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Abstract: Stochastic demand is an important factor that heavily affects production
planning. It influences activities such as purchasing, manufacturing, and selling,
and quick adaption is required. In production planning, for reasons such as redu-
cing costs and obtaining supplier discounts, many decisions must be made in the
initial stage when demand has not been realized. The effects of non-optimal deci-
sions will propagate to later stages, which can lead to losses due to overstocks or
out-of-stocks. To find the optimal solutions for the initial and later stage regarding
demand realization, this study proposes a stochastic two-stage linear program-
ming model for a multi-supplier, multi-material, and multi-product purchasing
and production planning process. The objective function is the expected total cost
after two stages, and the results include detailed plans for purchasing and produc-
tion in each demand scenario. Small-scale problems are solved through a determi-
nistic equivalent transformation technique. To solve the problems in the large
scale, an algorithm combining metaheuristic and sample average approximation
is suggested. This algorithm can be implemented in parallel to utilize the power
of the solver. The algorithm based on the observation that if the remaining quan-
tity of materials and number of units of products at the end of the initial stage are
given, then the problems of the first and second stages can be decomposed.

Keywords: Mixed integer programming; two-stage stochastic programming;
production planning; order allocation

1 Introduction

To satisfy customers and improve supply chain performance are among the most important objectives of
firms. Supply chain performance is influenced by activities such as purchasing, manufacturing, transport, and
sales. We focus on problems encountered in purchasing and production planning, such as utilization of
discount policies and making decisions before demand has been realized. It has been pointed out that
discounts may have an impact on purchase prices [1], and it can be a win-win situation when both
supplier and purchaser benefit from discounts. Similar to production, planning can help to efficiently
allocate resources while maintaining a minimum cost. In reality, order allocation is not easy, as it heavily
relies on the transparency and accuracy of information in the whole supply chain, and it is often
accomplished in several stages. Market demand is the uncertain factor that attracts the attention of
researchers, as material procurement and production planning depend on it. However, perfect demand
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forecasting is impossible and impractical in real life, since demand depends on factors such as the market,
environment, and season. Stochastic programming can be used to deal with this uncertainty.

Stochastic programming is an optimization framework that considers uncertain parameters to define
optimal solutions. It has been applied in fields such as financial and planning control and manufacturing
and capacity planning. With this model, uncertainty can be overcome, and firms can reduce supply chain
expense to gain a competitive advantage.

The main contribution of this study is to construct a two-stage stochastic linear programming model for
multiple materials and products, while considering discount policies from different suppliers and their
effects on production planning. The model strives to answer the question of the quantity of material to be
ordered from a specific supplier. Production planning at all stages provides basic information such as
required labor, operational hours, and production lines. At a small scale, the problem can be solved directly
through a deterministic equivalent. In a larger scenario, random search combined with sample average
approximation is applied.

The remainder of this paper is organized as follows. The next section reviews the related literature.
Section 3 presents the proposed two-stage stochastic mixed-integer programming mathematical models,
and Section 4 describes the framework for applying random search and sample average approximation to
solve the large-scale problem. Conclusions are drawn in Section 5.

2 Literature Review

Material procurement is the initial activity in production planning. In this phase, orders are allocated based
on supplier price quotations to minimize total expenditures. Suppliers use quantity discounts to increase order
sizes. Various methods for order allocation based on quantity discounts have been proposed, including mixed
integer programming and stochastic programming optimization models. Stochastic programming can
effectively account for uncertainty in modeling. Moheb-Alizadeh et al. [2] proposed a multi-objective
mixed-integer nonlinear programming model for efficient and sustainable supplier selection and order
allocation with stochastic demand. Their methods relied on a bi-objective data envelopment analysis and
fuzzy multi-objective programming approach. Zhou et al. [3] proposed a system with two levels between
retailers and their potential suppliers. At the beginning of each period, the retailer uses its inventory to
satisfy customer stochastic demand and place orders for the next period. The objective is to minimize the
total expected cost, using stochastic programming to identify the optimal order quantity based on the
current inventory, and identifying the best supplier for the period based on that. Hadayani and Setayama
et al. [4] applied supply chain operations reference approach, which was supported by supported by the
Analytical Hierarchy Process (AHP) method to evaluate and improve the supply chain performance. Meena
et al. [5] considered a two-stage supply chain with a selected group of suppliers based on multiple factors
and criteria, where the purchaser places orders based on stochastic customer demand with a known
probability distribution. Jolai et al. [6] proposed a mixed integer nonlinear programming model to solve the
supplier order allocation problem with multiple periods and products and a linear discount. They considered
discount price schemes, capacity limitations, and other factors to effectively allocate orders among a set of
qualified suppliers. Shi et al. [7] developed a multi-stage stochastic programming model considering market
demand variability and price fluctuations to make replenishment decisions at various stages over time, so as
to minimize the procurement risk measured as the conditional value at-risk. Tarray et al. [8] suggested a
sampling strategy for estimation of population variance on two occasion successive sampling. This
sampling strategy has high potential in analyzing the market demand.

Production planning is another process whose role is important in order to minimize the total cost and
control the leverage of the manufacturing phase. Many scholars have used stochastic programming to
construct aggregate planning for production from many aspects, especially when the demand is unstable
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and cannot be predicted accurately. Mahdavi et al. [9] proposed mixed integer linear programming to
aggregate multiple products in multiple periods along with constraints on machine capacity, material
balances, and shortages, whose objective is to minimize the total production cost with various cost
components. Altendorfer et al. [10] developed aggregate production planning under stochastic customer
demand using mixed integer linear programming, and discovered the effects of forecast error on the
optimal plan and total cost. Leung et al. [11] proposed two-stage stochastic programming using market
demand variability to determine optimal medium-term production plans, with the main objective to
minimize the total expected production cost. Zanjani et al. [12] used multi-stage stochastic programming
to plan production given uncertain demand and material quality. The demand was considered as dynamic
stochastic data with stationary behavior. The uncertain yield was constructed with a stationary probability
distribution during the planning horizon. Their goal was to minimize the total inventory and backorder
costs for all products and materials. Leung et al. [13] used stochastic programming and developed a two-
stage model for perishable products considering stochastic parameters of market demand, production, and
inventory holding cost to minimize the cost and shortage of products under constraints on the warehouse,
labor working time, and machine operation time. Aouam et al. [14] sought the most promising among
three formulations of production planning problems, consisting of a chance constrained model, two-stage
stochastic programming model, and robust optimization model, using workload-dependent lead time,
capacity, and uncertain demand. Zanjani et al. [15] studied production planning with uncertainty in the
quality of raw materials in the sawmill industry. The solution methodology was based on a sample
average approximation (SAA) scheme, and the result was validated through Monte Carlo simulation.
Fang et al. [16] considered a hybrid manufacturing and remanufacturing system that used
remanufacturable parts in end-of-use products, and investigated a production planning problem
integrating resource capacity planning shared by both manufacturing and remanufacturing. Demand was
assumed to be stochastic, and the problem was solved using Lagrangian relaxation and problem
decomposition. Zhang et al. [17] proposed a stochastic production planning model for an international
enclosure manufacturing company with seasonal demand and market growth uncertainty. The company
forecast demand and informed suppliers to reduce risks for both parties. A two-stage stochastic
production planning model was developed to minimize the total costs under all scenarios. Marteo et al.
[18] studied a two-stage stochastic model for selecting grocery shop brands to ensure high-quality
products and minimal farm-to-table time under seasonal contracts, with the aim to minimize overall
procurement costs and meet future demand. This problem is common in the fresh vegetable industry. The
problem was solved by Lagrangian relaxation and parallel computing algorithms using the CPLEX solver.

Several approaches have been developed to solve stochastic programming problems. Some of the most
common are random search methods, stochastic approximation, stochastic quasi-gradient methods, and
sample average approximation. Random search (stochastic) algorithms use randomness or probabilities to
modify the solution process, and can be useful for ill-structured global optimization problems, whose
objective function may be nonconvex or in a mixed continuous-discrete domain. Such algorithms include
simulated annealing, tabu search, genetic algorithms, evolutionary programming, particle swarm
optimization, and ant colony optimization [19–22]. Introduced by Robbins and Monro [23], stochastic
approximation (SA) has become one of the most widely applicable and useful stochastic programming
methods. The gradient is estimated by iterative sampling, and is used to update the current solution and
project it back to the feasible region. Constraints are handled by Lagrange multipliers or penalty costs.
Extensions of the SA approach include simultaneous perturbation stochastic approximation [24], scaled-
and-shifted Kiefer-Wolfowitz [25], and accelerated stochastic approximation [26]. Stochastic quasi-
gradient methods [27,28] are random search techniques that use asymptotically consistent estimates,
rather than precise values, for the values of the functions and their derivatives. They are often applied to
stochastic optimization problems with complex objective functions and constraints. These methods also
require projection of solutions back to the feasible region. Stochastic approximation and stochastic quasi-
gradient methods are hindered by the difficulty of the projection process to ensure the feasibility of the
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updated solution. Sample average approximation (SAA) solves the stochastic problem just once through
sampling and optimization methods for deterministic problems. There is no update process, and gradient
estimation is unnecessary [29–31].

Inspired by stochastic programming in order allocation and aggregate planning in a real production
environment, this paper aims to optimize purchasing at two stages and form two aggregate plans for the
production stages after receiving material from the procurement phase. The proposed model
simultaneously considers the effect of decisions on the expected total cost at both stages and solves them
together. The result is globally optimal for all scenarios, since the first stage considers impacts on all
scenarios in the second stage. The results include essential information such as the number of hires, total
production lines needed, and total overtime hours in each scenario of customer demand under some
resource limitations and constraints.

3 Model Development

Our two-stage stochastic linear programming model is constructed.

m: index of materials, m ¼ 1 . . .M

p: index of products, p ¼ 1 . . .P

s: index of suppliers, s ¼ 1 . . . S

r: index of price ranges, r ¼ 1 . . .R

e: index of scenarios, e ¼ 1 . . .E

Parameters

De
p: demand of product type p under scenario e

Dmax
p : maximum total demand of product type p in all scenarios

BigM : very large number

amp: number of units of material type m required to manufacture one product of type p

bMm : salvage price of one unit of material type m

bPp : salvage price of one unit of product type p

cp: selling price of one unit of product type p

dp: cost to manufacture one unit of product type p

s1: labor cost for one worker during stage 1

se2: labor cost for one worker under scenario e during stage 2

h1msr: offer price of material type m from supplier s at price range r at stage 1

h2msre: offer price of material type m from supplier s at price range r under scenario e at stage 2

LB1
msr: lower bound of purchase quantity of material type m from supplier s at price range r in stage 1

LB2
msre: lower bound of purchase quantity of material type m from supplier s at price range r under

scenario e in stage 2

UB1
msr: upper bound of purchase quantity of material type m from supplier s at price range r in stage 1

UB2
msre: upper bound of purchase quantity of material type m from supplier s at price range r under

scenario e in stage 2

pe: probability associated with scenario e
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�1
msr: fixed cost to order material type m from supplier s at price range r in stage 1

�2
msre: fixed cost to order material type m from supplier s at price range r under scenario e in stage 2

x1: fixed cost to use one line in stage 1

x2
e : fixed cost to use one line under scenario e in stage 2

H1
p : number of available hours of one line to manufacture product type p in stage 1

H2
pe: number of available hours of one line to manufacture product type p under scenario e in stage 2

#1
p: maximum number of production lines to manufacture product type p in stage 1

#2
pe: maximum number of production lines to manufacture product type p under scenario e in stage 2

tp: time required to manufacture one product of type p

C1
ms: capacity of supplier s for material type m in stage 1

C2
mse: capacity of supplier s for material type m under scenario e in stage 2

w: number of workers required to operate one production line

Decision variables

X 1
msr: number of units of material type m purchased from supplier s at price range r in stage 1

X 2
msre: number of units of material typem purchased from supplier s at price range r under scenario e in stage 2

Y 1
p : number of units of product type p manufactured in stage 1

Y 2
pe: number of units of product type p manufactured under scenario e in stage 2

Z1
p : number of production lines to manufacture product type p in stage 1

Z2
pe: number of production lines to manufacture product type p under scenario e in stage 2

W 1: number of workers in stage 1

W 2
e : number of workers under scenario e in stage 2

V 1
msr: binary decision variable: V 1

msr ¼ 1 if material m is purchased from supplier s at price range r in
stage 1; otherwise V 1

msr ¼ 0

V 2
msre: binary decision variable: V 2

msre ¼ 1 if material m is purchased from supplier s at price range r
under scenario e in stage 2; otherwise V 2

msre ¼ 0

Fpe: binary decision variable: Fpe ¼ 1 if at the end of stage 2 under scenario e there is no redundant
product type p; otherwise Fpe ¼ 0

Gme: binary decision variable: Gme ¼ 1 if at the end of stage 2 under scenario e there is no redundant
material type m; otherwise Gme ¼ 0

Ipe: income obtained from selling product type p under scenario e when the demand is less than the total
manufactured quantity

Ope: money obtained from selling unsold product type p at salvage price under scenario e

Nme: money obtained from selling unsold material m at salvage price under scenario e

Mathematical model

Our objective is to minimize the expected total cost of stages 1 and 2. The main cost components of
stage 1 are for purchasing and manufacturing. Costs in stage 2 are more complex and include purchasing
and manufacturing costs, balanced by income from selling products, salvage products, and salvage materials.
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The expected total cost for both stages can be presented as

TC ¼ TC1 þ TC2; (1)

where TC1 is the total cost of stage 1,

TC1 ¼
XM
m¼1

XS
s¼1

XR
r¼1

h1msrX
1
msr þ

XM
m¼1

XS
s¼1

XR
r¼1

�1
msrV

1
msr þ

XL
l¼1

x1Z1
p þ

XP
p¼1

dpY
1
p þW 1s1; (2)

and TC2 is the expected total cost at stage 2,

TC2 ¼
XE
e¼1

pe
XM
m¼1

XS
s¼1

XR
r¼1

h2msreX
2
msre þ

XS
s¼1

XM
m¼1

XR
r¼1

�2
msreV

2
msre þ

XP
p¼1

x2
eZ

2
pe þ

XP
p¼1

dpY
2
pe þW 2

e s
2
e

 !

�
XE
e¼1

pe
XP
p¼1

Ipe þ
XP
p¼1

Ope þ
XM
m¼1

Nme

 !
:

(3)

Subject to:

XR
r¼1

V 1
msr � 1;8m ¼ 1 . . .M ; s ¼ 1 . . . S (4)

XR
r¼1

V 2
msre � 1; 8m ¼ 1 . . .M ; s ¼ 1 . . . S; e ¼ 1 . . .E; (5)

where Eqs. (4) and (5) force materials purchased from each supplier to be zero or to be in only one price range

LB1
msr � X 1

msr þ BigM 1� V 1
msr

� �
; 8m ¼ 1 . . .M ; s ¼ 1 . . . S; r ¼ 1 . . .R (6)

X 1
msr � UB1

msr þ BigM 1� V 1
msr

� �
;8m ¼ 1 . . .M; s ¼ 1 . . .S; r ¼ 1 . . .R (7)

X 1
msr � UB1

msrV
1
msr; 8m ¼ 1 . . .M ; s ¼ 1 . . . S; r ¼ 1 . . .R (8)

LB2
msre � X 2

msre þ BigM 1� V 2
msre

� �
; 8m ¼ 1 . . .M ; s ¼ 1 . . . S; r ¼ 1 . . .R; e ¼ 1 . . .E (9)

X 2
msre � UB2

msre þ BigM 1� V 2
msre

� �
;8m ¼ 1 . . .M ; s ¼ 1 . . . S; r ¼ 1 . . .R; e ¼ 1 . . .E (10)

X 2
msre � UB2

msreV
2
msre; 8m ¼ 1 . . .M ; s ¼ 1 . . . S; r ¼ 1 . . .R; e ¼ 1 . . .E: (11)

Eqs. (6)–(8) state that if V 1
msr ¼ 1, then the purchase quantity X 1

msr from supplier s must lie in the proper
range, i.e., LB1

msr � X 1
msr � UB1

msr; and otherwise X 1
msr ¼0.

Eqs. (9)–(11) ensure that if V 2
msre ¼ 1, then LB2

msre � X 2
msre � UB2

msre; and otherwise X 2
msre ¼0.

XS
s¼1

XR
r¼1

X 1
msr þ

XS
s¼1

XR
r¼1

X 2
msre �

XP
p¼1

Dmax
p amp;8m ¼ 1 . . .M ; e ¼ 1 . . .E: (12)

Eq. (12) expresses that the total purchased materials in both stages must be less than their maximum in
all scenarios.

XR
r¼1

X 1
msr � C1

ms;8m ¼ 1 . . .M ; s ¼ 1 . . . S (13)
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XR
r¼1

X 2
msre � C2

mse; 8m ¼ 1 . . .M ; s ¼ 1 . . . S; e ¼ 1 . . .E: (14)

Eqs. (13) and (14) represent the constraints in purchasing material quantities due to supplier capacities at
each stage.

XP
p¼1

ampY
1
p �

XS
s¼1

XR
r¼1

X 1
msr; 8m ¼ 1 . . .M (15)

XP
p¼1

ampY
1
p þ

XP
p¼1

ampY
2
pe �

XS
s¼1

XR
r¼1

X 1
msr þ X 2

msre

� �
; 8m ¼ 1 . . .M ; e ¼ 1 . . .E: (16)

Eqs. (15) and (16) express that the number of units of product type p produced at each stage must be less
than the total available of material type m at that stage.

tpY
1
p � H1

p Z
1
p ;8p ¼ 1 . . .P (17)

tpY
2
pe � H2

peZ
2
pe; 8p ¼ 1 . . .P; e ¼ 1 . . .E (18)

Z1
p � #1

p; 8p ¼ 1 . . .P (19)

Z2
pe � #2

pe; 8p ¼ 1 . . .P; e ¼ 1 . . .E: (20)

Eqs. (17) and (18) force the total hours for manufacturing a product type p to be less than the total hours
of allrelated lines. Eqs. (19) and (20) ensure that the number of lines for each product is less than its
maximum.

W 1 � w
XP
p¼1

Z1
p (21)

W 2
e � w

XP
p¼1

Z2
pe; 8e ¼ 1 . . .E: (22)

Eqs. (21) and (22) constrain the number of workers in each stage to be greater than the minimum
required for line operation.

Ope ¼ bPpmax Y 1
p þ Y 2

pe � Dpe; 0
� �

;8p ¼ 1 . . .P; e ¼ 1 . . .E (23)

Nme ¼ bMm max
XS
s¼1

XR
r¼1

X 1
ms þ

XS
s¼1

XR
r¼1

X 2
msre �

XP
p¼1

XL
l¼1

ampY
1
pl �

XP
p¼1

XL
l¼1

ampY
2
ple; 0

 !
;

8p ¼ 1 . . .m; e ¼ 1 . . .E: (24)

Eqs. (23) and (24) show how the salvage benefit is calculated when the company has manufactured or
purchased more than demand in each scenario. To linearize the maximum constraints in Eqs. (23) and (24),
variables Fpe and Gme are introduced and formulated as

Fpe ¼ 1 if Y 1
p þ Y 2

pe � Dpe � 0
0 otherwise

�
(25)
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Gme ¼ 1 if
PS
s¼1

PR
r¼1

X 1
msr þ

PS
s¼1

PR
r¼1

X 2
msre �

PP
p¼1

ampY 1
p �PP

p¼1
ampY 2

pe � 0

0 otherwise

8<
: : (26)

Eq. (25) can be rewritten in linear form as

Y 1
p þ Y 2

pe � Dpe

� �
� BigM Fpe � 1

� �
;8p ¼ 1 . . .P; e ¼ 1 . . .E (27)

Y 1
p þ Y 2

pe � Dpe

� �
� BigM � Fpe; 8p ¼ 1 . . .P; e ¼ 1 . . .E: (28)

With Eqs. (27) and (28), the constraint of Eq. (23) can be expressed as

Ope � BigM � Fpe;8p ¼ 1 . . .P; e ¼ 1 . . .E (29)

bPp Y 1
p þ Y 2

pe � Dpe

� �
� Ope; 8p ¼ 1 . . .P; e ¼ 1 . . .E (30)

Ope � bPp Y 1
p þ Y 2

pe � Dpe

� �
þ BigM � 1� Fpe

� �
; 8p ¼ 1 . . .P; e ¼ 1 . . .E: (31)

Eq. (24) can similarly be linearized by Eqs. (32)–(36):

bMm
XS
s¼1

XR
r¼1

X 1
msr þ

XS
s¼1

XR
r¼1

X 2
msre �

XP
p¼1

ampY
1
p �

XP
p¼1

ampY
2
pe

 !
� BigM Gme � 1ð Þ;

8m ¼ 1 . . .M ; e ¼ 1 . . .E

(32)

bMm
XS
s¼1

XR
r¼1

X 1
msr þ

XS
s¼1

XR
r¼1

X 2
msre �

XP
p¼1

ampY
1
p �

XP
p¼1

ampY
2
pe

 !
� BigM � Gme;

8m ¼ 1 . . .M ; e ¼ 1 . . .E

(33)

Nme � BigM � Gme;8m ¼ 1 . . .M ; e ¼ 1 . . .E (34)

bMm
XS
s¼1

XR
r¼1

X 1
msr þ

XS
s¼1

XR
r¼1

X 2
msre �

XP
p¼1

ampY
1
p �

XP
p¼1

ampY
2
pe

 !
� Nme; 8m ¼ 1 . . .M ; e ¼ 1 . . .E (35)

Nme � bMm
XS
s¼1

XR
r¼1

X 1
msr þ

XS
s¼1

XR
r¼1

X 2
msre �

XP
p¼1

ampY
1
p �

XP
p¼1

ampY
2
pe

 !
þ BigM � 1� Gmeð Þ �;

8m ¼ 1 . . .M ; e ¼ 1 . . .E

(36)

Ipe ¼ cpmin Y 1
p þ Y 2

pe;Dpe

� �
; 8p ¼ 1 . . .P; e ¼ 1 . . .E: (37)

Eq. (35) shows that if demand quantity is less than the manufacturing or purchase quantity in each
scenario, all products can be sold at price cp. This can be linearized by Eqs. (36)–(39).

cpDpe � Ipe; 8p ¼ 1 . . .P; e ¼ 1 . . .E (38)

Ipe � cpDpe � BigM 1� Fpe

� �
; 8p ¼ 1 . . .P; e ¼ 1 . . .E (39)

cp Y 1
p þ Y 2

pe

� �
� Ipe;8p ¼ 1 . . .P; e ¼ 1 . . .E (40)
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Ipe � cp Y 1
p þ Y 2

pe

� �
� BigM � Fpe;8p ¼ 1 . . .P; e ¼ 1 . . .E: (41)

Several instances of the problem were created to validate the model, from which it can be seen that
materials with a high difference in cost between the first and second stages take more priority in purchasing
activity in the first stage. As a result, they are often purchased to cover usage over the whole planning
horizon. These decisions are in contrast to remaining materials with a low difference in cost between the
two stages. For these materials, the decision-maker will apply a delay strategy, purchasing only a fraction of
the materials in the first stage, and deciding on subsequent purchases after demand has been realized.

If the cost is high to manufacture one product or to open one line, a manufacturer often accepts a lost
sale. However, products with high selling prices are often manufactured in large quantities, which can create
overage products in some scenarios.

4 Algorithm

The above example is a small-scale problem solved through a deterministic equivalent transformation to
validate the model. If the number of scenarios is large, then a random search combined with sample average
approximation is suggested, which can be solved by parallel computing.

Let R1
m be the remaining quantity of material type m at the end of stage 1 after manufacturing. It is noted

that if both R1
m and Y 1

p are given, then the problems of the first and second stages can be decomposed and
parallel computing applied. Based on this observation, the following algorithm is suggested to solve the
large-scale problem in Fig. 1.

Figure 1: Random search and SAA combination
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5 Conclusion

Stochastic linear programming of optimization problems is popular due to its effectiveness in describing
real phenomena. In this study, a two-stage stochastic linear programming approach is proposed for the
procurement and manufacturing process, considering material all-unit discounts to order optimal
quantities for production. In the first stage, managers must make decisions without demand realization,
and available information consists only of suppliers’ quotations and the manufacturer’s capacities and
facilities. The decisions in the first stage propagate their effects to the second stage. However, in the
second stage, based on first-stage outcomes and stochastic market demand realization, correct actions can
be taken to determine the optimal order allocation and production planning. To solve the problem in the
large scale, an algorithm combining metaheuristic and sample average approximation is suggested. This
can be implemented in parallel to utilize the power of the solver.
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