG, the proposed algorithms are
evaluated.

The distance between the cores is measured using the Manhattan distance as follows:

DtðAijÞ ¼ jðXj � XiÞ þ ðYj � YiÞj (2)

where El represents the energy that the line consumes by connecting the tasks. In other words, it represents
the energy that the Manhattan distance consumes. Similarly, Er represents the energy that the router
consumes.

CSSE, 2022, vol.41, no.1 213



The value for Rr(Eij), where Rr is the energy consumed by the router, is calculated.

RrðEijÞ ¼ ðDtðAijÞ þ 1Þ � Rrout (3)

Similarly, the value for Rl(Eij) is given by

RlðEijÞ ¼ ðDtðAijÞ þ 1Þ � Rlink (4)

where Rrout indicates the energy that the single bit of a router consumes, and Rlink indicates the energy that the
single bit of a line connecting the tasks consumes.

By summing up the above two equations, the total energy consumed can be obtained as follows:

RðEijÞ ¼ ðDtðAijÞ þ 1Þ � Rrout þ ðDtðAijÞ þ 1Þ � Rlink (5)

Figure 3: NOC with coordinates

Figure 4: Application control graph

214 CSSE, 2022, vol.41, no.1



The total energy consumed by the application is given by

RðSkÞ ¼
X

8Aij

ððDtðAijÞ þ 1Þ � Rrout þ ðDtðAijÞ þ 1Þ � RlinkÞ � FðAijÞ � NðflitÞ (6)

where Sk represents the set of active applications in the system.

The total energy that the system consumes during all the slots is given by

Rs ¼
Xm

i¼0

RðSiÞ (7)

The above equations reveal that the Manhattan distance and the amount of energy consumed have a great
effect on the total energy consumed by the system. The focus of the study is to reduce the Manhattan distance
because the energy consumed is considered a constant.

4 Proposed Model

The algorithm used for scheduling is discussed in this section. In case of single application, the
algorithm maps the tasks to its corresponding computational units. Based on this the optimized algorithm
can be defined for multiple applications.

4.1 Single-Application Algorithm Design

In case of single application, more than one tasks are partitioned. Compared with single-core chips,
multitask applications can provide high parallelism. To boost the performance of the system, these tasks
must be assigned to the corresponding cores. In this study, two scheduling algorithms, namely, random fit
algorithm and XY routing fit algorithm, are used. In the case of the XY routing fit algorithm, the
algorithm searches for the core that is idle in the X direction to be assigned to the unmapped task. If no
such core is found in the X direction, then the algorithm looks for the same in the Y direction. The initial
scheduling starts with the coordinate A0(0, 0). However, when the communication is larger, the algorithm
has its own disadvantage as described below.

In this algorithm, on the basis of the Manhattan distance, the tasks are associated with the cores that are
nearby. Thus, the initial task present is mapped to the core A0(0, 0). Similarly, the next task to be mapped to
the core is the one having a lower Manhattan distance than the previous core A0(0, 0). In the same manner, all
the other remaining tasks are mapped. The traffic caused can be reduced in this algorithm by reducing the
Manhattan distance. However, the algorithm has its own disadvantages. Although optimization can be
achieved with the help of this algorithm, communication energy remains high. Hence, the Manhattan
distance must be reduced even further. To achieve this, the task with the highest traffic must be mapped
to the nearby cores. Traffic is defined as follows:

Traf ðTiÞ ¼
X

8Eij2Sk
FðEijÞ (8)

Thus, the one with the heaviest traffic is mapped to the nearest core A0(0, 0). The next task with the
heaviest traffic slightly lesser than the previous one is mapped to the core that has the smallest Manhattan
distance with the previously mapped core A0(0, 0). However, if the task with the heaviest traffic is found
to communicate with a greater number of tasks, then the Manhattan distance for those tasks increase as
per the scheduling algorithm. Assume the number of tasks in Sk is N(Sk). The core with the maximum
core value Am is chosen as the initial point for task scheduling. Each core Ai has a set of chores A(Ai)
that are mapped. Thus, the task that has the heaviest traffic is mapped to the core Am.

CSSE, 2022, vol.41, no.1 215



To map the remaining tasks with the next core, the tasks must satisfy the following two conditions:

� The core to be mapped must have neighbor relationship with the previously mapped core.

� The next core to be mapped should be the core that has the maximum Am value.

Similarly, while scheduling the tasks, the task with the highest traffic must be mapped with the
previously mapped task. Examples for the scheduling of the applications are shown in the figures below.
The total energy consumed by using the three algorithms, namely XY routing algorithm, random fit
algorithm, and energy optimization (EO) algorithm, is calculated as follows:

ECXY ¼ 140NðflitÞ � ECðrouterÞ þ 100NðflitÞ � ECðlinkÞ (9)

ECRF ¼ 90NðflitÞ � ECðrouterÞ þ 80NðflitÞ � ECðlinkÞ (10)

ECEO ¼ 70NðflitÞ � ECðrouterÞ þ 60NðflitÞ � ECðlinkÞs (11)

The above equations show that energy consumption decreases with the decrease in Manhattan distance.
As a result, the communication efficiency is highly increased.

Fig. 5 shows the proposed methodology of online scheduling. As mentioned in the diagram, traffic
analysis is performed by static profiling. Static profiling marks the start of the online scheduling process.
Initially, the EO algorithm is used to schedule the tasks to the cores. The on-chip network is then divided
into regions, which are further divided into tasks. Run-time analysis is used for collecting profile information.

4.2 Multiple-Application Algorithm Design

With the number of applications increasing, the number of tasks being mapped to the network also
increases. In such cases, the tasks that belong to the same application are gathered as clusters by the EO
algorithm. For each application Si, a task set partition, which is represented as M(Si), is created.

The network corresponding to the on-chip processor is represented as N(A,D). Here, C represents the
processor core, which is represented as A = {A0, A1, ….., Ai}. The total number of chores is represented
as N(A), and the set of path is represented by Dij. The path between the two processors is represented as

R ¼ jAi ! Ajj (12)

where R represents the router between the two cores Ai and Aj, and A(Ai) represents the set of processor
chores that are connected to the given core Ai.

If NðAÞ � Px

i¼0
NðAiÞ, then the tasks can be assigned, and partitioning is successful. If NðAÞ � Px

i¼0
NðAiÞ,

then the tasks cannot be assigned to the given network due to insufficient number of chores. In such cases,
partitioning can be performed only if a few tasks are removed from the task list. The task to be removed can
be determined as follows:

� Choose a task Vx and remove all the tasks after Vx that are present in the task list M.

Find an application Sk containing the task Mx.

Check if Mx is the last task of the application Sk.

� If Mx is the last task, then assign the task to the network.

Each task is mapped to the core with the help of the EO algorithm. During the scheduling process, the
mapped cores are not mapped again.

216 CSSE, 2022, vol.41, no.1



4.3 Scheduling Based on Energy Optimization

The communication overhead of the system can only be determined during its runtime. In case of offline
scheduling. Fig. 6. the profiling information is inaccurate. However, in case of online scheduling, the
communication overhead can be determined during the runtime with the help of profile information. If
any changes are found in the traffic, then the tasks are remapped. The proposed algorithm becomes a
complex process when the changes that happen to the different circumstances of the application are
considered. Static profiling is used to analyze the traffic conditions of the application where the profile
information is collected during the runtime of the tasks. The rescheduling process can be performed on
the basis of the EO algorithm.

Figure 5: Proposed methodology

CSSE, 2022, vol.41, no.1 217



Algorithm 1:EO algorithm

Input

Set of applications S: Sk ∈ S
N(Sk) represents the tasks present in S, where S is the application set.

Output

The tasks are mapped to the applications in S.

Working

• Form a task–core pair such that the task is assigned to the corresponding core.

• Identify the last mapped task.

• Identify the task with heaviest traffic when it is mapped with the task mapped previously.

• Identify the corresponding core.

• Remove the core mapped to the task from the core list.

• Repeat the process by scheduling the unmapped cores.

Algorithm 2:Random Fit Algorithm

Input

Set of applications S and processor core A

Output

The tasks are mapped to the applications in S.

Working

A:

for (a = 0;a<=c;a++){

for(b = 0;b<= N(Sk);b++){

Form a task–core scheduling pair such that the task is mapped to that core.

Figure 6: Scheduling results for the application S0 a) Random fit b) XY routing

(continued)

218 CSSE, 2022, vol.41, no.1



Find the task having highest traffic with previously assigned task.

If (task not found)

Identify the task with the heaviest traffic in the application set Sk.

Identify the task with heaviest traffic when it is mapped with the task mapped previously.

Identify the corresponding core.

Remove the core mapped to the task from the core list.

End A

Do

If (a new task appears)

Identify the traffic between the new task and the previously mapped task.

If (traffic value > threshold assumed)

For(b = 0;b<= N(Sk);b++)

Repeat A

}

}

5 Results and Analysis

Simulation is used to test the proposed algorithm. The traffic can be obtained on the basis of the SIMICS
method. SIMICS settings include

� CPU number: 16,

� frequency: 60 GHz,

� size of the cache: 32 KB,

� size of the disk: 4 GB,

� memory size: 1024 MB, and

� operating system used: Linux version 2.6.

The NOC simulator used for the simulation process is Gem 5. Its parameter settings include

� data cache size: 64 KB,

� instruction cache size: 64 KB,

� data cache associativity: 16 way,

� instruction cache associativity: 8 way,

� hit latency: 4–35 cycles, and

� memory size: 2 GB.

The traffic of some benchmark applications, such as FFM_3 and MPGenC, are obtained and used for
performing analysis via CETA. The applications of the ACG are obtained with the help of CETA. The
tasks present within the application can be obtained with the help of SIMICS. The on-chip network can
be simulated with the help of the GEM 5 simulator. In this process, the communication overhead that
occurs due to task migration is considered. Results show that the complexity of the EO algorithm is lower.

Algorithm 2: (continued)

CSSE, 2022, vol.41, no.1 219



The above graph reveals that the EO algorithm outperforms the XY routing and random fit algorithms in
terms of energy consumption. This result is due to the balanced communication that exists among the tasks of an
application. The number of flits transmitted can be reduced with the help of the EO and random fit algorithms.
On the basis of the communication relationship, the tasks are assigned. Approximately 62% of the total flits can
be reduced by using the proposed algorithm. This saves as the base for the optimization algorithm.

Fig. 7 shows that as the traffic is reduced, the amount of energy consumed can also be reduced. As the
traffic remains average, the amount of energy consumed remains consistent. The maximum latency of the
various algorithms used is shown in the above figure, which reveals that although the number of flits is
reduced, the latency remains maximum. Mapping the tasks on the basis of the Manhattan distance alone
is difficult if they do not have intensive communication. Although the random fit algorithm does not
provide effective communication compared with the EO algorithm, the tasks are established to have a
balanced communication. However, the rescheduling process does not reduce the number of transmitted
slits where the rescheduling process is performed during the runtime based on the profiling information.
The online scheduling process is more flexible for the operations of the system. The online scheduling
process involves the information to be gathered to remap the tasks that involve extra time loss. Fig. 8.
shows that the maximum latency is difficult to reduce despite the reduction in the total number of slits.

Figure 7: Total energy consumed

220 CSSE, 2022, vol.41, no.1



The average latency of the three mentioned algorithms is shown in the above graph diagram. If the
communication is intensive, then the task efficiency is a guaranteed one. In the case of the random fit and
EO algorithms, the average latency is reduced to approximately 29%–33%.

Thus, the experimental result shows Fig. 9. that the random fit algorithm can outperform the COA by
increasing the task scheduling efficiency for an NOC-based multicore system. Thus, even without
considering the traffic, the tasks can be assigned to its corresponding cores with the help of this
algorithm. Despite the overhead, it has high performance and reduces power consumption compared with
COA.

Figure 8: Maximum latency graph

CSSE, 2022, vol.41, no.1 221



6 Conclusions

A promising paradigm to break the bottleneck problem in on-chip communication is NOCs. Here, the
cores are connected to form a core network. However, the greatest challenge faced by NOCs in terms of
performance and energy consumption is network traffic. The network of on-chip cores produces a
remarkable effect on the basis of the network characteristics. The key issue in scheduling lies in the
scheduling of the tasks to the associated network. In this study, an optimized scheduling algorithm called
random fit algorithm is used for NOC-based multicore systems. The communication energy in the
scheduling process can be saved with the help of the EO algorithm. The tasks can be remapped to ensure
improved performance and power consumption. Experimental analysis shows that the performance can be
increased with the help of the rescheduling process. However, the proposed scheduling algorithm does
not consider migration cost. In the future, the scheduling algorithm can be reframed by considering
migration cost.

Funding Statement: The authors received no specific funding for this study.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

Figure 9: Average latency of the three different algorithms

222 CSSE, 2022, vol.41, no.1



References
[1] J. Xu, W. Wolf, J. Henkel and S. Chakradhar, “A design methodology for application-specific networks-on-chip,”

ACM Transactions on Embedded Computing Systems, vol. 5, no. 2, pp. 263–280, 2016.

[2] T. Bjerregaard and S. Mahadevan, “A survey of research and practices of network-on-chip,” ACM Computing
Survey, vol. 38, no. 1, pp. 1–51, 2016.

[3] T. Mak, P. Y. Cheung, W. Luk and K. Lam, “A DP-network for optimal dynamic routing in network-on-chip,” in
Proc. CODES ISSS, Playa del Carmen, Mexico, pp. 119–128, 2019.

[4] K. Chang, J. Shen and T. Chen, “Tailoring circuit-switched network-on-chip to application-specific system-on-
chip by two optimization schemes,” ACM Transactions on Design Automation of Electronic Systems, vol. 13,
no. 1, pp. 1–31, 2018.

[5] G. Chen, F. Li, S. W. Son and M. Kandemir, “Application scheduling for chip multiprocessors,” in Proc. DAC,
San Francisco, California, USA, pp. 620–625, 2018.

[6] D. Barcelos, E. W. Brião and F. R. Wagner, “A hybrid memory organization to enhance task migration and
dynamic task allocation in NoC-based MPSoCs,” in Proc. SBCCI, New York, USA, pp. 282–287, 2017.

[7] V. Nollet, T. Marescaux, D. Verkest, J. Mignolet and S. Vernalde, “Operating-system controlled network on chip,”
in Proc. DAC, San Francisco, USA, pp. 256–259, 2014.

[8] C. Chou and R. Marculescu, “User-aware dynamic task allocation in networks-on-chip,” in Proc.DATE, Munich,
Germany, pp. 1232–1237, 2018.

[9] J. Hu and R. Marculescu, “Energy-aware communication and task scheduling for network-on-chip architectures
under realtime constraints,” in Proc.DATE, Paris, France, pp. 234–239, 2014.

[10] E. W. Briao, D. Barcelos, F. Wronski and F. R. Wagner, “Impact of task migration in NoC-based MPSoCs for soft
realtime applications,” in Proc. VLSI-SoC, Atlanta, GA, USA, pp. 296–299, 2017.

[11] S. Bertozzi, A. Acquaviva, D. Bertozzi and A. Poggiali, “Supporting task migration in multiprocessor systems-on-
chip: a feasibility study,” in Proc. DATE, Munich, Germany, pp. 15–20, 2016.

[12] C. Chou and R. Marculescu, “Incremental run-time application scheduling for homogeneous NoCs with multiple
voltage levels,” in Proc. CODES+ISSS, Salzburg, Austria, pp. 161–166, 2017.

[13] H. Wang, L. Peh and S. Malik, “A technology-aware and energy-oriented topology exploration for on-chip
networks,” in Proc. DATE, Munich, Germany, vol. 2, pp. 1238–1243, 2015.

[14] J. Wu, “A deterministic fault-tolerant and deadlock-free routing protocol in 2-D meshes based on odd-even turn
model,” in Proc. ICS, New York, USA, pp. 67–76, 2012.

[15] S. Taktak, J. Desbarbieux and E. Encrenaz, “A tool for automatic detection of deadlock in wormhole networks on
chip,” ACM Transactions on Design Automation of Electronic Systems, vol. 13, no. 1, pp. 1–22, 2018.

[16] M. M. Pastrnak, P. H. N. de, S. Stuijk and J. V. Meerbergen, “Parallel implementation of arbitrary-shaped MPEG-
4 decoder for multiprocessor systems,” in Proc. PWSM, San Jose, California, United States, pp. 1–10, 2006.

[17] A. H. Liu and R. P. Dick, “Automatic run-time extraction of communication graphs from multithreaded
applications,” in Proc. ODES+ISSS, New York, NY, United States, pp. 46–51, 2016.

[18] T. T. Ye, G. D. Micheli and L. Benini, “Analysis of power consumption on switch fabrics in network routers,” in
Proc. DAC, New Orleans, LA, USA, pp. 524–529, 2012.

[19] T. Bjerregaard, “A survey of research and practices of network on-chip,” ACM Computing Surveys, vol. 3, no. 38,
pp. 1–51, 2016.

[20] N. Concer, S. Iamundo and L. Bononi, “A equalized: A novel routing algorithm for the spidergon network on
chip,” in Proc. DATE, Europe, pp. 749–754, 2012.

[21] F. Karim, A. Nguyen and S. Dey, “An interconnect architecture for networking systems on chips,” IEEE Micro,
vol. 22, no.5, pp. 36–45, 2002.

[22] M. Moadeli, A. Sharabi, W. Vanderbauwhede and M. OuldKhaoua, “An analytical performance model for the
spidergon NoC,” in Proc. AINA, Ontario, Canada, pp. 1014–1021, 2017.

[23] F. Karim, M. Root and C. Mesh, “Interconnection architectures for network-on-chip systems,”World Academy of
Science, Engineering and Technology, vol. 54, pp. 137–144, 2019.

CSSE, 2022, vol.41, no.1 223



[24] M. Mirza Aghatabar, S. Koohi, S. Hessabi and M. Pedram, “An empirical investigation of mesh and torus NoC
topologies under different routing algorithms and traffic models,” in Proc. DSD, Lubeck, Germany, 2007, pp. 19–
26, 2017.

[25] P. P. Pande, C. Grecu, A. Ivanov and R. Saleh, “Design of a switch for network on chip applications,” in Proc.
ISCAS, Bangkok, Thailand, pp. 217–220, 2003.

[26] V. Nollet, P. Avasare, H. Eeckhaut, D. Verkest and H. Corporaal, “Run-time management of a MPSoC containing
FPGA fabric tiles,” IEEE Transactions on Very Large-Scale Integration (VLSI) Systems, vol. 16, no. 1, pp. 24–33,
2008.

224 CSSE, 2022, vol.41, no.1


	Novel Power-Aware Optimization Methodology and Efficient Task Scheduling Algorithm
	Introduction
	Related Work
	System Model
	Proposed Model
	Results and Analysis
	Conclusions
	References


