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Abstract: As soil heavy metal pollution is increasing year by year, the risk assess-
ment of soil heavy metal pollution is gradually gaining attention. Soil heavy metal
datasets are usually imbalanced datasets in which most of the samples are safe
samples that are not contaminated with heavy metals. Random Forest (RF) has
strong generalization ability and is not easy to overfit. In this paper, we improve
the Bagging algorithm and simple voting method of RF. AW-RF algorithm based
on adaptive Bagging and weighted voting is proposed to improve the classifica-
tion performance of RF on imbalanced datasets. Adaptive Bagging enables trees
in RF to learn information from the positive samples, and weighted voting method
enables trees with superior performance to have higher voting weights. Experi-
ments were conducted using G-mean, recall and F1-score to set weights, and the
results obtained were better than RF. Risk assessment experiments were conducted
using W-RF on the heavy metal dataset from agricultural fields around Wuhan. The
experimental results show that the RW-RF algorithm, which use recall to calculate
the classifier weights, has the best classification performance. At the end of this
paper, we optimized the hyperparameters of the RW-RF algorithm by a Bayesian
optimization algorithm. We use G-mean as the objective function to obtain the opti-
mal hyperparameter combination within the number of iterations.

Keywords: Random forest; imbalanced data; Bayesian optimization; risk
assessment

1 Introduction

The accumulation of heavy metals in agricultural land will not only affect the quality of crops, but also
the quality of life of the surrounding residents. Soil is a non-renewable resource, and monitoring heavy metal
content in soil and conducting risk assessment is a very important part of land management work. Soil heavy
metal contamination risk assessment is similar to credit assessment and disease detection in that it involves
identifying hazardous samples from a large number of samples. Because relying on domain experts for this
work yields inefficient and not entirely reliable results, many scholars have resorted to machine learning
techniques to improve efficiency. We propose to apply RF to soil heavy metal contamination risk
assessment. RF was first proposed by Breiman in 2001 [1], an integrated learning method based on the
Bagging algorithm [2]. RF has been applied in various industries, such as Rodriguez-Galiano et al. [3]
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who applied RF to land cover classification. Feng et al. [4] used RF extracts inundated regions in the spectral-
texture feature space and performs well in urban inundation mapping. RF can also be applied to problems
such as outlier detection [5]. Because the sample set and feature set of the input base learner are different
and the correlation between the base learners is low, RF has a strong generalization capability.

Although RF performs well on most classification or regression problems, its hyperparameters are
always a challenge to tune. Hyperparameters are parameters in a model that are used to define model
properties or define the model training process, such as the learning rate in a neural network model.
When the learning rate is small, the convergence rate may be too slow and the time cost may increase.
A high learning rate can lead to poor results. Bayesian optimization (BO) [6] can handle optimization
problems with black-box functions, so it is widely used for hyperparameter tuning of integrated learning
methods. At the end of this paper, we performed hyperparameter tuning of the RF using BO.

The rest of this paper is organized as follows: In Sections 2 and 3 describe the RF and Bayes
Optimization algorithm. Section 4 present the principles and steps of the W-RF. While the analysis of
experiments and obtained results are provided in Section 5. We conclude with final remarks in Section 6.

2 Random Forest

2.1 Bagging

Breiman [7] proposed the Bagging algorithm in 1996. The algorithm is based on Bootstrap
implementing replacement sampling on the dataset to get several subsets, and use these subsets to learn
several base learners, and finally output the result by voting method or averaging method. For weak
learning algorithms, Bagging can improve the prediction accuracy, but it has no significant effect for
strong learning algorithms and sometimes even decreases the accuracy of prediction. In 2003, Brylla
et al. [8] proposed Attribute Bagging and demonstrated that applying it to a base learner sensitive to
attribute increase or decrease can improve the accuracy of the model. In 2009, Paleologo et al. [9]
proposed a subagging method for the high imbalance of credit assessment dataset and experimentally
confirmed that this subagging can improve the performance of the base classifier.

2.2 RSM and CART Decision Tree

Random Subspace Method (RSM) [10] is a classification algorithm proposed by Ho in 1998. RSM
implements random sampling of the feature set to obtain several feature subsets, and trains several base
classifiers through the feature subsets. Finally, the classification results are output by voting method.

Classification regression tree (CART) [11] can deal with both classification and regression problems. If
the goal is to generate a regression tree, the feature with the smallest squared error value is selected as the
splitting node in the CART partitioning process. If the goal is to generate a classification tree, the feature
with the smallest Gini index is selected as the segmentation node in the CART partitioning process.

2.3 RF for Classification

When using RF for classification, the number of trees in the forest needs to be defined. Suppose the
training set contains n input features. RF performs replacement sampling on the training set to obtain T
sub-training sets, and then generates T trees using the sub-training sets. To construct the decision tree, m
features are randomly selected from the feature set of the sub-training set using the random subspace
method. The optimal feature from the m features is selected as the split node using the minimum Gini
index as the division criterion. Finally, RF integrates the classification results of all decision trees by the
simple voting method and output them.
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Suppose the category space of the dataset is xj ¼ x1;…;xcf g, c is the number of categories, hi xð Þ
represents the i-th base classifier, the number of base classifiers is T , and H xð Þ is the classification result
of RF. The classification function of the base classifier is Eq. (1):

vi;j ¼ 1; if hi xð Þ ¼ xj

0; else

�
(1)

Simple voting methods include majority voting and plurality voting. Majority voting [12] means that
when the number of votes for a category exceeds more than half of the number of base classifiers, the
category is output as the classification result. If there is no category with more than half of the votes, the
classification is rejected.

H xð Þ ¼ xj; if
PT

i¼1 vi;j >
1

2

Xc

k¼1

XT

i¼1
vi;k

reject; else

(
(2)

where vi;j represents the number of votes obtained by category xj.

Plurality voting [12] means that the category with the highest number of votes is used as the
classification result, without considering whether the number of votes exceeds half of the number of base
classifiers. If more than one category receives the highest number of votes, one of the categories is
randomly selected for output.

H xð Þ ¼ x
argmax

j

PT
i¼1

vi;j

(3)

where vi;j represents the number of votes obtained by category xj.

3 Bayesian Optimization

BO is a model-based sequential optimization algorithm (SMBO). Its iterative approach is to complete
the first evaluation, then find the next evaluation point for the second evaluation, and so on. When using
BO for hyperparametric optimization, the objective function needs to be given as f xð Þ. If f xð Þ represents
the generalization error of the machine learning model, then according to the objective function, the
optimization problem to be solved can be expressed as follows.

x0 ¼ arg min
x2X

f xð Þ (4)

X is the given hyperparameter search space; x0 is a certain combination of hyperparameters in the
hyperparameter search space that minimizes f xð Þ; f xð Þ is the objective function. The objective function
can be the generalization error of the model, or the mean square error or accuracy, etc.

The process of BO implementation is:

a. Randomly collect a number of points from the hyperparametric search space and construct a dataset
based on the values of the objective function corresponding to these points.

b. Select a probability model to proxy the distribution of this dataset over the objective function. The
evaluation point for the next iteration can be determined from the probability distribution. A Gaussian
process (GP) is usually used as a probabilistic surrogate model.

c. The next evaluation point is found by maximizing the acquisition function.
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d. Combine the evaluation points and corresponding objective function values with the previously
constructed dataset, update the probabilistic surrogate model and repeat the above steps. Stop the
optimization when the preset number of iterations is reached.

In this way, the minimum of the complex nonconvex objective function can be found with fewer
evaluation steps, but more computations are required at each step to determine the next sampling point.
The probabilistic surrogate model and acquisition function are the two most important parts of BO. It is
called BO because the Bayesian formulas are required in the optimization process. The Bayesian formula
is as follows.

pðf jDÞ ¼ pðDjf Þp fð Þ
p Dð Þ (5)

f is the objective function; D ¼ x1; y1ð Þ; x2; y2ð Þ;…; xn; ynð Þf g is the dataset consisting of the evaluation
point xi and the corresponding objective function value yi ¼ f xið Þ, i ¼ 1; 2; . . . ; n; pðDjf Þ is the likelihood
distribution of y; p fð Þ is the prior probability distribution of f ; p Dð Þ is the marginal likelihood distribution;
pðf jDÞ is the posterior probability distribution of objective function f. The posterior probability distribution
describes the confidence level of the unknown objective function [13], after correcting the prior by the
observed dataset.

4 Improved Random Forest

Although RF has good classification performance because of the increased sample perturbation by
Bagging, it still suffers from the following shortcomings.

a. When there is a class imbalance problem in the input training set, the sub-training set obtained by the
Bagging algorithm may contain few or no positive samples. This may lead to under-learning of positive
samples by RF.

b. Regardless of the good or bad classification performance of the base classifier, the simple voting
method gives all base classifiers equal voting weights, which limits the classification performance of RF.

4.1 Adaptive Bagging

Chen et al. [14] proposed Balanced Random Forest (BRF) and Weighted Random Forest (WRF) to deal
with imbalanced data. BRF [14] use stratified bootstrap and down-sampling method to learn imbalanced
data. Although down-sampling of negative samples results in the same class priority, it reduces the
information that can be learned for each tree in the RF. WRF [14] calculates the Gini index and voting
results based on the weights of classes, giving higher weights to positive samples. However, if the
weights are not appropriate, the classification results will be greatly affected. To overcome the above
problems, an adaptive Bagging algorithm is proposed in this paper. The steps for implementing the
adaptive Bagging algorithm are as follows.

a. Calculate pos num, the number of positive samples in the input training set. Calculate ratio, the
percentage of positive samples in the total samples.

b. Draw bootstrap samples from the input training data set to build a sub-training set.

c. If the ratio is less than 0.1, go to step 4, otherwise go to step 5.

d. Calculate the number of positive samples in the sub-training set. If the number is less than pos num,
bootstrap sampling is performed on the positive samples in the input training set so that the number of sub-
training sets is equal to pos num.

e. Generating base classifiers using sub-training sets.
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Adaptive Bagging does not limit the number of positive samples in each sub-training set, but ensures
that each base classifier can learn a certain number of positive sample information.

4.2 Weighted Voting

The second deficiency of RF can be improved by changing the simple voting method to a weighted
voting method. Higher weights are assigned to base classifiers with better classification performance and
lower weights are assigned to base classifiers with poorer classification performance. Currently, many
scholars have demonstrated that the weighted voting method can improve the classification performance
of RF. For example, Yan et al. [15] derived error rate bounds for the confidence voting method and
introduced a new weight assignment method to improve the classification accuracy of the algorithm.
Zhang et al. [16] uses the posterior probability of the Bayesian equation to express the credibility. The
larger the value of posterior probability, the higher the credibility of the base classifier and the larger the
weight. He [17], based on Zhang et al. [16], proposed to use the out-of-bag (OOB) accuracy of RF
instead of the posterior probability value as the credibility, and obtained a new voting weight calculation
formula. It improves the classification accuracy of RF and reduces the computational complexity.

In this paper, we propose to assign weights based on the classification performance metrics of the tree in
RF. The metrics for classification performance include accuracy, precision, recall, F1-score, G-mean, etc. In
order to select the most suitable metric to be used for weighted voting, we conducted experiments under
different metrics. The selected metrics are G-mean, F1-score and recall. Eq. (6) shows the weight function.

weight ið Þ ¼ metric ið ÞPT
i¼1 metric ið Þ (6)

T is the number of base classifiers; metric ið Þ is the performance metric of the i base classifier. When the
metric is G-mean, it is called G-mean weighted Random Forest (GW-RF). When the metric is F1-score, it is
called F1-score weighted Random Forest (FW-RF). When the metric is recall, it is called recall weighted
Random Forest (RW-RF).

This paper studies the binary classification problem, Eq. (7) shows the voting function:

H xð Þ ¼ sign
XT
i¼1

weight ið Þhi xð Þ
 !

(7)

weight ið Þ is the weight of the i base classifier; sign xð Þ ¼ 1; x � 0
�1; x < 0

�
.

4.3 W-RF Algorithm

In binary classification problems such as risk assessment and disease diagnosis, the input datasets are
usually imbalanced datasets with less than 10% of the total number of positive samples. The W-RF
algorithm uses adaptive Bagging and weighted voting methods to better learn imbalanced data. The
pseudo-code of the W-RF algorithm is described below.

Algorithm 1. W-RF

Input: training data set S; test data set D; y ¼ �1; 1f g; the number of features d; the number of CART
trees T .

Output: Classification result H xð Þ
1: for i = 1, 2, …, T do

2: calculate the number of positive samples pos num in S and ratio.

3: draw bootstrap samples from S to build a sub-training set Si.
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4: if ratio � 0:1, then go to step 4; else go to step 5.

5: calculate the number of positive samples pos numi in Si.

6: if pos numi < pos num, then do bootstrap sample again for the positive samples in S, so that
pos numi ¼ pos num.

7: randomly extract k k � dð Þ features from Si to form a feature subset Si
0.

8: use Si
0 to train a base classifier hi xð Þ.

9: end for

10: combine h1 xð Þ; h2 xð Þ;…; hi xð Þ to ensemble classifier E ¼ h1 xð Þ;… hi xð Þf g
11: use test data set D to calculate the metric ið Þ of each base tree, and use metric ið Þ to calculate weight ið Þ

with Eq. (6).

weight ið Þ ¼ metric ið ÞPT
i¼1metric ið Þ (6)

12: use Eq. (7) to calculate the final classification result.

H xð Þ ¼ sign
XT
i¼1

weight ið Þhi xð Þ
 !

(7)

5 Experiments

5.1 Dataset

The dataset 1,2 shown in the Tab. 1 are downloaded from the OODS library [18]. The Cardio dataset is a
fetal electrocardiogram dataset edited by a professional obstetrician, with 176 positive samples and
1655 negative samples. The Ionosphere dataset is an ionospheric dataset with two categories, good and bad.
Good category has 225 samples and bad category has 126 samples. The Diabetes dataset is downloaded
from the UCI machine learning repository [19]. It has 268 positive samples and 500 negative samples.

The Heavy metal dataset comes from Wuhan Academy of Agricultural Sciences, which contains
sampling information and measurement results of eight heavy metals (As, Cd, Cr, Cu, Ni, Pb, Zn, Hg) in
agricultural soils around Wuhan. The dataset contains 12 variables: farmland type, altitude, longitude,
latitude, and the content of the heavy metals. It has 87 positive samples and 1074 negative samples.

5.2 Performance Measurement

In order to evaluate the performance of RF, the paper use metrics such as classification accuracy,
precision, recall, F1-score, and G-mean. All these metrics are calculated through a confusion matrix.

Table 1: Dataset summary

Sequence name Dataset Number of cases Number of variables %Positive class

1 Cardio 1831 21 9.6%

2 Ionosphere 351 33 35.9%

3 Diabetes 768 8 34.9%

4 Heavy metal 1161 12 7.5%
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The calculation formula is shown in Eqs. (8)–(12). Tab. 2 shows the confusion matrix. In addition to the
above metrics, the receiver operating characteristic (ROC) curve and the area under the ROC curve
(AUC) are also used.

Accuracy ¼ TP þ TN

P þ N
(8)

Precision ¼ TP

TP þ FP
(9)

Recall ¼ TP

TP þ FN
(10)

F1� socre ¼ 2� Precision� Recall

Precisionþ Recall
(11)

G� mean ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TP

TP þ FN
� TN

TN þ FP

r
(12)

5.3 Performance Comparison

Use the 5-fold cross-validation method for experiments. The experimental dataset is divided into five
sub-data sets. Given that the original dataset is D, the five sub-datasets are D1, D2, D3, D4, D5. In each
training, Di is selected from the five subsets as the test set, and the other four subsets are combined as the
training set, and i ¼ 1; 2;…; 5. Take the average of accuracy, precision, recall, F1-score and G-mean
obtained from 5 training sessions, draw the corresponding ROC curve and calculate the AUC value.

5.3.1 Performance Comparison between W-RF and RF
Tab. 3 compares the performance of different algorithms on the Cardio dataset. It can be observed that in

addition to precision, the results of GW-RF are the best on other metrics. Fig. 1 shows the ROC curve and
AUC value of the Cardio dataset. For five subsets, comparing the AUC values under several algorithms
shows that the AUC values under W-RF are mostly higher than RF.

Table 2: Confusion matrix

Predicted Positive Class Predicted Negative Class

Actual Positive Class True Positive (TP) False Negative (FN)

Actual Negative Class False Positive (FP) True Negative (TN)

Table 3: Performance comparison on Cardio dataset

Algorithms Accuracy Precision Recall F1-score G-mean

GW-RF 0.984 0.993 0.836 0.906 0.913

RW-RF 0.983 0.994 0.830 0.901 0.909

FW-RF 0.980 0.993 0.801 0.885 0.894

RF 0.981 1.000 0.807 0.892 0.898
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Figure 1: ROC curve and AUC value of the Cardio dataset
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Tab. 4 compares the performance of different algorithms on the Ionosphere dataset. It can be observed
that the metrics results of GW-RF are best. Fig. 2 shows the ROC curve and AUC value of the Ionosphere
dataset. It can be found that on the ionospheric dataset 4, the AUC value obtained by the W-RF algorithm is
not ideal. But in other subsets, the AUC values obtained are all higher than RF.

Tab. 5 shows the performance of different algorithms on the Diabetes dataset. Fig. 3 shows the ROC
curve and AUC value of the Diabetes dataset. As can be seen from Tab. 5, the results of RW-RF are the
best in most of metrics. Comparing the AUC values of these algorithms, the AUC value of W-RF is
mostly higher than that of RF. Analyzing the experimental results, we can conclude that the classification
performance of W-RF is better than that of RF in most cases.

5.3.2 Comparison of Risk Assessment Performance
To verify the effectiveness of the W-RF algorithm, the algorithm was compared with RF, K-nearest

neighbors (KNN), logistic regression (LR) and support vector machine (SVM) [20] on the heavy metal
dataset. The learning rate of LR is set to 0.1, and the number of iterations is set to 500. The number of K
nearest neighbor samples of the KNN is set to 5. SVM use the polynomial kernel as the kernel function,
and the penalty coefficient C is set to 1. The number of trees for RF and W-RF is set to 50, and the
others remain the default.

Tab. 6 compares the performance of different algorithms on the heavy metal dataset. Comparing the
accuracy, all the algorithms are above 90% except SVM. On the contrary, when comparing recall, all
the algorithms except SVM and RW-RF have less than 50% recall. It shows that the partitioned
hyperplane of SVM has certain distinguishing ability for positive samples, but has a large classification
errors for negative samples. Regardless of whether the weight is set by G mean or F1 score, the five
metrics obtained by W-RF in this experiment are better than RF and other algorithms. Fig. 4 shows the
ROC curve and AUC value of the Heavy metal dataset. For five subsets, comparing the AUC values
under several algorithms shows that the AUC values under RW-RF are mostly higher than other algorithms.

5.4 Parameter Optimization

After the experiment in Section 5.3.3, it is found that RW-RF has the best performance on the heavy
metal dataset. This section uses the BO to complete the hyperparameter tuning of RW-RF. Tab. 7 shows
the hyperparameters of RW-RF.

This paper uses BayesianOptimization function from the bayesian-optimization library [21] to search
which hyperparameter combination yields the best performance results. This function uses GP as
probabilistic surrogate model, and the acquisition points of the next iteration are obtained by maximizing
the confidence interval of GP. We set G-mean as the optimized objective function and define the search
space as (n_estimators, max_features, max_depth): the number of CART trees range in the integer interval
{50, 150}, and the ranges of max_features and max_depth are also integer interval {1, 12} and {1, 10}.

Table 4: Performance comparison on ionosphere dataset

Algorithms Accuracy Precision Recall F1-score G-mean

GW-RF 0.934 0.936 0.881 0.905 0.921

RW-RF 0.917 0.906 0.865 0.882 0.904

FW-RF 0.920 0.901 0.874 0.885 0.908

RF 0.923 0.923 0.858 0.888 0.907
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Fig. 5 shows the change of G-mean in 30 iterations of BO. The G-mean derived at the 29th iteration is
the largest, at the time n estimators ¼ 61, max features ¼ 10, max depth ¼ 7, and the G-mean is 0.981.

Figure 2: ROC curve of the Ionosphere dataset
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Table 5: Performance comparison on diabetes dataset

Algorithms Accuracy Precision Recall F1-score G-mean

GW-RF 0.725 0.720 0.366 0.481 0.578

RW-RF 0.734 0.719 0.397 0.508 0.600

FW-RF 0.720 0.719 0.332 0.450 0.553

RF 0.691 0.646 0.253 0.363 0.483

Table 6: Performance comparison on heavy metal dataset

Algorithms Accuracy Precision Recall F1-score G-mean

GW-RF 0.944 0.860 0.284 0.405 0.502

RW-RF 0.968 1.000 0.571 0.718 0.750

FW-RF 0.955 0.964 0.428 0.584 0.650

RF 0.936 1.000 0.148 0.250 0.370

KNN 0.929 0.503 0.106 0.172 0.284

LR 0.919 0.178 0.155 0.162 0.243

SVM 0.771 0.233 0.503 0.243 0.596

Table 7: Hyperparameters of RW-RF

Hyperparameter Description

n_estimators The number of CART trees

max_features The maximum number of features used to generate the CART tree

max_depth Maximum depth of CART tree
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Figure 3: ROC curve of the diabetes dataset
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Figure 4: ROC curve of the Heavy metal dataset
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6 Conclusion and Future Work

Based on the shortcomings of RF in classification performance on imbalanced datasets, this paper
proposed a W-RF algorithm combining adaptive Bagging and weighted voting. Adaptive Bagging first
calculates the proportions of different types of samples on the input training set, and judges whether the
current training set is an imbalanced dataset. Secondly, if it is an imbalanced dataset, calculate the
number of positive samples in the sub-training set and compare it with the number before sampling. If
the number is less than before, sample the positive samples with replacement again to keep the positive
samples at least a certain proportion in the sub-training set. The weighted voting method is to give higher
weights to the base classifier with higher performance metrics. The performance metrics we choose
includes G-mean, F1-score, and recall.

From the experiments on various datasets, we can conclude that the performance of GW-RF, RW-RF,
and FW-RF are better than RF and other classification algorithms. However, we could not determine
which of GW-RF, RW-RF or FW-RF is better. For heavy metal risk assessment, RW-RF has the best
classification performance. Therefore, we use RW-RF to conduct risk assessment experiments on heavy
metal pollution in agricultural fields around Wuhan and obtained the optimal combination of
hyperparameters using BO. In future work, consider using deep reinforcement learning methods [22] for
heavy metal pollution risk assessment, or study images of heavy metal pollution distribution, and try to
make image predictions [23]. In addition, since this paper only studies the binary classification problem,
we will consider extending the binary classification problem to the multi-classification problem.
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