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Abstract: This paper proposes a solution to the open vehicle routing problem with
time windows (OVRPTW) considering third-party logistics (3PL). For the typical
OVRPTW problem, most researchers consider time windows, capacity, routing
limitations, vehicle destination, etc. Most researchers who previously investigated
this problem assumed the vehicle would not return to the depot, but did not con-
sider its final destination. However, by considering 3PL in the B2B e-commerce,
the vehicle is required back to the nearest 3PL location with available space. This
paper formulates the problem as a mixed integer linear programming (MILP)
model with the objective of minimizing the total travel distance. A coordinate
representation particle swarm optimization (CRPSO) algorithm is developed to
obtain the best delivery sequencing and the capacity of each vehicle. Results of
the computational study show that the proposed method provides solution within
a reasonable amount of time. Finally, the result compared to PSO also indicates
that the CRPSO is effective.

Keywords: Third-party logistics; open vehicle routing problem with time
windows; dedicated destination

Notations
t: Iteration index, t = 1…T
i: Particle index, i = 1…I
d: Dimension index, d = 1…D
u: Uniform random number in the interval [0,1]
w(t): Inertia weight in the tth iteration
vid(t): Velocity of the ith particle at the dth dimension in the tth iteration
xid(t): Position of the ith particle at the dth dimension in the tth iteration
Pid: Personal best position (pbest) of the ith particle in the dth dimension
Pgd: Global best position (gbest) in the dth dimension
Cp: Personal best position acceleration constant
Cg: Global best position acceleration constant
Xmax: Maximum position value
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Xmin: Minimum position value
Xi: Vector position of the ith particle, [xi1, xi2, … xiD]
Vi: Vector velocity of the ith particle, [vi1, vi2, … viD]
Pi: Vector personal best position of the ith particle, [Pi1, Pi2, … PiD]
Pg: Vector global best position, [Pg1, Pg2, … PgD]
Ri: Set of vehicle routes corresponding to the ith particle
Di: Set of distances between vehicles and destinations corresponding to ith particle
Ψ(Xi): Fitness value of Xi

1 Introduction

In B2B e-commerce, logistics is viewed as an increasingly important activity. Regardless of industry,
most e-businesses rely on logistics management to enhance their competitiveness [1]. Despite the
importance of logistics management, e-businesses tend to focus primarily on developing their core
abilities (e.g., R&D, product, marketing). Logistics and other non-core activities often are outsourced to
other companies [2]. Independent third-party logistics (3PL) companies provide professional, integrated
distribution services and information technology to help decrease fixed and variable costs of logistics [3].
With the rapid development of electronic commerce, e-businesses are facing new challenges in the
logistics supply chain and are partnering extensively with 3PL firms to deliver products on time, increase
customer satisfaction, decrease logistics costs and increase profits.

Logistics professionals must take many constraints into account in order to plan optimal distribution
routes that consider customer demand, vehicle routing, vehicle capacity, etc. Together, these constraints
associated with delivery logistics are called the vehicle routing problem (VRP) [4]. Ref. [5] solved online
pick-to-sort order batching problem for managing frequent arrivals in B2B e-commerce. Ref. [6] applied
the meta-heuristic method of ant colony optimization (ACO) to an established set of vehicle routing
problems (VRP). The VRP can be divided into two types: the Hamiltonian cycle (traditional VRP, where
the vehicle returns to the depot), and the Hamiltonian path (the open vehicle routing problem, or OVRP,
where the vehicle does not need to return to the depot). Thus, routing destination is the biggest difference
between the VRP and the OVRP.

In this paper, we propose a solution to the open vehicle routing problem with time windows (OVRPTW)
considering 3PL. In the problem, a 3PL company leaves its vehicles at its client’s depot until they are loaded.
Post-delivery, vehicles do not return to the depot, but to the nearest 3PL company location with available
space. In most previous OVRPTW literature that considered 3PL, a vehicle’s final destination was not
considered. However, in this research, we not only consider common constraints in OVRPTW such as
vehicle capacity, but also a 3PL constraint in which the vehicles must return to a 3PL company location ·
a limitation of destination. We propose a mixed integer linear programming (MILP) model that considers
these practical characteristics. In this research, we use a classical OVRPTW formulation with 3PL
considerations to solve an experimental problem set. Due to the computational complexity of the model,
we designed a coordinate representation particle swarm optimization (CRPSO) algorithm to obtain the
near-optimal vehicle routing plan with the objective of minimizing total travel distance.

The rest of this paper is organized as follows. In Section 2, we review the literature on related VRPs
considering 3PL and OVRPTW. In Section 3, we present the proposed MILP model for the problem and
the CRPSO algorithm used to obtain the solutions. In Section 4, we present a computational study that
demonstrates the excellent performance of the CRPSO algorithm. Finally, in Section 5 we summarize the
results of this research and suggest a possible direction for future research.
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2 Literature Review

Many enterprises outsource non-core functions such as distribution logistics to promote
competitiveness; in response to this trend, the 3PL sector is growing rapidly [2]. Increasingly, VRP
researchers also are considering 3PL. [7] presented a web-based decision support system (DSS) for waste
lube oils collection and recycling operations considering cooperation with a 3PL company. Because the
logistics function is outsourced to a 3PL company, vehicle routing begins from the depot and ends at a
3PL location. This feature of delivery is similar to our research. In the study, the DSS system enables
schedulers to tackle reverse supply chain management problems interactively and can be applied to
realistic reverse logistical planning problems [8].

Baykasoglu and Kaplanoglu proposed a multi-agent based load consolidation decision-making
approach considering many kinds of logistics mechanisms, including in-house logistics systems and 3PL,
so as to improve the logistics efficiency of enterprises [9]. Amorim et al. formulated models for a case of
perishable goods with a mix of fixed and loose shelf lives. When the shelf life of product did not match
the distribution plan, it would be outsourced to a 3PL company. The results show that the economic
benefits derived from using an integrated approach depend greatly on the freshness level of delivered
products [10]. Moon et al. extended the VRPTW to the VRPTW with overtime and outsourcing vehicles
(VRPTWOV), which allows overtime for drivers and the possibility of using outsourced vehicles. They
developed a mixed integer programming model, a genetic algorithm (GA) and a hybrid algorithm based
on simulated annealing to demonstrate the efficiency of their solution [11]. In this paper, we extend
research in this important area by proposing a solution to an experimental problem set that incorporates
3PL considerations into a classical OVRPTW formulation.

Routing destination is the biggest difference between VRP and OVRP. VRP is called the Hamiltonian
cycle, and OVRP is called the Hamiltonian path [12]. All other constraints, such as vehicle capacity, time
windows, etc. are the same. OVRP was not as important as VRP in the early 1980s. Schrage was the first
to classify routing types and define OVRP with the objective of minimizing the number of routes
(i.e., vehicles) and total cost [13].

OVRP is a very common problem in daily life, especially in logistics, transportation and other similar
industries. Several scholars have proposed solutions to problems in these contexts. Sariklis and Powell
proposed a two-stage model based on a minimum spanning tree to solve a vehicle routing decision
problem [14]. Li et al. developed a hybrid ant colony algorithm (ACO) combined with taboo search (TA)
to solve OVRP [15]. Fleszar et al. proposed variable neighborhood search (VNS) to determine the
customer service sequence [16]. OVRPTW (the focus of this research) extends OVRP by considering the
concept of time windows. Recently, researchers have proposed solutions to such problems. Repoussis
et al. proposed a comprehensive mathematical model to capture all aspects of OVRPTW, which they
solved using a greedy look-ahead route construction heuristic algorithm [7].

In most of the extant literature, researchers solved VRP, VRPTW, OVRP and OVRPTW as individual
problems. Unlike previous studies, however, this paper addresses a new topic: OVRPTW considering 3PL.
Since OVRPTW is NP-hard, most researchers have solved such problems using heuristic algorithms [16].
However, due to the computational complexity of the model, it was necessary to develop an algorithm
based on particle swarm optimization (PSO) to solve the proposed problem. Since a standard PSO
algorithm cannot be applied to discrete problems directly, the encoding and decoding methods are critical.
Ai and Kachitvichyanukul proposed a PSO algorithm for solving a vehicle routing problem with
simultaneous pickup and delivery (VRPSPD) as well as a capacitated vehicle routing problem (CVRP)
[17,18]. The solution representation for VRPSPD with n customers and m vehicles is a (n + 2m)
dimensional particle. The decoding method starts by transforming the particle into a priority list of
customers and a priority matrix of vehicles to serve each customer. The vehicle routes are constructed
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based on the customer priority list and the vehicle priority matrix. Applying this encoding method, we
propose a coordinate representation particle swarm optimization (CRPSO) algorithm to obtain the optimal
solution. The designed algorithm with n customers and m vehicles yields (n + 2m + m) dimensions for
each particle. The encoding and decoding methods are described in detail in Section 4.

3 OVRPTW Considering 3PL

3.1 Problem Description

The logistics department at the depot is determining routes for delivery vehicles, and the forwarder will
load goods into the vehicles based on customer demand and deliver them following the assigned routes. As
shown in Fig. 1, the problem considering 3PL can be described as follows. There is one depot, and the
number of vehicles and demand for each customer are known. Many vehicles owned by a 3PL company
are parked at the depot and ready to be loaded. All vehicles have the same capacity, and depart the depot
to deliver goods to customers with specific demand. Each customer must be served only once by one
vehicle within the delivery time window, which is bounded by an earliest start time and latest start time.
Since this is an OVRPTW problem considering 3PL, the vehicles do not return to the depot, but to the
nearest 3PL company location with available space. Based on these constraints, the objective is to
minimize the total travel distance.

3.2 Mathematical Model

In this section, we formulate the mixed integer linear programming model for the addressed OVRPTW
problem considering 3PL. Specifically, we modify Repoussis et al.’s MILP model [7] to incorporate 3PL
considerations. Notations are defined as follows:

A. Notations

� Indexes

i, j: the index of the node being used as the demand point, including the depot

k: the service vehicle index

r: the index of 3PL company locations

Figure 1: Illustration of delivery logistics
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� Sets

N: the set of customers including node of the depot, where i or j = 1.

V: the set of vehicles

PL: the set of 3PL locations

� Parameters

C: capacity of each vehicle

qi: demand of customer i

cij: the cost from node i to node j, i ≠ j

tij: travel time from node i to node j, i ≠ j

dij: the distance from node i to node j, i ≠ j

wk: fixed cost for the acquisition of vehicle k

[ei,li]: time window, i ∈ N, where

ei: the earliest service start time for customer i

li: the latest service start time for customer i

si: service time of customer i

pi: departure time from customer i

ai: arrival time to customer i

� Variables

xkij ¼
1 if customer j is visited after customer i by vehicle k
0 otherwise

�
(1)

zk ¼ 1 if vehicle k is active
0 otherwise

�
(2)

Yk
ir ¼

1 if 3PL r is visited after customer i by vehicle k
0 otherwise

�
(3)

C. Mixed integer linear programming model

We formulated a mixed integer linear programming model for the addressed OVRPTW problem
considering 3PL. We describe the objective function and constraints below.

Objective function

Min
XVj j

k¼1

XN
i¼1

XN
j¼1

dijx
k
ij (4)

The objective function is to minimize the total travel distance.

Subject to

XVj j

k¼1

XN
i¼1

xkij ¼ 1; 8j ¼ 2; 3;…N (5)
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XVj j

k¼1

XN
j¼1

xkij ¼ 1; 8i ¼ 2; 3;…N (6)

Constraints (5) and (6) ensure that exactly one vehicle arrives at and departs from each customer
and the depot.

xkij � zk ; 8i; j ¼ 2; 3;…N ;8k ¼ 1; 2;…; Vj j (7)

Constraint (7) is relative to x and z variables, ensuring that all customers are visited by active
vehicles.

XN
i¼1

xkiu�
XN
j¼1

xkuj ¼ 0;8k ¼ 1; 2;…; Vj j; 8u ¼ 1; 2;…;N (8)

Constraint (8) guarantees the flow continuance for each vehicle route.

XN
i¼1

qi
XN
j¼1

xkij

 !
� C; 8k ¼ 1; 2;…; Vj j (9)

Constraint (9) ensures that the total service quantity of each vehicle does not exceed its capacity.X
ði;jÞ2S�S

xkij � Sj j � 1; 8S � N : 2 � Sj j � N ; 8k ¼ 1; 2;…; Vj j (10)

Constraint (10) eliminates sub-tour routes.

aj � ðpi þ tijÞ � ð1� xkijÞM ;8k ¼ 1; 2;…; Vj j;8i; j ¼ 1; 2;…;N (11)

aj � ðpi þ tijÞ þ ð1� xkijÞM ;8k ¼ 1; 2;…; Vj j;8i; j ¼ 1; 2;…;N (12)

Constraints (11) and (12) are related to time windows and ensuring feasible schedules for vehicles. If
customers i and j are scheduled consecutively on the route of vehicle k, the arrival time of customer j is
equal to the departure time of customer i plus the travel time between these two customers, where M is a
large number.

ai � pi � Si;8i ¼ 2; 3;…N (13)

ei � pi � li;8i ¼ 2; 3;…N (14)

Constraints (13) and (14) insure that the relationships between arrival time, departure time and service
time are compatible with customer i’s time window.

pi ¼ 0 (15)

Constraint (15) sets the departure time of all vehicles from the depot to be zero.

xkij 2 0; 1f g; 8i; j ¼ 1; 2;…N ; 8k ¼ 1; 2;…; Vj j (16)

zk 2 0; 1f g; 8i; j ¼ 1; 2;…N ;8k ¼ 1; 2;…; Vj j (17)

Lastly, constraints (16) and (17) define variables x and z for each vehicle k. So far, Eqs. (1) to (17)
describe the standard VRPTW formulation without considering the “open” routing concept.
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XN
j¼2

xk1j � 1;8k ¼ 1; 2;… Vj j (18)

XN
j¼2

xki1 ¼ 0;8k ¼ 1; 2;… Vj j (19)

Constraints (18) and (19) specify such “open” characteristics. Constraint (18) guarantees that every
vehicle will depart from the depot to service a sequence of customers, and constraint (19) ensures that no
vehicles will return to the depot. So far, Eqs. (1) to (19) comprise the classical OVRPTW model. In this
case, we need the following constraint:

XNþPL

r¼Nþ1

Yk
ir ¼ 1 (20)

Constraint (20) ensures that the final destination for each vehicle is a 3PL company location. It is worth
mentioning the difference between our problem and the original problem solved by [7]. Equation (20) limits
the end point of each vehicle’s route to a 3PL company location. That is, when a vehicle finishes making its
deliveries, it returns to a specific destination.

3.3 CRPSO Algorithm

We developed a coordinate representation particle swarm optimization algorithm to search for near-
optimal solutions of the appropriate customer sequence and determine the feasible capacity of each
vehicle based on coordinate dimensions and evolutionary processes. To evaluate the fitness values of the
coordinate-coded dimensions obtained from the particle swarm optimization algorithm, we first developed
a customer sequencing assignment procedure to determine the customer delivery priorities. Then, we used
coordinate representation to generate a vehicle priority matrix and a destination priority matrix. In order
to construct vehicle routes, vehicle capacity must be limited. Following the procedures described in the
previous section with the associated constraints, the travel distance for each vehicle route can be
calculated as the fitness value of each particle dimension. The CRPSO is repeated until the termination
condition is satisfied.

Particle swarm optimization was proposed by Eberhart and Kennedy [19]. PSO was first intended to
simulate social behavior as a stylized representation of the movement of a group of organisms (e.g., a flock
of birds or a school of fish). [20] propose that PSO achieves better specific work output across a range of
algorithm control parameters and converges to optimum solution with lower computation cost. [21]
implement Particle swarm optimization (PSO) and artificial bee colony (ABC) optimization methods to
the histogram stretching technique in parameter selection process. [22] also integrate Particle swarm
optimization (PSO) to obtain the optimal parameter combination of the regularization parameter c and
the kernel function width coefficient in least squares support vector machine (LSSVM). The newly
combined methodology provides better generalization ability, and higher prediction accuracy for
highway cost prediction in complex environments. In PSO, a swarm of P particles serves as a searching
agent for a specific problem solution. The searching strategy of PSO requires updating the new position
and velocity for the next iteration based on the current velocity of each particle (vi), the personal best
experience of each particle (xp(i)), and the global best experience of all particles (xg). The procedure of
calculating the new velocity and the position of every particle in the next iteration could be shown in
the mathematical model. Equation (21) shows that the new velocity of the particle is updated using the
current position and the current velocity. Each particle moves the new position in the next iteration
according to the Equation (22).
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vid t þ 1ð Þ ¼ w � vid tð Þ þ c1r1 xp idð Þ tð Þ � xid tð Þ� �þ c2r2 xgd tð Þ � xid tð Þ� �
(21)

xid t þ 1ð Þ ¼ xid tð Þ þ vid t þ 1ð Þ (22)

where vid (t) represents the velocity of the d
th dimension of the ith particle in the tth iteration. The variable xid(t)

represents the position of the dth dimension of the ith particle in the tth iteration. The variable w represents the
inertia weight, c1 is the self-cognition acceleration coefficient, and c2 is the social cognition acceleration
coefficient, r1 and r2 are two separately generated, uniformly distributed random numbers in the range [0,1].

The CRPSO framework for solving OVRPTW considering 3PL in this paper is based on the
Object Library for Evolutionary Techniques [23]. The notations and a description of the algorithm are
provided below.

CRPSO Framework

1) Set iteration t = 1. Initialize I particles as a population, generate the ith particle with random position Xi

in the range [Xmax, Xmin]. Velocity Vi = 0 and personal best Pi = Xi for i = 1…I.

2) For i = 1…I, decode Xi to a set of vehicle routes Ri and vehicle destinationDi (see decoding method in
Section 4.3).

3) For i = 1…I, compute the performance measurement of Ri and Di, i.e., the total travel distance for all
routes, and set this as the fitness value of Xi, represented byΨ(Xi).

4) Update pbest, for i = 1…I, update Pi = Xi, if Ψ(Xi) < Ψ(Pi).

5) Update gbest, for i = 1…I, update Pg = Pi, if Ψ(Pi) < Ψ(Pg).

6) Update the velocity and the position of each ith particle

wðtÞ ¼ wðTÞ þ ðt–TÞ=ð1–TÞ½wð1Þ–wðTÞ	 (23)

vidðτþ 1Þ ¼ wðtÞvidðtÞ þ CpuðPid–xidðtÞÞ þ CguðPgd–xidðtÞÞ (24)

xidðt þ 1Þ ¼ xidðtÞ þ vidðt þ 1Þ (25)

If xid (t + 1) > Xmax, then

xidðt þ 1Þ ¼ Xmax (26)

vidðt þ 1Þ ¼ 0 (27)

If xid (t + 1) < Xmin, then

xidðt þ 1Þ ¼ Xmin (28)

vidðt þ 1Þ ¼ 0 (29)

7) If the stopping criterion is met, i.e., t = T, stop. Otherwise, t = t + 1 and return to step 2.

8) Decode Pg as the best set of vehicle routes found, R* + D* with its corresponding performance
measurement Ψ(Pg).

3.4 Solution Representation of CRPSO

The solution representation of vehicle routes is one of the key elements for an effective implementation
of CRPSO to solve OVRPTW considering 3PL. The solution representation in CRPSO of OVRPTW
considering 3PL with n customers and m vehicles consists of (n + 2m + m) dimensional particles, as
shown in Fig. 2. Each dimension of a particle is encoded as a real number. Hence, the solution
representation is divided into four parts: the customer priority list, the vehicle priority matrix, the 3PL
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destination priority matrix, and the vehicle capacity matrix. Fig. 2 illustrates an example for eight customers
and two vehicles.

The first eight dimensions are related to customers, and each dimension represents a single customer.
These dimensions are required to create a priority list of customers to be added to the routes. The priority
list is determined by sorting the first eight dimensional values. Smaller values indicate higher priority
customers. The second and third parts of CRPSO extract the reference points for vehicles. These
reference points determine the vehicle priority matrix for routes, which is constructed based on the
relative distance between these points and a customer’s location. In other words, a vehicle is defined as a
reference point on a Google map. Customers are prioritized to be served by closer vehicles. These
reference points also determine the 3PL destination priority matrix based on the distance between these
points and 3PL company locations. In the second and third parts, the four dimensions consist of longitude
and latitude for each vehicle. Therefore, the representation is called a coordinate representation. The last
part, comprised of two dimensions, is associated with the capacity of each vehicle. The value of each
dimension is the service limitation for each vehicle. The purpose of this representation is to avoid
problems such as exceeding delivery capacity.

In summary, the proposed solution representation consists of three types of dimensional designs,
including customer sequencing, vehicle coordinates, and vehicle capacity. The problem with n customers
and m vehicles requires (n + 2m + m) dimensions for every particle. Each particle dimension is encoded
as a real number. The first n dimensions represent customer priorities, and the values of each dimension
are converted into a customer priority list in the decoding procedure. The second 2m dimensions
represent the reference points for vehicles. These values are turned into the vehicle priority matrix and the
3PL destination priority matrix. The last m dimensions represent the capacity of each vehicle. An
example of the CRPSO solution representation is displayed in Fig. 3.

3.5 Decoding Method

The decoding method is modified from Ai and Kachitvichyanukul’s decoding method in our CRPSO
solution [17]. The notations and decoding procedure are presented below.

Notations

xid Position of the ith particle in the dth dimension

Rij Route of the j
th vehicle corresponding to the ith particle

Dij Distance to destination of the jth vehicle corresponding to the ith particle

Decoding procedure

1) Construct the priority list of customers (U) and the list of vehicles (L).

i) Build set S = {1, 2, …, n} and U ¼ h.
ii) Select c from set S where xic ¼ min

d2S
xid .

iii) Add c to the last position in set U.

Figure 2: Particle dimensions in CRPSO
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iv) Remove c from set S.
v) Repeat step 1, parts b–d until S ¼ h.

2) Construct the vehicle priority matrix (V) and the 3PL destination priority matrix (D).

a. Set the vehicle reference position. For j = 1…m, set xrefi ¼ xi;nþj and yrefi ¼ xi;nþmþj.

b. For each customer k, k = 1…n.

i) For each vehicle j = 1…m, set dj as the Euclidean distance between customer k and the reference
point of vehicle j.

ii) Build set S = {1, 2, …, m} and Vk ¼ h.
iii) Select c from set S where dc ¼ min

d2S
dd.

iv) Add c to the last position in set Vk.
v) Remove c from set S.
vi) Repeat step 2b, parts iii–v until S ¼ h.

c. For each vehicle j, j = 1…m

i) For each 3PL z = 1…Z, set lj as the Euclidean distance between 3PL z and the reference point of
vehicle j.

ii) Build set S = {1, 2, …, Z} and Dk ¼ h.
iii) Select c from set S where lc ¼ min

d2S
ld.

iv) Add c to the last position in set Dk.
v) Remove c from set S.
vi) Repeat step 2c, parts iii–v until S ¼ h.

3) Determine vehicle routes and vehicle 3PL destinations.

a. Set k = 1.

b. Add customers one by one to the route.

i) Set l = Uk and p = 1.
ii) Set j = Vl,q.
iii) Create a new candidate route by inserting customer l into the best sequence in route Rij, which has

the smallest additional cost.
iv) Check the capacity and route time constraints of the candidate route.
v) If a feasible solution is reached, update route Rij with the candidate route.
vi) If p = m, go to step 3c. Otherwise, set p = p + 1 and go to step 3b, part ii.

c. If k = n, stop. Otherwise, set k = k + 1 and repeat step 3b.

d. Set j = 1

e. Assign vehicles one by one to a 3PL destination.

i) Set l = Lk and q = 1
ii) Set z = Dl,q.
iii) Create a new candidate destination by assigning vehicle l to the best destination in the 3PL Dij.
iv) If a feasible solution is reached, update the route Dij with the candidate destination.
v) If q = Z, stop. Otherwise, set q = q + 1 and go to step 3e, part ii.
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4 Computational Results

This section compares the performance of the developed CRPSO algorithm to PSO using problems of
the same scale, and evaluates the quality of the CRPSO solution by analyzing the computational results. This
section consists of three parts: benchmark instances, parameter settings and PSO dimensions, and a
comparison table. We tested our research experiments using Solomon’s 56 VRPTW benchmark instances
[24] on a computer equipped with an Intel(R) Core(TM) i5-3210M 2.50GHz CPU and 4 GB RAM
running the Microsoft Windows 7 operating system.

4.1 Benchmark Instances

We tested the proposed heuristic on three different data sets [24]. Solomon’s 56 VRPTW benchmark
problems consist of six sets (C1, C2, R1, R2, RC1, RC2), each of which contains between 8 and
12 problems; each data set has 100 nodes. C, R, and RC represent three different types of customer sets.
C represents Clustered customers, R indicates randomly (uniformly) distributed customers, and RC
represents Semi-clustered customers; that is, a combination of clustered and randomly (uniformly)
distributed customers.

Figure 3: CRPSO solution representation
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Moreover, C, R and RC problems can be further classified into two types: type 1 (C1, R1, RC1)
problems have short time windows and small vehicle capacities, and type 2 (C2, R2, RC2) problems
have long time windows and large vehicle capacities. However, the proposed problem in this paper is
OVRPTW considering 3PL, so the problem set differs from Solomon’s data [24]. Therefore, we divided
the original 100 nodes in the experimental problem set into two groups; we assigned the first 90 nodes in
each problem to customers, and the remaining 10 nodes to 3PL companies. After a vehicle makes its final
delivery, it must return to the nearest 3PL location with available space. Vehicle destinations are limited
to the 10 3PL nodes, but the capacity of each 3PL location is limited to three (i.e., only three vehicles
can return to each 3PL location). Hence, each vehicle must be assigned to a 3PL location according to
the 3PL destination priority matrix. If the nearest 3PL is full, the vehicle will return to the nearest
location with available space.

4.2 Parameter Settings and PSO Dimensions

The parameter settings in PSO and CRPSO include population size as 100, iteration as 200, Cp as 2 and
Cg as 2. A PSO problem with n customers and m vehicles consists of (n + m) dimensional particles. Each
dimension in each particle is encoded as a real number, and the solution representation is divided into
two parts. The first part is used to create a customer priority list by sorting the dimensional values.
Smaller values indicate higher priority customers. The second part is same as the capacity dimension
in CRPSO.

4.3 Comparison Table

The proposed CRPSO algorithm and PSO was implemented using the Visual Studio C# programming
language. Some criteria can be used to evaluate the effectiveness of the developed CRPSO algorithm. One
common criterion is the solution gap between the optimal solution of PSO and the best solution found by the
CRPSO algorithm. The experiments verify the solution to determine the improvement rate for travel distance.
The solution gap is defined as below [25].

Solution Gapð%Þ ¼ S � B

B
� 100% (30)

where B is the optimal solution obtained from the PSO result, and S is the optimal solution of the
CRPSO algorithm.

All 56 data sets from Solomon’s problems [24] are tested and the results are shown in Tab. 1. In the table,
TD is travel distance, NV is the number of vehicles used, and CPU is the computational time in seconds. The
objective in this research is to minimize the total travel distance, that is, TD is viewed as an indicator of
solution quality that enables the PSO and CRPSO solutions to be compared. Overall, the proposed
CRPSO algorithm is effective at finding the shortest path to service all customers. Compared to the PSO
result, the average travel distances for all three problem types are shorter, as indicated by the solution
gap. Beyond the solution gap, NV is another important index to discuss.

Figs. 4–6 indicate solution quality based on TD and NV. In problem set C, CRPSO is more efficient than
PSO for most problems. Although the NVof PSO is less than the NVof CRPSO in problem 5 of subset C2,
the total distance is also longer. In this case, routes with a lower NVare not the most appropriate solution. The
same situation can be also observed in problem 7 of subset R1. Moreover, PSO and CRPSO have
approximately equivalent solving abilities in problem set R compared with the other two problem types.

The experiment in this paper reveals two factors that can be used as comparison criteria to analyze
solution quality. As shown in the comparison table, the proposed CRPSO is more feasible for solving
OVRPTW considering 3PL. Whether by total travel distance or number of vehicles, CRPSO consistently
outperforms PSO with respect to solution quality. Nonetheless, the number of vehicles used is slightly
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higher in a few problems, as mentioned above. In the tradeoff between travel distance and number of routes,
this is a reasonable result. Our approach seems to be a very practical tool that can help 3PL companies
effectively schedule their daily routes.

Table 1: Experimental result of PSO and CRPSO

Set NO. PSO CRPSO Gap(%)

TD NV CPU(s) TD NV CPU(s)

C1 1 5,839.49 25.00 0.09 5,829.17 23.00 0.65 −0.18

2 5,886.57 23.00 0.08 5,811.75 23.00 0.66 −1.27

3 5,996.79 25.00 0.08 5,833.07 25.00 0.92 −2.73

4 6,285.30 23.00 0.09 5,599.02 20.00 0.69 −10.92

5 6,040.21 25.00 0.10 5,887.57 23.00 0.67 −2.53

6 6,437.06 23.00 0.09 5,820.83 21.00 0,686 −9.57

7 6,012.17 23.00 0.09 5,666.44 23.00 0.68 −5.75

8 6,307.69 24.00 0.08 5,772.41 22.00 0.74 −8.49

9 6,341.36 22.00 0.10 5,872.71 20.00 0.68 −7.39

Average 6,127.40 23.67 0.09 5,788.11 22.22 0.63 −5.42

C2 1 6,376.06 24.00 0.12 5,762.44 24.00 0.69 −9.62

2 6,110.67 22.00 0.09 5,971.94 22.00 0.66 −2.27

3 6,208.32 24.00 0.09 5,988.48 23.00 0.75 −3.54

4 6,470.55 23.00 0.07 5,948.77 22.00 0.67 −8.06

5 6,636.96 21.00 0.09 5,967.21 22.00 0.70 −10.09

6 6,171.45 22.00 0.09 5,983.65 22.00 0.73 −3.04

7 6,098.70 24.00 0.09 5,895.62 23.00 0.96 −3.33

8 6,110.15 24.00 0.11 5,889.13 24.00 0.86 −3.62

Average 6,272.86 23.00 0.09 5,925.91 22.75 0.75 −5.45

R1 1 6,027.03 21.00 0.08 5,901.64 20.00 0.65 −2.08

2 6,001.92 22.00 0.13 5,942.11 21.00 0.84 −1.00

3 6,134.95 22.00 0.16 5,687.43 20.00 0.80 −7.29

4 6,378.26 21.00 0.17 5,993.17 21.00 0.87 −6.04

5 6,816.80 19.00 0.11 6,169.61 18.00 0.89 −9.49

6 6,137.93 22.00 0.11 5,769.13 21.00 0.97 −6.01

7 6,648.73 21.00 0.22 5,660.74 22.00 1.80 −14.86

8 6,359.76 22.00 0.67 6,214.38 21.00 0.97 −2.29

9 6,244.31 21.00 0.36 6,021.46 20.00 0.93 −3.57

10 5,982.76 23.00 0.13 5,938.51 23.00 0.76 −0.74

11 6,217.68 22.00 0.15 5,907.13 20.00 0.92 −4.99

12 6,151.80 21.00 0.09 6,078.12 20.00 0.70 −1.20

Average 6,258.49 21.42 0.20 5,940.29 20.58 0.93 −4.96
(Continued)
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Table 1 (continued).

Set NO. PSO CRPSO Gap(%)

TD NV CPU(s) TD NV CPU(s)

R2 1 6,062.57 22.00 0.12 5,984.24 20.00 0.74 −1.29

2 6,490.04 21.00 0.11 6,017.24 20.00 0.81 −7.29

3 6,271.16 23.00 0.15 5,912.37 23.00 0.71 −5.72

4 6,330.67 21.00 0.10 6,178.23 20.00 0.84 −2.41

5 5,888.25 22.00 0.10 5,716.92 21.00 0.96 −2.91

6 5,975.79 22.00 0.10 5,864.48 21.00 0.79 −1.86

7 6,285.56 20.00 0.09 5,873.82 20.00 1.03 −6.55

8 6,009.84 23.00 0.10 5,921.78 22.00 0.72 −1.47

9 6,158.43 22.00 0.09 5,843.92 21.00 0.74 −5.11

10 6,102.55 22.00 0.10 6,048.70 21.00 0.73 −0.88

11 6,555.39 21.00 0.11 6,324.54 21.00 0.84 −3.52

Average 6,193.66 21.73 0.11 5,971.48 20.91 0.81 −3.55

RC1 1 7,668.69 23.00 0.09 7,591.64 23.00 0.70 −1.00

2 7,846.58 23.00 0.28 7,647.89 22.00 0.77 −2.53

3 7,393.69 25.00 0.08 7,228.71 24.00 0.64 −2.23

4 7,362.31 25.00 0.13 7,312.96 23.00 0.67 −0.67

5 7,689.42 23.00 0.28 7,384.49 22.00 0.66 −3.97

6 7,785.82 23.00 0.12 7,672.44 23.00 0.70 −1.46

7 7,509.93 25.00 0.22 7,501.02 24.00 0.75 −0.12

8 7,501.88 24.00 0.17 7,476.89 24.00 0.70 −0.33

Average 7,594.79 23.88 0.17 7,477.01 23.13 0.70 −1.54

RC2 1 7,373.82 25.00 0.10 7,326.41 23.00 0.68 −0.64

2 7,884.37 23.00 0.18 7,231.79 22.00 0.84 −8.28

3 7,696.52 24.00 0.08 7,375.69 24.00 0.76 −4.17

4 7,364.79 24.00 0.11 6,885.50 23.00 0.94 −6.51

5 7,739.94 23.00 0.13 7,381.47 25.00 0.86 −4.63

6 7,571.78 23.00 0.09 7,269.71 19.00 0.98 −3.99

7 7,763.32 24.00 0.20 7,282.05 24.00 0.80 −6.20

8 7,363.41 24.00 0.09 7,349.42 24.00 0.89 −0.19

Average 7,594.74 23.75 0.12 7,262.75 23.00 0.84 −4.33
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Figure 4: Problem set C

Figure 5: Problem set R
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5 Conclusion

This paper presented a solution to an open vehicle routing problem with time windows considering 3PL.
The delivery vehicles are operated by a 3PL company, and return to the nearest 3PL company location with
available space once deliveries are complete. This paper modified the mixed integer linear programming
model used by Repoussis et al. (2007) considering standard constraints of OVRPTW and 3PL [7]. Due to
computational complexity, a CRPSO algorithm to obtain the near-optimal solution is developed. Results
of the computational study show that the proposed CRPSO algorithm provides solutions within a
reasonable amount of time. The encoding method yields the optimal distribution so that the delivery
quantity for each route does not exceed vehicle capacity. Furthermore, the proposed algorithm reduces the
number of vehicles used to make deliveries to customers. Finally, the PSO mechanism can generate
multiple solutions and continues to iteratively search for the best solution. In terms of future research
directions, this research can be expanded to add more locations for each 3PL company so that the vehicle
has more destination options. The utility of such an expansion should be investigated.
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