
Timing Error Aware Register Allocation in TS

Sheng Xiao1,2,*, Jing He3, Xi Yang4, Heng Zhou1 and Yujie Yuan1

1Information Science and Engineering Department, Hunan First Normal University, Changsha, 410205, China
2Computer School, Wuhan University, Wuhan, 430072, China

3Department of Computer Science, Kennesaw State University, Kennesaw, 30144-5588, USA
4Hunan Guangyi Experimental Middle School, Changsha, 410205, China

�Corresponding Author: Sheng Xiao. sxiao@hnfnu.edu.cn
Received: 02 April 2021; Accepted: 13 May 2021

Abstract: Timing speculative (TS) architecture is promising for improving the
energy efficiency of microprocessors. Error recovery units, designed for tolerating
occasional timing errors, have been used to support a wider range of voltage scaling,
therefore to achieve a better energy efficiency. More specifically, the timing error rate,
influenced mainly by data forwarding, is the bottleneck for voltage down-scaling in
TS processors. In this paper, a new Timing Error Aware Register Allocation method
is proposed. First, we designed the Dependency aware Interference Graph (DIG) con-
struction to get the information of Read after Write (RAW) in programs. To build the
construction, we get the disassemble code as input and suppose that there are unlim-
ited registers, the same way as so-called virtual registers in many compilers. Then we
change the disassemble codes to the SSA form for each basic block to make sure the
registers are defined only once. Based on the DIG construction, registers were real-
located to eliminate the timing error, by loosening the RAW dependencies. We con-
struct the DIG for each function of the program and sort the edge of DIG by an
increasing weight order. Since a smaller weighted-edge value means that its owner
nodes have more frequent access in instruction flows, we expect it in different reg-
isters with no read-write dependency. At the same time, we make sure that there are
no additional new spill codes emerging in our algorithm to minimize the rate of spill
code. A high rate of spill code will not only decrease the performance of the system
but also increase the unexpected read-write dependency. Next, we reallocate the reg-
isters by weight order in turn to loosen the RAW dependencies. Furthermore, we use
the NOP operation to pad the instructions with a minimal distance value of 2.
Experiment results showed that the average distance of RAW dependencies was
increased by over 20%.

Keywords: Timing error; timing speculative architecture; register allocation;
energy efficiency

1 Introduction

Energy efficiency is an important issue. A number of works in different aspects have been completed
[1–4]. Recently, timing speculation (TS) architecture has been proposed to improve the energy efficiency

This work is licensed under a Creative Commons Attribution 4.0 International License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original
work is properly cited.

Computer Systems Science & Engineering
DOI:10.32604/csse.2022.019106

Article

echT PressScience

mailto:sxiao@hnfnu.edu.cn
http://dx.doi.org/10.32604/csse.2022.019106
http://dx.doi.org/10.32604/csse.2022.019106

of microprocessors [5]. The traditional design of worst-case assumption about circuit timing constraints and
clock-frequency is dated. Instead, TS architecture is proposed with the expectation that timing errors could
occasionally occur in the system. To ensure the proper function of the processor, TS processor was included
in timing error detection. Recovery mechanisms such as enhanced latches, checker and recovery modules
were also included so that errors could be dynamically flagged and recovered [5,6].With relaxed timing
constraints, timing error detection and recovery mechanisms, TS processor can work with a lower supply
voltage, leading to potentially improved energy efficiency. However, error recovery operations are highly
energy-consuming in TS processors, and the error rate is the dominating factor on how low the voltage
can be scaled down to. A reduction of timing errors is therefore critical to improve the energy efficiency
of the TS processors.

Compiler is an important system software and numerous optimization schemes are employed to generate
optimized code for different architectures. In our previous work [7], we used register reallocation to reduce
the crosstalk which could save energy and enhance the security. Recently, compilation-based techniques for
TS processors have been studied [8,9]. Hoang et al. used compiler transformation to replace long delay
operations with faster ones, so that the number of timing errors was reduced [8]. In Sartori and Kumar’s
work [9], the relationship between current compilation optimization and TS processor was evaluated.
Their experiments showed that the closer the read-write dependency was, the more likely timing errors
could occur.

In recent years, an abundant amount of work has been done to improve the performance of TS
processors by reducing timing errors in hardware architecture. Ernst et al. [5] proposed to dynamically
detect and recover the timing error. Greskamp et al. [6] designed a timing error tolerated architecture.
They used a fast approximation version for critical components of processor for execution and use a
coprocessor to detect and recover errors. Xin and Joseph used timing error prediction to avoid full
recovery overhead of timing errors [10]. Greskamp et al. [11] designed a processor from the ground up
for TS. They identified the most frequently-exercised critical paths in the design and sped them up so that
the error rate increases much more slowly as frequency increases. Kahng et al. [12] proposed a power-
aware slack redistribution to enable extended voltage/reliability tradeoffs in processors. Powell et al. [13]
used hardware mechanisms to save and transfer state. Xun et al. [14] proposed CLIM, a cross-level
workload-aware timing error prediction model for functional units(FUs). CLIM predicted whether there
are timing errors in FU at two levels: bit-level and value-level. On average, CLIM exhibited 95 percent
prediction accuracy at value-level, 97 percent at bit-level, and executed at a rate of 173 times faster than
GLS. Rioux et al. [15] presented a solution to connect the model-checking tool ROMEO to the designed
process, thus allowing the verification of the system timing behavior at early stages. In order to avoid
aging-induced timing errors, Heba et al. [16] proposed a paradigm shift in designing guard-bands: to
select the guard-band types on-the-fly with respect to the workload-induced temperatures, aiming at
optimizing for performance under temperature and reliability constraints. Ying et al. [17] proposed a
novel timing analysis and frequency setting method for NN-based approximate computing circuits, based
on in-field NN retraining. Their experimental results showed that timing errors in neural circuits could be
effectively tamed for different applications, so that the circuits could operate at higher clocking rates
under the specified quality constraint or be dynamically scaled to work at a wide range of frequency
states with only minor accuracy losses.

There is also research from the software side that considers optimization for TS processors such as code
transformation at the compiler level. Meixer et al. [18] used code transformation to avoid working in faulty
processor components. Reddiet et al. [19] applied compiler optimization to reduce the stress on power
delivery system. In Hari et al.’s work [20], the authors proposed a method of system-software guided
detection of hard faults during processor lifetime. Hoang et al. observed that some code sequences could
place greater demand on circuit timing deadlines than others. If these codes were selectively replaced

274 CSSE, 2022, vol.40, no.1

with semantically equivalent instruction sequences which can reduce activity on timing critical circuit paths,
fewer timing errors would be triggered, and thus recovery overhead could be reduced [8]. Sartori et al. [9]
evaluated loop optimizations in compiler and also some other standard optimizations in GCC to show that
significant energy benefits could be possible from TS-aware binary optimization.

In this paper, we propose a novel timing error aware register allocation method to reduce the energy
consummation of TS architecture by reducing the distance of read-write dependencies: First, a heuristic
register allocation method was designed to reschedule registers based on the distance of the read-write
dependencies in each basic block. Then, an inter-block optimization algorithm was implemented to
further increase the distance of read-write dependencies by considering the dependency between basic
blocks. Experiment results showed that the proposed technique could increase the distance of read-write
dependencies by 20% on average. Timing error could thus be reduced and an average energy saving
ofapproximately15% could be achieved.

The primary contributions of the paper are as follows:

� Analyzes the distribution of RAW dependencies of the whole program and designed the Dependency
aware Interference Graph (DIG) construction to express the relationship of RAW.

� Designs a heuristic register allocation method to break and increase the distance the RAW
dependencies. As a result, the average distance of RAW is increased significantly.

� Implements the algorithm based on the GCC compiler. Experimental results verified that the average
distance of RAW can be increased significantly. Error rate reduction leads to significantly energy
saving by further voltage scaling.

The remainder of the paper is structured as follows: In Section 2, we introduce background information
and a motivation example about the RAW reduction algorithm firstly. Then, the RAW dependencies
optimization algorithm is described in detail. In Section 3, we present the evaluation methodology and the
experimental results. The related work and conclusion are presented in Section 4 and Section 5, respectively.

2 Materials and Methods

2.1 TS Architecture Overview

Timing Speculation (TS) processor can improve the energy by more voltage scaling supporting. Razor
[5] is typical TS processor. Razor relies on a combination of architectural and circuit level techniques for
efficient error detection and correction of delay path failures. Each flip-flop in the design is augmented
with a so-called shadow latch which is controlled by a delayed clock. The operation of a Razor flip flop
is illustrated in Fig. 1 In clock cycle 1, the combinational logicL1 meets the setup time by the rising edge
of the clock and both the main flip-flop and the shadow latch will latch the correct data. In this case, the
error signal at the output of the XOR gate remains low and the operation of the pipeline is unaltered.

clock

clock_d

D

Error

Q

cycle1 cycle2 cycle3 cycle4

instr1 instr2

instr2instr2

Figure 1: Pipeline augmented with razor latches and control lines

CSSE, 2022, vol.40, no.1 275

In cycle 2 in Fig. 1, we show an example of the operation when the combinational logic exceeds the
intended delay due to sub-critical voltage scaling. In this case, the data is not latched by the main flip-
flop, but since the shadow latch operates using a delayed clock, it successfully latches the data some time
in cycle 3. To guarantee that the shadow latch will always latch the input data correctly, the allowable
operating voltage is constrained at design time such that under worst-case conditions, the logic delay does
not exceed the setup time of the shadow latch. By comparing the valid data of the shadow latch with the
data in the main flip-flop, an error signal is then generated in cycle 3 and in the subsequent cycle, cycle
4, the valid data in the shadow latch is restored into the main flip-flop and becomes available to the next
pipeline stage L2. Note that the local error signals Error_l are OR’ed together to ensure that the data in
all flip-flops is restored even when only one of the Razor flip-flops generates an error.

If an error occurs in pipeline stage L1 in a particular clock cycle, the data in L2 in the following clock
cycle is incorrect and must be flushed from the pipeline using one of the pipeline control methods such as
clock gating, counter flow pipelining, and so on. However, since the shadow latch contains the correct
output data of pipeline stage L1, the instruction does not need to be re-executed through this failing
stage. Thus, a key feature of Razor is that if an instruction fails in a particular pipeline stage it is
re-executed through the following pipeline stage, while incurring a one cycle penalty. The most of the
proposed approaches therefore guarantee forward progress of a failing instruction, which is essential to
avoid the perpetual failure of an instruction at a particular stage in the pipeline.

In addition to invalidating the data in the following pipeline stage, an error must also stall the preceding
pipeline stages while the shadow latch data is restored into the main flip-flops. A number of different
methods, such as clock gating or flushing the instruction in the preceding stages, were examined to
accomplish this.

2.2 Motivation

TS architecture is a promising concept for microprocessor energy efficiency. By using recovery
mechanisms to tolerate the occasionally occurring timing errors, it can work in a lower supply voltage to
obtain considerable energy saving. Recovery mechanisms are usually energy demanding in TS
processors. Minimizing timing errors can significantly improve the energy efficiency of TS processor. As
shown in the reference Sartori et al. [9], read-write dependencies in pipeline have a close relationship to
timing errors for TS processors.

Read-write dependencies area common dependency in programs that break the pipelining and causes
data hazard. Let instruction distance Dins(i,j) be the number of instructions between instruction i and j,
and let Read-write distance RWdis represent the distance between RAW stages in pipeline. For example,
the RWdis is two in Fig. 2 because the distance between RegRead and WriteBack stages is two.

The Read-write dependency will occur if and only if Eq. (1) is satisfied.

Dins i; jð Þ < RWdis (1)

Fetch

R e gR ea d

E xe cu te

L oad S tore

W
ri teB ack

Figure 2: Pipeline of strongArm

276 CSSE, 2022, vol.40, no.1

2.3 Timing Error Aware Register Allocation

In order to achieve aggressive optimization for the whole program such as the library of system, we
make our optimization process get the disassemble codes and the profiling results as inputs. Then DIG
constructor is used to build the DIG from the disassemble codes and sets the weight of it. Finally, we
make the DIGRR processor analyze the DIG to relocate the register and generate the optimized code. The
outline of the process is presented in Fig. 3.

From this outline, we can see that the kernel of the optimization isDIG construction andDIGRR process,
in the following two subsections, we will describe them in detail.

2.3.1 DIG Construction
The goal of this work is to loosen the dependency of read-write operations in the TS processor.

Therefore, the more frequently-accessed patterns of register pairs there are, the more important the
register pairs are. For better illustration of the dependency accesses frequency feature, combined with the
register allocation, we attempt to enhance the original Interference Graph that is widely used for register
allocation and we construct the new dependency aware interference graph, called DIG.

DIG is a weighted undirected graph that can be represented by a four tuple G ¼ ðV ;EI ;EN ;WEÞWhere
v 2 V represents a variable or constant of the program, eðu; vÞ 2 EI expresses that the node uand node vcan’t
share the same register, e0ðu0; v0Þ 2 EI expresses that the node u and node v may be the same register and the
weight represents the minimal number of instructions of such read-write dependency if the node u and v are
assigned to the same register.

For building the DIG, we get the disassemble code as input and suppose that there are unlimited
registers, the same as the registers called virtual registers in many compilers. First, we change the
disassemble codes into the SSA form for each basic block that makes sure the registers are defined only
once (line 1-4). Then, we use the methods described in the reference Liu et al. [3] to construct the data
flow of each basic block and get the lifetime of each register in each instruction (line 5-6). The
interference graph can be constructed with analysis of the live register in each instruction (line 7-15).
After getting the interference graph, we can use the profiling results to add the weight of edges (line
16-21). And then we return the constructed DIG at last (line 22). The detailed construction algorithm is
expressed in Algorithm 1. In Algorithm 1, the CFG is the control flow graph for the program and each
node v 2 V 0represents a basic block that contains number of in order executed instructions. The Liveregi
expresses the register defined before the instruction i and will be used after the instruction that called the
live register.

To reduce the cost of a spill node is complex work because it changes the source order of instruction by
inserting extra spill codes that will make the DIG rebuilt. Luckily, in our algorithm, we can avoid generating
the spill codes since the source code is allocated successfully and we can always eliminate the spill code by
assigning the spill node with its original one. The detailed reallocation algorithm is presented in next section.

Figs. 4a and 4b is the source instructions and the changed SSA representation respectively.

Optimization Process

Optimized
Codes

DIGRR
Processor

DIG
Constructor

Disassemble
Codes

Profiling
Information

Figure 3: Outline of the optimization process

CSSE, 2022, vol.40, no.1 277

Algorithm 1: DIG construction algorithm

Input: source disassemble codes, S;

Output: The profiling results, p: Vp → Vp → WE;

DIG(V,EI,WE);

1: CFG(V',E') := ConstructCFG(S)

2: for each v ϵ V' do

3: Translate v to SSA form

4: end for

5: DS=DateFlowAnalysis (CFG)

6: Liveregi=GetLiveregi(DS) based on methods in
[3]

7: for each v ϵ V' do

8: for each i ϵ v do

9: for each i, j ϵ Liveregi & & i ≠ j do

10: DIG.V.add(i)

11: DIG.V.add(j)

12: DIG.EI. add(i,j)

13: end for

14: end for

15: end for

16: for each pair < ri,rj,wi,j > ϵ P do

17: DIG. V.add(i)

18: DIG.V.add(j)

19: NAIG.EN. add(i,j)

20: DIG. WE. add(wi,j)

21: end for

22: return NBTI;

INLive:{R1,R4,R5,R8,R9}
I1:
I2:
I3:
I4:
I5:
I6:

OUTLive: {$R0,R7,$R2}

ADD
OR

XOR
SUB
MUL
MUL

R0,
R2,

$R0,
$R1,

R7,
$R2,

5,
R5,
R4,
R4,
R2,

$R1,

R1

5

R0
R9
R8
R9

I1:
I2:
I3:
I4:
I5:
I6:

INLive:{R1,R4,R5,R8,R9}

OUTLive{R5

(a) (b)

,R7,R8}

ADD
OR

XOR
SUB
MUL
MUL

R0,
R2,
R5,
R4,
R7,
R8,

5,
R5,
R4,
R4,
R2,
R4,

R1
R0
R9
R8
R9

5

Figure 4: Example for SSA transforming (a) source code (b) SSA translation

278 CSSE, 2022, vol.40, no.1

2.3.2 DIG Based Timing Error Aware Register Reallocation (DIGRR)
Based on the above DIG, we implement our new DIG based Timing Error aware Register Reallocation

(DIGRR) algorithm as follows. First, we construct the DIG for each function of the program 1. Then, we sort
the edge of DIG by an increasing weight order (line 1). Since a smaller weighted-edge value means that its
owner nodes have more frequently access in instruction flows, we expect it indifferent registers with no read-
write dependency. At the same time, we expect to minimize the rate of spill code, of which a high rate will not
only lose the performance of the system but also increase the unexpected read-write dependency, to make
sure that no additional new spill codes will be emerged in our algorithm.

Then, we analyze the ordered edges one by one to finish the register allocation for each node (line 2-36).
For each edge eðu; vÞ 2 EI , we first check whether a node is assigned. If any one of nodes u is assigned for
register ri, we will choose the register other than rito assign it for v (line 5-7). If both nodes are not assigned,
we first assign any of them to one register and then find the other suitable register as the previous case for the
other one (line 15-19). If the two nodes are assigned with the same register, we will try to change one
assigning to another register (line 6-14). For the edge not in EI , we first try to assign the two nodes in the
same register. If it is not assignable, we can handle it as the edge in EI (line 22-34). The detailed
algorithm is shown in Algorithm 2.

Algorithm 2: DIGRR algorithm

Input: the DIG(V,EI,EN,WE) foreach function of program;

the available registers R={r0,r1, •••,rn}

Output: The allocation map M: V →R for each node V in DIG;

1: E' := sort EN by decreased order in WE

2: while E' ≠ Ø do

3: e(u,v) :=pop the first element of E'

4: if e ϵ EI then

5: if only one node (assuming for u) is assigned for register ri then

6: get the register rj ≠ ri

7: M. add (v, rj)

8: else if both u, v are assigned for the same register ri then

9: if one of this two node (assuming for u) can be changed to other register Set R' without violating
the IG of current analysis then

10: rj := rk where rk ϵ R ' , e (n,u) ϵ EN

11: M(u) := rk

12: else

13: assign the two nodes for original regisers.

14: end if

15: else if both u, v are not assigned for any register then

16: ri:= get the random register that node v can be used.

17: M.add (v, ri)

(Continued)

CSSE, 2022, vol.40, no.1 279

To further increase the distance of read-write dependency, we use the NOP operation to pad the
instructions with a minimal distance value of 2.

3 Results

3.1 Experiment Methodology

Benchmarks from each category in Mibench [21] and Mediabench [22] are selected to evaluate the
performance of the proposed algorithm. The target architecture is based on StrongARM. Arm-linux-gcc
4.4.3 is used as the base compiler. Obj-dump 2.19.51 is used to get the disassemble codes. The sim-
profile tool for arm is used as profile tool to get the access frequency of instructions. The sim-profile in
simplescalar arm tools is used as the base simulator. The static analysis method described in Wu et al.
[23] is used to obtain the hot Read-write blocks and hot branches.The whole experimental framework is
shown in Fig. 5.

In the experiments, the GCC compiler is modified by first obtaining the profiling information with
O2 optimization option. Then, we disassemble and get profile information for the binary codes
respectively. After getting the disassemble codes and profile information, we use them as input for the
DIGRR processor to get the timing error aware optimized binary codes. Finally, we compare the source
binary codes with the optimized binary codes to evaluate the performance of DIGRR from four aspects:
the average distance of read-write dependency, the minimal distance of read-write dependency, the cost to
get the minimal distance of read-write dependency, and the energy saving values.

3.2 Experiment Results

To evaluate the effectiveness of the proposed algorithm in overall, we compared the average distance of
the read-write dependency before and after DIGRR optimization. Fig. 6 shows the optimization result for the
algorithm DIGRR. We normalize the results of optimization rate to the original GCC code.

Algorithm 2 (continued).

18: get the register rj ≠ ri with

19: M.add(u, rj)

20: end if

21: else

22: if only one node (assuming for u)is assigned for register ri then

23: assign as line 5 – 7

24: else if none of node is assigned then

25: assign as line 15 – 19

26: end if

27: end if

28: end while

29: return M

280 CSSE, 2022, vol.40, no.1

3.2.1 The Average Distance of Read-write Dependency
The experiment result shows that we achieve, on average, up to 20% read-write reduction compared to

the original GCC code. For some testing cases (such assusan_c_large, rijndael, sha, et al.) with a frequent use
of registers, the optimization rate can reach up to more than 30%, which shows clearly the effectiveness of the

Fedora12OS

Source codes

arm-linux-
gcc

Binary codes

objdump Sim-profile

Disassemble
codes

Profile
information

Windows 7 home basic OS

DIGRR
processing

Evaluation

Optimized
binary codes

Performance
reports

Figure 5: Experiment framework

Benchmarks

0.00%
5.00%

10.00%
15.00%

25.00%
20.00%

The optimization of read-write dependency

30.00%
35.00%
40.00%
45.00%

R
educed percentage

Figure 6: DF reduction results for GMS

CSSE, 2022, vol.40, no.1 281

algorithm in this paper. According to the relationship between error rate and scaled voltage as shown in
Sartori et al. [9,24], a further voltage down-scaling can be achieved for better energy saving.

3.2.2 The Minimal Distance of Read-write Dependency
To evaluate the worst situation of our proposed algorithm, we compared the minimal distance value and

its occurrence times obtained underGCCmode with those obtained underGMIS conditions. Tab. 1 shows the
optimization results for the algorithm DIGRR. In the table, the first column lists the test case set, the second
and third column represents the minimum distance of read-write dependency for GCC and GMIS,
respectively. And the 4th and 5th column represents their occurrence times of the minimum distance of
read-write dependency, respectively.

Table 1: The experimental result of minimal distance of read-write dependency

Benchmarks Min DF GCC Min DF GMIS CMin DF GCC CMin DF GMIS

Basicmatch_large 3 4 421 241

Basicmatch_small 2 5 334 220

Bitcnts_large 1 4 507 295

Bitcnts_small 2 3 777 59

qsort_large 2 5 307 143

qsort_small 1 3 648 287

susan_s_large 2 5 588 211

susan_e_large 2 3 427 129

susan_c_large 2 3 143 87

susan_s_small 3 4 861 265

susan_e_small 1 5 980 108

susan_c_small 2 3 371 138

jpeg-6a/cjpeg_large 1 3 786 270

jpeg-6a/djpeg_large 3 4 783 219

jpeg-6a/cjpeg_small 2 3 740 76

jpeg-6a/djpeg_small 2 5 349 121

lame3.70/lame_large 2 3 649 174

lame3.70/lame_small 3 5 99 96

dijkstra_large 1 4 636 224

dijkstra_small 1 5 437 299

patricia_large 3 4 829 124

patricia_small 2 4 439 77

ispell 1 4 919 258

search_large 1 4 208 255

blowfish_en 3 4 879 248

blowfish_de 2 5 901 202
(Continued)

282 CSSE, 2022, vol.40, no.1

From the table, we can see that the minimum distance value of read-write dependency in GMIS is more
than 2, and most of the individually-tested results are better under GMIS than under GGC (Tab. 1, column 3
vs. column 2).

It is obvious that the number of occurrence times for the minimum distance of read-write dependency is
significantly reduced (Tab. 1, column 5 vs. column 4), the average occurrence times are reduced from 536 to
184, so the GMIS system also has a significant improvement for the worst-case scenario.

3.2.3 The Cost of Read-write Dependency
In order to increase the distance of read-write dependency, the NOP padding technology was used in our

algorithm. Therefore, it could increase the time and space cost of the program to a certain extent. We
conducted an evaluation of the increased costs. We used the original GCC code as the standard
percentage base to evaluate the code after GMIS method optimization. The evaluation results are shown
in Figs. 7 and 8.

Table 1 (continued).

Benchmarks Min DF GCC Min DF GMIS CMin DF GCC CMin DF GMIS

rijndael_en 1 5 196 166

rijndael_de 3 5 314 86

sha 1 4 942 251

bin/rawcaudio(adpcm_c) 2 3 245 257

bin/rawcaudio(adpcm_d) 3 4 433 117

crc 3 3 977 269

fft_i 3 3 294 71

fft 1 4 146 296

bin/toast 3 4 488 132

bin/ untoast 3 5 245 167

average 2 4 536 184

0.00%

0.20%

0.40%

0.60%

1.00%

0.80%

Space cost

Benchmarks

cost percentage

Figure 7: The space cost of DF reduction results for GMS

CSSE, 2022, vol.40, no.1 283

From the experiment results, we can see that the timing cost and the space cost are both lowered. They
are both about 0.5% on average. Therefore, the cost impact of our algorithm on the performance and size of
the program is very small.

3.2.4 The Energy Saving Values
In order to evaluate the impact of this method on the energy consumption of TS architecture processors,

a comparative analysis of the code generated by GCC compilation and that obtained under the optimized
conditions, was completed. From the experiment results shown in Fig. 9, we can see that the energy
consumption of all programs has been reduced in a certain proportion. For some cases (such as
susan_c_large, rijndael, sha, et al.), the energy consumption decreased by more than 20%, and the
average energy consumption decreased by an approximate value of 16%. Therefore, it demonstrates in
another aspect the effectiveness of this TS method for energy saving.

4 Discussion

The experiment results demonstrate that our new register allocation method effectively increases the
average raw dependent distance by making a lot of optimized, speculative executions allowing correct

0.00%

0.20%

0.40%

0.60%

1.00%

0.80%

Timing cost

Benchmarks

cost percentage

Figure 8: The timing cost of DF reduction results for GMS

0.00%

5.00%

10.00%

15.00%

Benchmarks

20.00%

25.00%

30.00%

Energy saving percentage
saving percentage

Figure 9: The space cost of DF reduction results for GMS

284 CSSE, 2022, vol.40, no.1

results, and greatly reduces the energy consumption wasted by speculation errors. Therefore, we have a very
good auxiliary solution for TS architecture processors, especially for applications attempting a low energy
consumption.

5 Conclusions

TS architecture is a promising trend for microprocessor development to improve the energy efficiency.
Reducing the read-write dependencies can reduce timing error which in turn make more voltage down-
scaling for TS processors. Optimized voltage scaling is beneficial for reducing the energy of processors.
In this paper, we provide a DIGRR method to reduce the dependency of read-write between registers,
with the objective of improving the energy efficiency of TS processors. The experiment results show that,
more than 20% read-write dependency can be reduced on average, and the execution error rate is also
reduced. As a result, energy consumption can be reduced by using lower voltage for TS processors.

Funding Statement: This work was supported by the General Project of Humanities and Social Sciences
Research of the Ministry of Education(16YJA740039,Sheng Xiao, 2016); the Foundation Project of
Philosophy and Social Science of Hunan (17YBA115,Sheng Xiao, 2018).

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] N. Chen, N. Xialihaer, W. Kong and J. Ren, “Research on prediction methods of energy consumption data,”

Journal of New Media, vol. 2, no. 3, pp. 99–109, 2020.

[2] N. R. Sivakumar, S. Ghorashi, M. Jamjoom and M. Alduaili, “Heuristic and bent key exchange secured energy
efficient data transaction for traffic offloading in mobile cloud,” Computers Materials & Continua, vol. 65, no. 3,
pp. 1925–1943, 2020.

[3] Q. Liu, Z. Yang, X. Liu and S. Mbonihankuye, “Analysis of the efficiency-energy with regression and
classification in household using k-nn,” Journal of New Media, vol. 1, no. 2, pp. 101–113, 2019.

[4] S. Tabatabaei, “A novel fault tolerance energy-aware clustering method via social spider optimization (sso) and
fuzzy logic and mobile sink in wireless sensor networks (wsns),” Computer Systems Science and Engineering,
vol. 35, no. 6, pp. 477–494, 2020.

[5] D. J. Ernst, N. S. Kim, S. Das, S. Pant, R. R. Rao et al., “A low-power pipeline based on circuit-level timing
speculation,” in Proc.IEEE/ACM, Washington, DC, USA, pp. 7–18, 2003.

[6] B. Greskamp and J. Torrellas, “Paceline: Improving single-thread performance in nanoscale cmps through core
overclocking,” in Proc.PACT, Brasov, Romainia, pp. 213–224, 2007.

[7] S. Xiao, J. He, X. Yang, Y. Wang and J. Lu, “Crosstalk aware register reallocation method for green compilation,”
Computers, Materials & Continua, vol. 63, no. 3, pp. 1357–1371, 2020.

[8] G. Hoang, R. Findler and R. Joseph, “Exploring circuit timing-aware language and compilation,” in Proc.
ASPLOS, Newport Beach, CA, USA, pp. 345–356, 2011.

[9] J. Sartori and R. Kumar, “Compiling for energy efficiency on timing speculative processors,” in Proc. DAC, San
Francisco, CA, USA, pp. 1297–1304, 2012.

[10] J. Xin and R. Joseph, “Identifying and predicting timing-critical instructions to boost timing speculation,” in Proc.
DAC, Porto Alegre, RGS, Brazil, pp. 128–139, 2011.

[11] B. Greskamp, L. Wan, U. R. Karpuzcu, J. J. Cook, J. Torrellas et al., “Designing processors for timing speculation
from the ground up,” in Proc. IEEE/HPCA, Raleign,NC, USA, pp. 213–224, 2009.

[12] A. B. Kahng, S. Kang, R. Kumar and J. Sartori, “Designing a processor from the ground up to allow voltage/
reliability tradeoffs,” in Proc. IEEE/HPCA, Bangalore, Karnataka, India, pp. 213–224, 2010.

CSSE, 2022, vol.40, no.1 285

[13] M. D. Powell, A. Biswas, S. Gupta and S. S. Mukherjee, “Architectural core salvaging in a multi-core processor
for hard-error tolerance,” in Proc. SBAC/PAD, Sao Paolo, SP, Brazil, pp. 93–104, 2009.

[14] X. Jiao, A. Rahimi, Y. Jiang, J. G. Wang, G. P. Gyvez et al., “CLIM: A cross-level workload-aware timing error
prediction model for functional units,” IEEE Transactions on Computers, vol. 67, pp. 771–783, 2018.

[15] L. Rioux, R. Henia and N. Sordon, “Using Model-Checking for Timing Verification in Industrial System Design,”
in Proc. ICSTW, Tokyo, Tokyo, Japan, pp. 377–378, 2017.

[16] H. Khdr, H. Amrouch and J. Henkel, “Dynamic guardband selection: Thermal-aware optimization for unreliable
multi-core systems,” IEEE Transactions on Computers, vol. 68, pp. 53–66, 2019.

[17] Y. Wang, J. C. Deng, Y. T. Fang, H. W. Li and X. W. Li, “Resilience-aware frequency tuning for neural-network-
based approximate computing chips,” IEEE Transactions on Very Large Scale Integration Systems, vol. 25,
pp. 2736–2748, 2017.

[18] A. Meixner and D. J. Sorin, “Detouring: Translating software to circumvent hard faults in simple cores,” in Proc.
ICSTW, Anchorage, AK, USA, pp. 80–89, 2008.

[19] V. Reddi, S. Campanoni, M. S. Gupta, M. D. Smith, G. Wei et al., “Eliminating voltage emergencies via
software-guided code transformations,” ACM Transactions on Architecture and Code Optimization, vol. 7, no.
12, pp. 1–28, 2010.

[20] S. K. S. Hari, M. L. Li, P. Ramachandran, B. Choi and S. V. Adve, “Mswat: Low-cost hardware fault detection and
diagnosis for multicore systems,” in Proc.IEEE/ACM, New York, NY, USA, pp. 122–132, 2009.

[21] M. R. Guthaus, J. Ringenberg, D. J. Ernst, T. Austin, T. Mudge et al., “Mibench: A free, commercially
representative embedded benchmark suite,” in Proc. IEEE/WWC, Washington, DC, USA, pp. 3–14, 2001.

[22] C. Lee, M. Potkonjak and W. M. Smith, “MediaBench: A tool for evaluating and synthesizing multimedia and
communications systems,” in Proc. IEEE/ACM, Saint Louis, MO, USA, pp. 330–335, 1997.

[23] Y. F. Wu and J. R. Larus, “Static branch frequency and program profile analysis,” in Proc. IEEE/WWC, San Jose,
CA, USA, pp. 1–11, 1994.

[24] J. Sartori and R. Kumar, “Exploiting timing error resilience in processor architecture,” ACM Transactions on
Embedded Computing Systems, vol. 2, no. 2s, pp. 46–57, 2013.

286 CSSE, 2022, vol.40, no.1

	Timing Error Aware Register Allocation in TS
	Introduction
	Materials and Methods
	Results
	Discussion
	Conclusions
	References

