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Abstract: A laser beam is a heat source with a high energy density; this technol-
ogy has been rapidly developed and applied in the field of welding owing to its
potential advantages, and supplements traditional welding techniques. An in-
depth analysis of its operating process could establish a good foundation for its
application in China. It is widely understood that the welding process is a highly
nonlinear and multi-variable coupling process; it comprises a significant number
of complex processes with random uncertain factors. Because of their nonlinear
mapping and self-learning characteristics, artificial neural networks (ANNs) have
certain advantages in comparison to traditional methods in the field of welding.
Laser welding is a nonlinear dynamic process; these processes still pose a major
challenge in the field of control. Therefore, establishing a stable model is a pre-
requisite for achieving accurate control. In this study, the identification and con-
trol of radial basis function neural networks in laser welding processes and
self-tuning PID control methods are proposed to improve weld quality. Using a
MATLAB simulation, it is shown that the proposed method can obtain a good
description of the level of nonlinear dynamic control, and that the algorithm iden-
tification accuracy is high, practical, and effective. Using this method, the weld
width quickly reaches the expected value and the system remains stable, with
good robustness. Further, it ensures the stability and dynamic performance of
the welding process and improves weld quality.

Keywords: Laser welding; radial basis function neural networks; self-tuning;
nonlinear; identification

1 Introduction

The ‘Made in China 2025’ initiative put forth two strategic development demands, namely, ‘green
manufacturing’ and ‘smart manufacturing’. Consequently, ‘green’ and ‘smart’ welding technologies must
be developed in the near future. Laser welding technology has many advantages, including the minimal
deformation of welding artifacts, high depth and width ratios, small heat-affected zones, non-
magnetization of the workpiece, and less stringent requirements regarding the working environment.
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Consequently, this technology has gained widespread applicability in various fields [1–3]. Zhang et al. [4]
presented an identification and control method based on instrumental variables and the self-tuning
controller of the indirect adaptive pole placement for laser welding, while Jian et al. [5] presented a
nonlinear system regression modelling method based on support vector machines, using an improved
kernel for the identification of typical nonlinear welding processes. Liu [6] described the nonlinear
identification and minimum variance adaptive control based on correlation analysis in the laser welding
process; however, correlation analysis suffers from the disadvantages of extensive computational
requirements and zero cancellation process steps, which requires careful trial-and-error to determine the
control-factor parameters, leading to system lag time. Kwabena [7] proposed a remote laser welding process
and system identification process for plasma signals based on the sliding-mode observer, which could
update the dynamic matrix coefficients. The variation in model parameters due to process disturbances in
the laser-fusion phenomenon could be captured by recursively updating the matrix parameters, using the
matrix-forgetting factor approach. Na [8] introduced the discrete Hammerstein model identification of the
nonlinear laser welding processes using the least-squares method [9]. Shen et al. [10] established a bilinear
model for laser welding systems that uses the correlation-based least-squares method and also designed a
minimum-variance adaptive controller for the system based on feedback linearization to obtain acceptable
unbiased estimates for the unknown parameters. Su et al. [11] presented the feed-forward neural network
prediction model and support vector machine classification model to guarantee the accurate estimation of
welding status and the effective identification of the weld defects.

This paper presents an RBF neural network and self-tuning PID nonlinear identification and control
method for laser welding. This technique helps eliminate welding uncertainties and improves weld
quality. It also helps to enhance the smart-control level in the welding process and increases the reliability
of the product. Further, it provides the basis for adjusting the welding parameters online and controlling
the weld-seam quality in real-time.

2 Basic Control Principle for Laser Welding

Laser welding is a modern, high-efficiency, precision-welding method, whose basic working principle
involves a high-energy-density laser beam as the heat source. The light energy is transformed into heat
energy when the laser radiation impinges a metal surface, heating the welding artifacts, which form a hot
melt pool [3,7,10–13]. The heat then rapidly diffuses into the metal, so it ensures fast melting of the metal
and cooling crystallization within a short time [14–16]. In the welding process, the different parameters of
laser pulses can be adjusted (such as width, energy, frequency, and power) to ensure optimal welding in a
short time along with high weld quality. The schematic of the control system for an actual welding process
is shown in Fig. 1. The system consists of a computer, motor drive system, laser driving device, laser head,
operating platform, signal control system, and power supply system. During the welding process, the power
requirements of the system vary according to the materials and their physical characteristics [17–18]. To
guarantee that the welding-seam widths meet the production requirements, the speed of the laser head must
be strictly controlled. The sampling input u is the welding speed of the designed system and the output y is
the weld width. Therefore, we design the nonlinear identification and control based on RBF neural
networks and the self-tuning PID control based on these two variables.

3 Nonlinear System Identification of Welding Process Based on RBF Neural Networks

The radial basis function (RBF) neural network is a class of artificial neural networks with good
nonlinear approximation ability and global optimization capability. Further, it can handle difficult
analytical solutions in complex systems, so it has good potential for generalization. The typical RBF
network structure comprises a three-layer feed-forward network (with an input layer, hidden layer, and
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output layer), wherein the activation function of the hidden layer is the RBF, which can easily transform the
input variable into the output variable [19–24]. The input layer can cause nonlinear changes in the hidden
layer, which are then transferred to the output layer, with each layer having connecting weight variables.
This allows the network to be trained rapidly, avoiding the local optimum, and achieving a good
nonlinear approximation.

3.1 Basic Hypothesis

The description of the nonlinear SISO system utilizes the nonlinear extended auto-regressive moving
average model (NARMAX).

yðkÞ ¼ f ðyðk � 1Þ;…; yðk � nyÞ; uðk � dÞ;…; uðk � nuÞÞ (1)

In Eq. (1), u(.) indicates the input of the model, y(.) represents the output of the system, f(.) shows the
nonlinear relationship between the input and the output. The pure delay of the system is d, which usually
takes the value d ≥ 1.

To establish the above-mentioned nonlinear system model, an RBF neural network was selected to apply
the NARMAX model, namely

ymðkÞ ¼ fmðyðk � 1Þ;…; yðk � nyÞ; uðk � dÞ;…; uðk � nuÞÞ (2)

The structure of the RBF neural network system based on the nonlinear SISO system is shown in Fig. 2.

Figure 1: Schematic of the laser welding control system

Figure 2: RBF neural network structure
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In Fig. 2, the RBF neural network is Rj(x), j = 1,2,…, m.

It is assumed that the system can be represented by the following relations:

x ¼ ½x1ðkÞ; x2ðkÞ;…; xnðkÞ�T

¼ ½yðk � 1Þ;…; yðk � nyÞ; uðk � dÞ;…; uðk � nuÞ�T
(3)

where n represents the number of input layer nodes, n = ny+nu-d+1; ym(k) represents the system output. The
high-Gaussian function is the activating function of the hidden layer in the RBF neural network system.

RjðxÞ ¼ exp � x� cj
�� ��2

2b2j

 !
; j ¼ 1; 2;…;m (4)

In Eq. (4), cj is the j
th activation function centre of the hidden layer, cj ¼ ½cj1; cj2;…; cjn�T ; bj determines

the width deviation of the centre-point function, which can be freely selected within a limited range; and m is
the node number of the hidden layer of the system.

The derivative of the basic function is given:

@RjðxÞ
@bj

¼ RjðxÞ
x� cj
�� ��2

2b3j
(5)

@RjðxÞ
@cji

¼ RjðxÞ ðxi � cjiÞ
b2j

(6)

3.2 Output Calculation of RBF Network

The output of the neurons of the hidden layer can be derived from xðkÞ ¼ ½x1ðkÞ; x2ðkÞ;…; xnðkÞ�Tand
Eq. (3):

RjðxðkÞÞ ¼ exp � xðkÞ � cjðk � 1Þ�� ��2
b2j ðk � 1Þ

 !
; j ¼ 1; 2;…;m (7)

Thus, the system output can be obtained based on the RBF neural network structure and the above
analysis:

eðkÞ ¼ yðkÞ � ymðkÞ (8)

wjðk � 1Þ denotes the neuronal connection weights between the jth hidden layer and the jth output layer in
Eq. (7), when the system is at k � 1 time.

The error of the training RBF network can be represented as

eðkÞ ¼ yðkÞ � ymðkÞ (9)

where yðkÞ is the desired actual output of the neural network and ymðkÞ is the ideal output of the
system model.

The index function of the system is

EðkÞ ¼ 1

2
e2ðkÞ (10)
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3.3 Adjustment of the Connection Weights of the RBF Network Layers based on the Learning Algorithm

The detailed derivation of the weight learning algorithm is based on the gradient-descent method, and is
shown in previous studies [25–27].

Combining Eqs. (8) and (9), the connection weights between the hidden layer and the output layer of the
RBF system can be obtained as follows:

dð2Þ ¼ @EðkÞ
@ymðkÞ ¼

@EðkÞ@eðkÞ
@eðkÞ@ymðkÞ ¼ �eðkÞ (11)

Modifying Eqs. (8) and (11), we can obtain the following formula:

@EðkÞ
@wjðk � 1Þ ¼

@EðkÞ@ymðkÞ
@ymðkÞ@wjðk � 1Þ ¼ dð2ÞRjðxðkÞÞ ¼ �eðkÞRjðxðkÞÞ (12)

The weight-learning algorithm between the hidden layer and the output layer can be represented by

Dwjðk � 1Þ ¼ �g
@EðkÞ

@wjðk � 1Þ ¼ geðkÞRjðxðkÞÞ (13)

wjðkÞ ¼ wjðk � 1Þ þ DwjðkÞ þ aðwjðk � 1Þ � wjðk � 2ÞÞ (14)

where g is the learning ratio and a is the inertia factor.

Combining Eqs. (7) and (10), the learning algorithm of the parameters bjðkÞ and cjiðkÞ in the hidden-
layer Gaussian function can be derived as follows:

dð1Þ ¼ @EðkÞ
@RjðxðkÞÞ ¼

@EðkÞ@ymðkÞ
@ymðkÞ@RjðxðkÞÞ ¼ dð2Þwjðk � 1Þ (15)

On the basis of Eqs. (4), (5), and (14), the following can be derived:

@EðkÞ
@bjðk � 1Þ ¼

@EðkÞ@RjðxðkÞÞ
@RjðxðkÞÞ@bjðk � 1Þ ¼ �eðkÞwjðk � 1ÞRjðxðkÞÞ

xðkÞ � cjðk � 1Þ�� ��2
b3j ðk � 1Þ (16)

@EðkÞ
@cjiðk � 1Þ ¼

@EðkÞ@RjðxðkÞÞ
@RjðxðkÞÞ@cjiðk � 1Þ ¼ �eðkÞwjðk � 1ÞRjðxðkÞÞ xðkÞ � cjðk � 1Þ

b2j ðk � 1Þ (17)

Then, the learning algorithms of bjðkÞ and cjiðkÞ are

DbjðkÞ ¼ �g
@EðkÞ

@bjðk � 1Þ ¼ geðkÞwjðk � 1ÞRjðxðkÞÞ
xðkÞ � cjðk � 1Þ�� ��2

b3j ðk � 1Þ (18)

bjðkÞ ¼ bjðk � 1Þ þ DbjðkÞ þ aðbjðk � 1Þ � bjðk � 2ÞÞ (19)

DcjiðkÞ ¼ �g
@EðkÞ

@cjiðk � 1Þ ¼ geðkÞwjðk � 1ÞRjðxðkÞÞ xðkÞ � cjðk � 1Þ
b2j ðk � 1Þ (20)

cjiðkÞ ¼ cjiðk � 1Þ þ DcjiðkÞ þ aðcjiðk � 1Þ � cjiðk � 2ÞÞ (21)
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3.4 Simulation

Here, a nonlinear model is designed that considers the various factors relevant to the welding process.
u represents the welding speed of the neural network input and y is the weld width of the neural network
output [27–29].

yðkÞ ¼ u3ðk � 2Þ þ u4ðk � 3Þ þ 0:8þ y2ðk � 1Þ
1þ y2ðk � 1Þ þ y3ðk � 2Þ (22)

The input signal is uðkÞ ¼ 0:8 sinð0:01pkÞ and the input is yðk � 1Þ; yðk � 2Þ; uðk � 2Þ; uðk � 3Þf g, the
output is ymðkÞ, the learning ratio is g ¼ 0:5, and the inertia factor is a ¼ 0:05. The fitting process of the
network output and the actual output in the RBF neural system are shown in Figs. 3–7.

It can be seen from Figs. 3–6 that the learning ratio g and the inertia factor a have an important influence
on the training of the RBF neural network. If gand a are too small, the convergence speed of the system will
reduce, the training process will become longer, and errors will increase, resulting in low identification
accuracy. If g and a are too large, the network convergence speed will increase, the training time is
shorter, and the training process will oscillate and diverge. Therefore, optimum values for the learning
ratio g and inertia factor a exist, which can provide both good identification speed and accuracy for the
training model. Through experimentation, we select the learning ratio g ¼ 0:5 and the inertia factor a ¼ 0:05.

As can be seen in Fig. 7, when the learning ratio and the inertia factor are determined, changing the node
number of the hidden layer will have a greater impact on the network. When the number of hidden-layer
nodes is small, the desired output and actual output will not be well fitted; when the number of hidden-
layer nodes is large, the training process will be prone to oscillation and does not achieve good
identification results. Therefore, we choose a 4–6–1 structure for the RBF neural network.

Through the above analysis, when identifying the system based on the RBF neural network, the network
parameters of the learning ratio g, inertia factor a, initial bjð0Þ and cjið0Þ values of the Gaussian basis
functions, initial value wjð0Þ of the weights, and hidden-layer nodes m will have different degrees of
impact on the network’s training processes.

4 Application of RBF Neural Network PID Self-Tuning Control to Laser Welding Control

The structure of the self-tuning PID control based on RBF neural networks is shown in Fig. 8.

The incremental PID control algorithm is used in this system. If ecðkÞ ¼ rðkÞ � yðkÞ, the following
relations can be obtained:

DuðkÞ ¼ Kpðk � 1Þ½ecðkÞ � ecðk � 1Þ� þ Kiðk � 1ÞeðkÞ
þ Kdðk � 1Þ½ecðkÞ � 2ecðk � 1Þ þ ecðk � 2Þ� (23)

where Kp, Ki, and Kd are PID tuning parameters,

xc1ðkÞ ¼ ecðkÞ � ecðk � 1Þ
xc2ðkÞ ¼ ecðkÞ
xc3ðkÞ ¼ ecðkÞ � 2ecðk � 1Þ þ ecðk � 2Þ

8<
: (24)

Therefore, the control law is

uðkÞ ¼ uðk � 1Þ þ DuðkÞ (25)

and the index function is

EcðkÞ ¼ 1

2
ec

2ðkÞ (26)
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Figure 3: Recognition results for the RBF neural network (g ¼ 0:1)
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Figure 4: Recognition results for the RBF neural network (g ¼ 0:5)
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Figure 5: Recognition results for the RBF neural network (g ¼ 1)
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Figure 6: Recognition results for the RBF neural network (g ¼ 2)
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Figure 7: Recognition results for the RBF neural network (g ¼ 0:5, a ¼ 0:05)

Figure 8: Structure of the self-tuning PID control-based method on the RBF neural network
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By adjusting the PID parameters using the gradient-descent method, the following results can be
obtained:

DKpðkÞ ¼ �gc
@EcðkÞ

@Kpðk � 1Þ ¼ �gc
@EcðkÞ@yðkÞ@uðkÞ

@yðkÞ@uðkÞ@Kpðk � 1Þ
¼ gcecðkÞ

@yðkÞ
@uðkÞ ½ecðkÞ � ecðk � 1Þ�

DKiðkÞ ¼ �gc
@EcðkÞ

@Kiðk � 1Þ ¼ �gc
@EcðkÞ@yðkÞ@uðkÞ

@yðkÞ@uðkÞ@Kiðk � 1Þ
¼ gcecðkÞ

@yðkÞ
@uðkÞ ecðkÞ

DKdðkÞ ¼ �gc
@EcðkÞ

@Kdðk � 1Þ ¼ �gc
@EcðkÞ@yðkÞ@uðkÞ

@yðkÞ@uðkÞ@Kdðk � 1Þ
¼ gcecðkÞ

@yðkÞ
@uðkÞ ½ecðkÞ � 2ecðk � 1Þ þ ecðk � 2Þ�

8>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:

(27)

The learning algorithm of the PID parameters is as follows:

KpðkÞ ¼ Kpðk � 1Þ þ DKpðkÞ þ acðKpðk � 1Þ � Kpðk � 2ÞÞ
KiðkÞ ¼ Kiðk � 1Þ þ DKiðkÞ þ acðKiðk � 1Þ � Kiðk � 2ÞÞ
KdðkÞ ¼ Kdðk � 1Þ þ DKdðkÞ þ acðKdðk � 1Þ � Kdðk � 2ÞÞ

8<
: (28)

When calculating the PID parameters using Eqs. (27) and (28), we need information regarding the

Jacobian
@yðkÞ
@uðkÞ. However, as the controlled object model is unknown and the Jacobian information

cannot be obtained directly, the following approximation is made:

@yðkÞ
@uðkÞ �

@ymðkÞ
@uðkÞ (29)

The RBF network input is represented by

x ¼ ½x1ðkÞ; x2ðkÞ;…; xnðkÞ�T ¼ ½yðk � 1Þ;…; yðk � nyÞ; uðk � dÞ;…; uðk � nuÞ�T (30)

Therefore, xnyþ1ðk þ 1Þ ¼ uðkÞ, and the following result can be obtained by combining
Eqs. (7) and (8):

@ymðkÞ
@uðkÞ ¼

Xm
j¼1

@RjðxðkÞÞ
@uðkÞ ¼

Xm
j¼1

wjðk � 1ÞRjðxðkÞÞ
cjðnyþ1Þðk � 1Þ � uðkÞ

b2j ðk � 1Þ (31)

If the ny, nu, and d values of the nonlinear structural system are known, the steps for self-tuning PID
identification and control based on the RBF neural network will be as follows:

(1) Input the initial data of the system, and set the initial parameters bjð0Þ, cjið0Þ, and wjð0Þof the RBF
network and system-related parameters of the hidden layer neuron number m, the learning ratio g, and the
inertia factor a. Set the initial value of the PID parameters Kpð0Þ, Kið0Þ, and Kdð0Þ, along with the
training parameters of the learning ratio gc and inertia factor ac.

(2) Sample the actual system output yðkÞ and the reference input yrðkÞ, and calculate uðkÞ using
Eqs. (22)–(24).

(3) Calculate the system output ymðkÞ using Eqs. (7) and (8). The Jacobian information can be derived
using Eq. (29) and (30).
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(4) Use Eqs. (26) and (27) to calculate the PID parameters KpðkÞ, KiðkÞ, and KdðkÞ.
(5) Use Eqs. (13), (18), and (20) to compute the network parameters wjðkÞ, bjðkÞ, and cjiðkÞ, respectively.
(6) Return to Step (2) and continue the loop.

If the welding speed u is the system input, and the weld width y is the system output [29,30]; therefore,
the nonlinear system of the laser welding control follows the given relation:

yðkÞ ¼ u3ðk � 2Þ þ u4ðk � 3Þ þ 0:8þ y2ðk � 1Þ
1þ y2ðk � 1Þ þ y3ðk � 2Þ (32)

The input signal is a square wave signal yrðkÞ ¼ 0:25signðsinð0:002pkÞÞ þ 0:75, the structure of the
RBF neural network is 6–10–1, the input is yðk � 1Þ; yðk � 2Þ; uðkÞ; uðk � 1Þ; uðk � 2Þ; uðk � 3Þf g, and
the output is ymðkÞ. The network learning ratio is g ¼ 0:5 and the inertia factor is a ¼ 0:05. Assuming
that the PID parameters’ initial values are 0, the PID parameter of the learning ratio is gc ¼ 1 and that of
the inertia factor is ac ¼ 0:1.
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Figure 9: Variations in the plots with the learning ratio gc and the inertia factor ac of PID parameters when
the system diverges (g ¼ 1, a ¼ 0:1) (a) Control results and network-fitting result curves (b) Fitting-error
curves (c) Jacobian-information curves (d) Adaptive-adjustment curves of PID parameters
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With changes in the data length L, various indicators will change in different ways if the structural
parameters remain unchanged. If L < 3500, the control results and network fitting results are improved,
the Jacobian information is relatively stable, and the PID parameters change with periodic variations in
the data length L. When L ≥ 3500, the entire system begins to oscillate and diverge; if the system based
on the RBF network does not adjust the stable PID parameters, the proportional parameters and integral
parameters will continue to increase, all of which will exacerbate the system divergence.

If the learning ratio gc and the inertia factor ac of the PID parameters are adjusted at this time, the system
results will become stable, as shown in Fig. 9. However, the proportional parameters and integral parameters
still continue to increase, affecting the stability and measurement accuracy of the system.

If the various parameters are set to reasonable values, the results will be accurate. The results regarding
system identification based on the RBF neural network and self-tuning PID control based on the RBF neural
network perform well.

5 Conclusion

In this study, self-tuning PID control based on the RBF neural network is used to identify and control a
nonlinear laser welding system with unknown parameters. The simulation results show that the control
algorithm has high identification accuracy, and is practical and effective. The weld width quickly reached
expected values, the system remains stable and robust. We expect the results of this study to provide
relevant information for the establishment of a new, smart green welding manufacturing protocol for
modern equipment.

The laser welding control technology investigated in this study can improve the applicability of laser
technology, and can greatly improve the efficiency and accuracy of welding. Furthermore, it is
advantageous in terms of its high power density and fast energy release, improving operation efficiency.
The focus of laser technology is smaller, making the adhesion between welded materials better without
causing much damage and material deformation. These systems can meet the welding requirements of
different materials—both metals and non-metals—and because of the penetration and refractivity of the
laser itself, an arbitrary focus within 360° can be realized according to the trajectory of the light itself.
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