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Abstract: Multi-joint manipulator systems are subject to nonlinear influences
such as frictional characteristics, random disturbances and load variations. To
account for uncertain disturbances in the operation of manipulators, we propose
an adaptive manipulator control method based on a multi-joint fuzzy system, in
which the upper bound information of the fuzzy system is constant and the state
variables of the manipulator control system are measurable. The control algorithm
of the system is a MIMO (multi-input-multi-output) fuzzy system that can approx-
imate system error by using a robust adaptive control law to eliminate the shadow
caused by approximation error. It can ensure the stability of complex manipulator
control systems and reduce the number of fuzzy rules required. Comparison of
experimental and simulation data shows that the controller designed using this
algorithm has highly-precise trajectory-tracking control and can control robotic
systems with complex characteristics of non-linearity, coupling and uncertainty.
Therefore, the proposed algorithm has good practical application prospects and
promotes the development of complex control systems.

Keywords: Multi-joint manipulator; robust control law; adaptive fuzzy control;
nonlinear MIMO system

1 Introduction

The intelligent manufacturing industry is developing rapidly in China. Manipulator technology has
gradually become the most popular subject in the field of industrial control and has also become a focus
of other fields. The core of a manipulator system is its control system. In recent years, great importance
has been attached to the study of intelligent control. One goal is to control robotic arms with enough
speed and precision that they can perform complex, demanding, monotonous and repetitive tasks
normally performed by human beings. The requirements for robots are to achieve point-to-point tracking,
general line tracking and complex curve tracking, as well as high-precision tracking of given paths.
However, manipulator systems are subject to many influences, such as load variations, random
disturbances and other external factors, as well as the uncertainty of their control model. These factors
make it difficult to obtain accurate mathematical models of manipulator systems and greatly increase the
difficulty of high-precision tracking control.
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Xie et al. [1] designed an adaptive fuzzy control system for manipulator operation that eliminates the
effects of approximation errors. Hui et al. [2] proposed an adaptive fuzzy control system based on state-
observer, which can be used to deal with non-linear problems such as unmeasurable states, input
saturation and actuator failure in complex systems. Fuzzy compensation and interference terms are
included to enhance the robustness of the system and its resistance to interference. Wai et al. [3] proposed
a fuzzy adaptive control algorithm based on an intelligent neural network, which can solve the problems
of friction, external disturbance factors and parameter changes in an actual multi-link manipulator system.
An on-line learning facility for manipulator control systems based on T-S fuzzy dynamic models of the
dynamics of robotic systems has also been proposed. The fuzzy neural network is able to adjust the
manipulator’s non-linear vector with a dynamic function to create a local fuzzy model of the control
system; thereby deriving the control parameters of the manipulator’s fuzzy adaptive system. The results
of this research show that the intelligent control algorithm can increase the robustness and stability of the
system and facilitate its overall optimization. Li et al. [4] proposed a decentralized adaptive fuzzy control
method based on an analysis of a multi-manipulator cooperative control system. A decentralized fuzzy
control method with a combination of parameter adaptation and disturbance observer was established to
compensate for the influences of dynamic uncertainty and external disturbances on system performance.
Li et al. [5] proposed an adaptive fuzzy control system based on linear matrix inequality to suppress the
effects of dynamic uncertainties, external disturbances and multiple random delays in the communication
channel of a cooperative multi-robot system. Qiu et al. [6,7] designed a direct adaptive fuzzy control
method based on a compound proportional differential control algorithm. This can optimise control
hysteresis and compensate for the influences of cylinder length travel, gas compression and high-
frequency modal vibration caused by non-linear factors in a pneumatic system. It improves the
performance index of the multi-manipulator control system and ensures its stability and accuracy. Zhai
et al. [8] proposed an adaptive fuzzy control method based on switching-error filtering to control errors in
positional tracking and parameter estimation in a manipulator control system. Kumar et al. [9] designed a
non-linear, adaptive, fractional-order-based, fuzzy PID controller that can effectively track the trajectory
of a manipulator. Fateh et al. [10] proposed a discrete adaptive fuzzy control system to analyse influences
on the progressive tracking control of a manipulator and thereby improve it. Sreekumar et al. [11]
proposed an adaptive fuzzy control method to address the complexity and fuzziness of robotic systems.
Su et al. [12] designed a discrete, indirect, adaptive fuzzy controller to eliminate uncertainties in a
manipulator system. By using robust control terms, the approximation and discrete errors of the system
were greatly reduced and asymptotic tracking of target trajectories was realized.

Because manipulators are prone to many uncertain disturbance factors and friction between their joints,
it is difficult for conventional control methods to accurately track their trajectories. Fuzzy control is based on
the operating experience of controlled equipment [13–15]. It does not require knowledge of the internal
mechanism or mathematical model of the controlled object. The design of an adaptive fuzzy controller is
independent of the mathematical model of the controlled device and is highly fault-tolerant in solving
complex non-linear problems during the control process. An adaptive fuzzy control algorithm can
uniformly approximate any non-linear function in the input space.

In this study, an adaptive fuzzy control algorithm is introduced into a multi-input and multi-output
(MIMO) nonlinear system, which is used to compensate for uncertain disturbances in the manipulator
control system to achieve accurate positional and speed tracking. To reduce approximation error and
ensure the stability of the system, a robust term is added to the control algorithm based on Lyapunov
stability theory. The proposed control algorithm is used to compensate for various uncertainty errors of
the manipulator. Simulation results show that the robust adaptive control algorithm can eliminate the
influences of approximation errors and improve the accuracy of trajectory tracking.
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2 Basic Problem Description of Manipulators

It is assumed that a MIMO manipulator control system can be described in the following form.

Oða1Þ
1 ¼ a1ðxÞ þ

Pn
j¼1

b1jðxÞuj

..

.

OðamÞ
1 ¼ amðxÞ þ

Pn
j¼1

bmjðxÞuj

8>>>>><
>>>>>:

(1)

The state variables x ¼ ½o1; _o1;…; oða1�1Þ
1 ;…; om;…; oðam�1Þ

m �T of the manipulator control system can be

measured; u ¼ ½u1;…; um�T is the multi-joint input variable, o ¼ ½o1;…; om�T is the multi-joint output
variable, and aiðxÞ and bijðxÞ are smooth unknown non-linear functions, where i¼ 1; 2;…;m; j ¼ 1; 2;…; n.

Suppose that:

oðaÞ ¼ ½oða1Þ
1

;…; oðamÞ
m

�T (2)

AðxÞ ¼ ½a1ðxÞ;…; amðxÞ�T (3)

BðxÞ ¼
b11ðxÞ � � � b1mðxÞ

..

. . .
. ..

.

bm1ðxÞ ..
.

bmmðxÞ

2
64

3
75 (4)

Eq. (1) describing the MIMO manipulator nonlinear system can be changed into the following form:

oðaÞ ¼ AðxÞ þ BðxÞu (5)

The control law uðtÞ of the manipulator control system can be designed such that the system variables of
the closed-loop manipulator control system will be constrained so that the manipulator output will track a
desired trajectory odtðtÞ ¼ ½odt1ðtÞ; odt2ðtÞ…; odtpðtÞ�T.

Assumption 1: If the nonlinear function BðxÞ is a positive definite matrix and the real numbers are
always greater than 0 (r0 > 0), then the manipulator control system will satisfy BðxÞ � r0Ip (where Ip is
the unit matrix).

Assumption 2: The expected trajectory of the manipulator control system odtiðtÞ (i ¼ 1;…; p) is bounded,
its corresponding function has an n-order derivative, and all the derivatives of each order are bounded.

If Assumption 1 can guarantee the existence of the BðxÞ inverse matrix, then Eq. (5) can be expressed in
the form of a linearised expression for static-state feedback. Although the assumption is strictly limited to the
MIMO manipulator control system, the robot system needs to satisfy the assumptions.

The trajectory tracking error of the manipulator control system can be expressed by the following
formula:

te1ðtÞ ¼ odt1ðtÞ � o1ðtÞ
..
.

temðtÞ ¼ odtmðtÞ � omðtÞ

8><
>: (6)

The filter tracking error function of the manipulator control system can be defined using the following
expression.
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j1ðtÞ ¼ ðd
dt

þ c1Þða1�1Þte1ðtÞ; c1 > 0

..

.

jmðtÞ ¼ ðd
dt

þ cmÞðam�1ÞtemðtÞ; cm > 0

8>>>><
>>>>:

(7)

Through analysis and deduction from Eq. (7), we can deduce that if the filter tracking error function of
the manipulator control system approaches 0 (ji ! 0), the trajectory tracking error will approach 0 (tei ! 0),
i ¼ 1; 2;…;m, then the control objective of the manipulator control system will be changed to
ji ! 0ði ¼ 1; 2;…;mÞ.

According to the dynamic characteristics of the manipulator and Newton’s binomial theorem, a filter
tracking error function formula can be obtained:

jiðtÞ ¼ ðd
dt

þ ciÞðai�1ÞeiðtÞ

¼
Xai�1

j¼0

ðai � 1Þ!
ðai � 1� jÞ!j!ð

d

dt
ÞjteiðtÞcai�1�j

i

¼
Xai
j¼1

ðai � 1Þ!
ðai � jÞ!ðj� 1Þ!ð

d

dt
Þj�1teiðtÞcai�j

i

(8)

Then, the differential equation of the filtering tracking error function can be obtained:

_jiðtÞ ¼ oðriÞdi
� aiðxÞ �

Xi
j¼1

bijðxÞuj þ
Xai�1

j¼1

ðai � 1Þ!
ðai � jÞ!ðj� 1Þ! te

ðjÞ
i ðtÞcai�j

i (9)

Hence, we can obtain the following formula:

_j1 ¼ v1 � a1ðxÞ �
Pm
j¼1

b1jðxÞuj

..

.

_jm ¼ vm � amðxÞ �
Pm
j¼1

bpjðxÞuj

8>>>>>><
>>>>>>:

(10)

In which,

v1 ¼ oða1Þd1 þ ’1;a1�1te
ða1�1Þ
1 þ � � � þ ’1;1t _e1

..

.

vm ¼ oðamÞdm þ ’1;am�1te
ðam�1Þ
1 þ � � � þ ’m;mt _em

8><
>: (11)

’i;j ¼ ðai � 1Þ!
ðai � jÞ!ðj� 1Þ! c

ai�j
i ; i ¼ 1; 2;…;m; j ¼ 1; 2;…; n (12)

If the vector of the functions of the filter tracking error in the manipulator control system can be

described as a formulation for jðtÞ ¼ ½j1ðtÞ; j2ðtÞ; � � � ;jmðtÞ�T , and the vector of the manipulator control

system v can be expressed as v ¼ ½v1ðtÞ � � � vmðtÞ�T , then Eq. (1) can be changed to the following form:
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_j ¼ vðtÞ � aðxÞ � bðxÞuðtÞ (13)

If components aðxÞ and bðxÞ of the non-linear functions are given, the linear manipulator control can be
described by:

u ¼ b�1ðxÞðv� aðxÞ þ K0jÞ (14)

In which K0 ¼ diag½k01;…; k0m�, k0i > 0, i ¼ 1;…;m.

By substituting Eq. (17) into Eq. (10), we can obtain:

_jðtÞ ¼ �K0jðtÞ (15)

_jiðtÞ ¼ �K0ijiðtÞ (16)

Namely, by solving the differential equation, the following results can be obtained:

jiðtÞ ¼ �jið0Þe�K0it (17)

When the time t tends to infinity (t !/), jiðtÞ ! 0, the trajectory tracking error teiðtÞ and its ai � 1
order derivatives will converge to 0.

Therefore, when aiðxÞ and bijðxÞ are known, it is easy to obtain the control law (17). However, in the
actual system, the non-linear functions aiðxÞ and bijðxÞ are unknown, so it cannot design the control
Eq. (17). Instead, the non-linear functions aiðxÞ and bijðxÞ of the manipulator control system can be used
in the fuzzy systems to obtain an approximation.

3 Fuzzy System Design of a Multi-Joint Manipulator

Suppose that a fuzzy control system involves a mapping from set H � RN to set R. The l article fuzzy
rule may be described in the following form [16–18]:

RðlÞ: IFx1 is Fl
1AND x2 is Fl

n;THENyl is Clðl ¼ 1; 2;…;MÞ
x ¼ ½x1; x2;…; xn�T 2 H is the control input variable of the fuzzy manipulator system, and y 2 H � R is

the control output variable.

A singleton fuzzifier, a product inference engine, and a central mean defuzzifier are often used to design
fuzzy systems. The output variable of the fuzzy control system can be represented as follows:

oðxÞ ¼
PM
l¼1

�olð�
n

i¼1
laliðxiÞÞ

PM
l¼1

ð�
n

i¼1
laliðxiÞÞ

(18)

In which �ol is the value of the corresponding point whose maximum membership degree is llc .

Then, Eq. (18) can be expressed as:

oðxÞ ¼ nTðxÞ# (19)

In which # ¼ ½o1;…; oM �T is the control parameter vector of the fuzzy manipulator system and

nðxÞ ¼ ½n1ðxÞ;…; nM ðxÞ�T is the system regression vector, in which:
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nðxÞ ¼
ð�

n

i¼1
laliðxiÞÞPM

l¼1
ð�

n

i¼1
laliðxiÞÞ

(20)

Then, the fuzzy system is used to approach the nonlinear functions of the unknown aiðxÞ and bijðxÞ
components, and an adaptive control law is designed.

4 Design of an Adaptive Fuzzy Control System Based on a Known Upper Bound

4.1 Fuzzy Controller Design

The fuzzy system used to approach the unknown functions of the nonlinear aiðxÞ and bijðxÞ
components are:

aiðx; #fiÞ ¼ nTfi ðxÞ#fi ; i ¼ 1;…;m (21)

b̂ijðx; #gijÞ ¼ nTgijðxÞ#gij i ¼ 1;…;m (22)

In the above formulas, nfiðxÞ and ngijðxÞ are the manipulator vectors of fuzzy basis functions, and #ai and
#bij are the vectors of adaptive adjustment parameters.

#ai
� and #bij

� are the optimal approximation vector forms of the system parameters #ai and #bij , while the
minimum approximation error vectors of the fuzzy system are naiðxÞ and nbijðxÞ. These parameters can be
defined in the following forms:

#�
ai ¼ argmin

#ai

½sup
x2Dx

biðxÞ � âiðx; #aiÞj j� (23)

#�
bij

¼ argmin
#bij

½sup
x2Dx

bijðxÞ � b̂ijðx; #bijÞ
��� ���� (24)

~#ai ¼ #ai
� � #ai ;

~#bij ¼ #bij
� � #bij (25)

naiðxÞ ¼ aiðxÞ � âiðx; #ai
�Þ (26)

nbijðxÞ ¼ bijðxÞ � b̂ijðx; #bij
�Þ (27)

Suppose that the compact set Dx is large enough to ensure that for all x 2 Dx, the minimum
approximation error is bounded; that is, the absolute value of the vector of the fuzzy basis function is less
than or equal to the average value of the vector of the fuzzy basis function. �naiðxÞ and �nbijðxÞ are the
known constants.

By using Âðx; #aÞ and B̂ðx; #bÞ instead of AðxÞ and BðxÞ in control Eq. (10), the control law can be
obtained:

uc ¼ B̂�1ðx; #bÞðv� Âðx; #aÞ þ K0jÞ (28)

The nonsingularity of B̂ðx; #bÞ cannot be guaranteed by the online estimation of #b. For this reason, the

generalized inverse variable B̂T ðx; #bÞ½e0Ip þ B̂ðx; #bÞB̂Tðx; #bÞ��1 takes the place of B̂�1ðx; #bÞ, so we can
obtain the control law:
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uc ¼ B̂T ðx; #bÞ½ðn0Ip þ B̂ðx; #bÞÞB̂T ðx; #aÞ��1ðv� Âðx; #aÞ þ K0jÞ (29)

where n0 represents a positive real number that can be arbitrarily small and Im represents an identity matrix.

4.2 Robust Adaptive Control Law Design

To minimize the error of the fuzzy manipulator control system, a robust term uc is included and its
control law is:

u ¼ uc þ ur (30)

ur ¼
j jTj jð�na þ �nb ucj j þ u0j jÞ

r0 sk k2 þ d
(31)

u0 ¼ n0½n0Im þ B̂ðx; #bÞB̂T ðx; hbÞ��1ðv� Âðx; #aÞ þ K0jÞ (32)

where d is a time-varying parameter.

The adaptive control law of the multi-joint manipulator control system is:

_#ai ¼ �gainaiji (33)

_#bij ¼ �gbijebijjiucj (34)

_d ¼ �g0
jTj jð�na þ �nb ucj j þ u0j jÞ

r0 jk k2 þ d
(35)

Theorem 1. When system (1) satisfies the assumptions, the control Eqs. (30)–(32) and adaptive
Eqs. (33)–(35) are used to ensure that the system has the following characteristics:

(1) All multi-joint manipulator signals of the closed-loop control system are bounded;

(2) The trajectory tracking error and its derivatives of all orders converge uniformly to 0; that is, the
tracking error of each trajectory converges to 0 as the system time tends to infinity.

By combining with Eq. (35), Eq. (14) can be transformed to:

_j ¼ v� AðxÞ � ðBðxÞ � B̂ðx; hbÞÞuc � B̂ðx; hbÞuc þ nbðxÞu (36)

Combining this with Eq. (29), we can obtain the expression:

v� B̂ðx; #bÞuc
¼ v� B̂ðx; #bÞB̂Tðx; #bÞ½n0Im þ B̂ðx; #bÞB̂T ðx; #bÞ��1ðv� Âðx; #aÞ þ K0jÞ
¼ Âðx; #aÞ � K0jþ uc

(37)

If Eq. (34) is substituted into Eq. (33), we can obtain the formula:

jT _j ¼ � jTK0j�
Xm
i¼1

eTaiðxÞ ~#aici �
Xm
i¼1

Xn
j¼1

eTbijðxÞ ~#bijjiucj � jTBðxÞur þ jTu0

� jTnaðxÞ � jTnbðxÞuc
(38)
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In this study, the Lyapunov function of the control system can be defined in the following form:

X ¼ 1

2
jTjþ 1

2

Xm
i¼1

1

gai
~#T
ai
~#ai þ

1

2

Xm
i¼1

Xn
j¼1

1

gbij
~#T
bij
~#bij þ

1

2g0
d2 (39)

So,

_X ¼ jTjþ
Xm
i¼1

1

gai
~#T
ai
_#ai þ

Xm
i¼1

Xn
j¼1

1

gbij
~#T
bij

_#bij þ
1

g0
d _d (40)

Substituting Eq. (40) into the above formula, we obtain:

_X ¼ �jTK0jþ _X1 þ _X2 (41)

In which,

_X1 ¼ �
Xp
i¼1

_#T
aiðeaiðxÞji þ

1

gfi
_#aiÞ �

Xm
i¼

Xn
j¼1

#T
bij
ðebijðxÞjiucj þ

1

gbij
_#bijÞ (42)

_X2 ¼ �jTGðxÞur þ jTu0 � jTnf ðxÞ � jTngðxÞuc þ
1

g0
d _d (43)

By substituting Eqs. (35) and (36) into Eq. (40), we can obtain _X1 ¼ 0.

From Hypothesis 1 and Eq. (31), it can be deduced that jTBs � r0 jk k2:

jTBur ¼ jTB
j jTj jð�nb þ �nb ucj j þ u0j jÞ

r0 jk k2 þ d

� r0 jk k2 jT
�� ��ð�na þ �nb ucj j þ u0j jÞ 1

r0 jk k2 þ d

¼ ðr0 jk k2 þ d� dÞ jT�� ��ð�na þ �nb ucj j þ u0j jÞ 1

r0 jk k2 þ d

¼ jT
�� ��ð�na þ �nb ucj j þ u0j jÞ � d jTj jð�nb þ �nb ucj j þ u0j jÞ

r0 jk k2 þ d

(44)

By derivation from Eq. (44), we can obtain:

_X2 	 �jTXðxÞur þ jT
�� ��ð�na þ �nb ucj j þ u0j jÞ þ 1

g0
d _d (45)

Substituting Eq. (45) into the above formula, we can get:

_X2 	
d jTj jð�na þ �nb ucj j þ u0j jÞ

r0 jk k2 þ d
þ 1

g0
d _d (46)

Substituting Eq. (32) into the above formula, we can get _X2 	 0.

Thus,
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_X 	 �jT K0j ¼ �
Xm
i¼1

k0ij
2
i (47)

It is concluded that if the differential of the Lyapunov function of the control system _X is negative
semidefinite (X 2 L1) and the Lyapunov function XðtÞ is not a monotonically-increasing function and is
bounded, then the three signals of jiðtÞ, ~#aiðtÞ and ~#bijðtÞ will be bounded. So, the variables or
parameters of ~#aiðtÞ, ~#bijðtÞ, x, u and _jiðtÞ are bounded.

4.3 Simulation of a Multi-Joint Manipulator Based on Fuzzy Adaptive Control Algorithms

For a rigid manipulator with two joints in plane motion, the dynamic equation is as follows:

M11 M12

M21 M22

� �
€q1
€q2

� �
þ �v _q2 �vð _q1 þ _q2Þ

v _q1 0

� �
_q1
_q2

� �
¼ u1

u2

� �
(48)

The above formula can be transformed into:

€q1
€q2

� �
¼ a1 þ 2a3 cos q2 þ 2a4 cos q2 a2 þ 2a3 cos q2 þ 2a4 cos q2

a2 þ 2a3 cos q2 þ 2a4 cos q2 a2

� ��1

u1
u2

� �
� �v _q2 �vð _q1 þ _q2Þ

v _q1 0

� �
_q1
_q2

� �� � (49)

In which,

v ¼ a3 sin q2 � a4 cos q2 (50)

a1 ¼ I1 þ m1l2c1 þ Ie þ mel2ce þ mel21
a2 ¼ Ie þ mel2ce
a3 ¼ mel1lce cos de
a4 ¼ mel1lce sin de

8>><
>>: (51)

The system parameters are m1 ¼ 2, me ¼ 3, l1 ¼ 1:2, lc1 ¼ 0:8, lce ¼ 0:75, I1 ¼ 0:11, Ie ¼ 0:23,

de ¼ p
6
.

if o ¼ q1; q2½ �T ; u ¼ u1; u2½ �T ; x ¼ ½q1; _q1; q2; _q2�T ;

FðxÞ ¼ f1ðxÞ
f2ðxÞ
� �

¼ �M�1 �v _q2 �vð _q1 þ _q2Þ
v _q1 0

� �
_q1
_q2

� �
(52)

GðxÞ ¼ g11 g12
g21 g22

� �
¼ M�1 ¼ M11 M12

M21 M22

� ��1

(53)

Then, the controlled object is:

€o ¼ FðxÞ þ GðxÞu (54)

The control objective of the designed method is that the system outputs q1 and q2 can track the desired
trajectories od1 ¼ sin t and od2 ¼ sin t.

We define the membership function as:
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lF1
i
ðxiÞ ¼ exp � 1

2

xi þ 1:25

0:5

� �2
 !

lF2
i
ðxiÞ ¼ exp � 1

2

xi
0:5

	 
2� �

lF3
i
¼ exp � 1

2

xi � 1:25

0:5

� �2
 !

8>>>>>>>><
>>>>>>>>:

i ¼ 1; 2; 3; 4; (55)

The design parameters are �1 ¼ 30, �2 ¼ 30, K0 ¼ 5I2, e0 ¼ 0:1, gfi ¼ 0:5, ggij ¼ 0:5, g0 ¼ 0:001,

dð0Þ ¼ 0, �ng ¼ 0:2 0:2
0:2 0:2

� �
, �nf ¼ 0:2 0:2½ �T .

Simulation of the control object using the proposed robust adaptive fuzzy control algorithm leads to the
following position- and element-tracking curves.

Figs. 1 and 2 show the position- and velocity-tracking curves of joints 1 and 2, respectively, without
disturbance and robust terms. It is clear that the robust adaptive fuzzy control system based on known
information tracks very well. The trajectory-tracking curves almost coincide with the desired trajectory
curves, and the system error is close to zero.

Figs. 4 and 5 show the position- and velocity-tracking curves for joints 1 and 2 with perturbation and
robustness terms. It can be seen that both show slight errors at the beginning, after which the tracking
performance is good. The robust adaptive fuzzy control method can be used to quickly eliminate
disturbances and achieve system stability and robustness [18–24]. By comparing Figs. 3 and 6, it can be
seen that the control input in Fig. 3 tracks well in the absence of disturbances and robust terms, but there
are some errors throughout the motion that are detrimental to its accuracy. The system in Fig. 6 has
disturbances, but considering the inclusion of the robust term, the system error is slight in the initial stage
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Figure 1: Position- and velocity-tracking curves of joint 1 (no disturbance and no robust term)
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and 0 after stabilisation. Hence, the proposed control algorithm can quickly eliminate disturbances and
achieve stable control of the system.

To better simulate and analyse the uncertain disturbances in the system, a controller design block
diagram was designed in Simulink (Fig. 7).
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Figure 2: Position- and velocity-tracking curves of Joint 2 (no disturbance and no robust term)
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Figure 3: Control input curves of joints 1 and 2 (no disturbance and no robust term)
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A MIMO adaptive model control system for a joint manipulator was designed and two adaptive laws
based on adaptive fuzzy compensation were simulated using MATLAB/Simulink software. The results
show that the adaptive fuzzy control algorithm can effectively to compensate for various uncertainties in
a multi-joint manipulator and can eliminate the influence of approximation errors. It can also improve the
accuracy of trajectory tracking.
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Figure 4: Position- and velocity-tracking curves of joint 1 (including disturbance and robust terms)
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Figure 5: Position- and velocity-tracking curves of joint 2 (including disturbance and robust terms)
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5 Conclusion

This study provides an in-depth study and analysis of the trajectory tracking problem in a manipulator
control system based on a designed control algorithm. For complex multi-input and -output nonlinear
systems, the robust adaptive fuzzy tracking control algorithm is completed by adding a robust controller
to the adaptive control algorithm. They cooperate with each other to improve the control performance of
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Figure 6: Control inputs curve of joints 1 and 2 (including disturbance and robust terms)
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the manipulator system as the adaptive fuzzy logic system is used to approximate the uncertain nonlinear
function of the system, while the robust control is used to eliminate the error caused by approximation of
the fuzzy system and the influences of external disturbance. After designing the controller, the tracking
control algorithm was validated by software simulation experiments. The influence of uncertainties such
as external disturbances was eliminated, resulting in very good trajectory tracking control performance.
The control algorithm proposed in this study effectively solves the problem of dependence on a precisely-
controlled object model, overcomes the influence of uncertainties such as system modelling errors and
unknown disturbances, and improves the accuracy of trajectory tracking control in the manipulator system.
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