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Abstract: The aim of this paper is to find the time-dependent term numerically in
a two-dimensional heat equation using initial and Neumann boundary conditions
and nonlocal integrals as over-determination conditions. This is a very interesting
and challenging nonlinear inverse coefficient problem with important applications
in various fields ranging from radioactive decay, melting or cooling processes,
electronic chips, acoustics and geophysics to medicine. Unique solvability theo-
rems of these inverse problems are supplied. However, since the problems are still
ill-posed (a small modification in the input data can lead to bigger impact on the
ultimate result in the output solution) the solution needs to be regularized.
Therefore, in order to obtain a stable solution, a regularized objective function
is minimized in order to retrieve the unknown coefficient. The two-dimensional
inverse problem is discretized using the forward time central space (FTCS)
finite-difference method (FDM), which is conditionally stable and recast as a non-
linear least-squares minimization of the Tikhonov regularization function.
Numerically, this is effectively solved using the MATLAB subroutine lsqnonlin.
Both exact and noisy data are inverted. Numerical results for a few benchmark
test examples are presented, discussed and assessed with respect to the
FTCS-FDM mesh size discretisation, the level of noise with which the input data
is contaminated, and the choice of the regularization parameter is discussed based
on the trial and error technique.

Keywords: Two-dimensional heat equation; Neumann boundary conditions;
inverse identification problems; Tikhonov regularization; nonlinear optimization

1 Introduction

The identification of coefficients in inverse heat conduction problems for the parabolic heat equation
continues to receive significant attention in a variety of fields, such as heat transfer, oil recovery,
groundwater flow, and finance. Some researchers investigated the case of simultaneous identification of
coefficients in two-dimensional heat conduction problems, see Refs. [1–8] to mention only a few. Inverse
identification problems with integral measurements arise naturally in various physics and engineering
models, such as radioactive nuclear decay [9], reactive transport in fluid flows in porous media [10] and
semiconductor devices [11].
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The determination of physical properties such as thermal conductivity using measured temperature, non-
local integral or heat flux values at wall sites is an important inverse problem. A common determination
strategy is the indirect one where one can minimize the gap between a computed solution and the
measured data (observations) via an iterative process [12]. The main difficulty in this kind of problem is
that there are usually so few observations that one finds hard to evaluate the spatial derivative of
temperature by simple numerical differentiation. Therefore, heavier and more time-consuming
optimization techniques are needed to obtain reliable results.

The one-dimensional inverse problems involving the identification of the time-dependent thermal
conductivity/diffusivity coefficients of the heat equation with nonlocal and integral over-determination
conditions in different statements were studied in Refs. [13–18]. Additionally, Abbas et al. [19] employed
a finite difference approach for approximate solution of one-dimensional wave equation while Abbas
et al. [20] applied a cubic B-spline collocation scheme for the solution of a reaction-diffusion, with initial
and Neumann boundary conditions. A two-time level implicit technique is proposed for the approximate
solution of the nonclassical diffusion problem with nonlocal boundary condition in the study [21]. Nazir
et al. [22], developed various numerical solution techniques of the advection-diffusion equation.

The estimation of thermal properties for the multi-dimensional is rather scarce in the literature [23,24].
The aim of this paper is to consider a two-dimensional coefficient identification problem to estimate the time-
dependent thermal conductivity component with initial and Neumann boundary conditions from non-local
integral conditions. The inverse problems presented in this paper have already been showed to be locally
uniquely solvable by Koval'chuk [25], but no numerical identification has been tried so far, therefore, the
main goal of this work is to attempt numerical realization of this problem. Moreover, the novelty consists
in the development of a convergent numerical optimization method for solving this nonlinear inverse
coefficient problem for the heat equation. Numerically, the implementation is realised using the MATLAB
subroutine lsqnonlin.

The rest of the paper is organized as follows. Section 2 describes the mathematical formulation of the
inverse problems. The numerical forward time central space FDM discretization of the direct problem is
described in Section 3. Section 4 introduces the regularized nonlinear minimization used for solving the
inverse problems under investigation. In Section 5, numerical results and discussion are illustrated.
Finally, conclusions are presented in Section 6.

2 Mathematical Formulation of the Inverse Problems

In the domain D ¼ �� 0; Tð Þ, where � is the rectangle 0; lð Þ � 0; hð Þ, we consider the inverse problem
of finding the time-dependent conductivity a tð Þ > 0 in the two-dimensional heat equation

ut ¼ a tð Þr2u; x; y; tð Þ 2 D; (1)

where u ¼ u x; y; tð Þ is a unknown temperature, subject to the initial condition

u x; y; 0ð Þ ¼ ’ x; yð Þ; x 2 0; l ; y 2� ½0; h½ �; (2)

the Neumann boundary conditions

ux 0; y; tð Þ ¼ l1 y; tð Þ; ux l; y; tð Þ ¼ l2 y; tð Þ; y 2 0; h ; t 2� ½0;T½ �; (3)

uy x; 0; tð Þ ¼ v1 x; tð Þ; uy x; h; tð Þ ¼ v2 x; tð Þ; x 2 0; l ; t 2� ½0;T½ �; (4)
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and the nonlocal integral conditionZ l

0
u x; 0; tð Þdxþ

Z h

0
u l; y; tð Þdy�

Z l

0
u x; h; tð Þdx�

Z h

0
u 0; y; tð Þdy ¼ j tð Þ; t 2 0; T½ �; (5)

where ’, l1, l2, v1, v2, j are the given functions, while the functions u and a are unknown.

The uniqueness of solution and continuous dependence on the input data for the solution pair a; uð Þ to
this problem and other related inverse problem have been stated in the next two subsections.

2.1 Inverse Problem 1 (IP1)

The above inverse problem (termed IP1) was investigated theoretically in Koval'chuk [25], where its
unique solvability has been illustrated, as follows.

Theorem 1 (Uniqueness of solution of IP1)

Assume that the following conditions are satisfied:

A1ð Þ ’ x; yð Þ 2 C2 0; l �� ½0; h½ �ð Þ; vi x; tð Þ 2 C0;1 0; l �� ½0;T½ �ð Þ;
li y; tð Þ 2 C0;1 0; h½ � � 0;T½ �ð Þ; i ¼ 1; 2; j tð Þ 2 C1 0;T½ �;

A2ð Þ l1 y; 0ð Þ ¼ ’x 0; yð Þ; l2 y; 0ð Þ ¼ ’x l; yð Þ; y 2 0; h½ �;
v1 x; 0ð Þ ¼ ’y x; 0ð Þ; v2 x; 0ð Þ ¼ ’y x; hð Þ; x 2 0; l½ �;

A3ð Þ w1 yð Þ � 0; w2 xð Þ � 0; w1 yð Þð Þ2 þ w2 xð Þð Þ2 > 0; x 2 0; l=2½ �; y 2 0; h=2½ �;
A4ð Þ M1 y; tð Þ � 0; M2 x; tð Þ � 0; x 2 0; l=2½ �; y 2 0; h=2½ �; t 2 0; T½ �;
A5ð Þ s1 tð Þ � 0; s2 tð Þ � 0; j0 tð Þ > 0; a tð Þ > 0; t 2 0; T½ �;

where

w1 yð Þ ¼
Z l

0
’yy x; yð Þ � ’yy x; h� yð Þ� �

dxþ ’x l; yð Þ � ’x 0; yð Þ � ’x l; h� yð Þ þ ’x 0; h� yð Þ;

w2 xð Þ ¼
Z h

0
’xx x; yð Þ � ’xx l � x; yð Þð Þdyþ ’y x; hð Þ � ’y x; 0ð Þ � ’y l � x; hð Þ þ ’y l � x; 0ð Þ;

M1 y; tð Þ ¼ l2t y; tð Þ � l1t y; tð Þ � l2t h� y; tð Þ þ l1t h� y; tð Þ;
M2 x; tð Þ ¼ v2t x; tð Þ � v1t x; tð Þ � v2t l � x; tð Þ þ v1t l � x; tð Þ;

s1 tð Þ ¼
Z h

0
l1t y; tð Þ þ l2t y; tð Þ� �

dy; s2 tð Þ ¼
Z l

0
v1t x; tð Þ þ v2t x; tð Þð Þdx:

Then, the IP1 Eqs. (1) to (5) has a unique solution a tð Þ; u x; y; tð Þð Þ 2 C 0;T½ � � C2;2;1 Dð Þ \ C1;1;0 �Dð Þ,
a tð Þ > 0, t 2 0;T½ �.

2.2 Inverse Problem 2 (IP2)

A related inverse problem (termed IP2) which requires the identification of the time-dependent
coefficient a tð Þ > 0 and the temperature u x; y; tð Þ, which satisfy the two-dimensional heat equation in
Eq. (1), the conditions Eqs. (2) to (4) and nonlocal integral over-specification condition
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Z l

0
u x; Y0; tð Þdx ¼ ~j tð Þ; 0 � Y0 � h; t 2 0; T½ �: (6)

The IP2 was previously investigated in Koval'chuk [25], where its unique solvability has been proved
and given as follows.

Theorem 2 (Uniqueness of solution of IP2)

Let conditions A1ð Þ and A2ð Þ be satisfied and

B1ð Þ ~j tð Þ 2 C1 0;T½ �; r2’ x; yð Þ > 0; x; yð Þ 2 0; l �� ½0; h½ �; ~j0 tð Þ > 0; t 2 0;T½ �;
B2ð Þ l1t y; tð Þ � 0; l2t y; tð Þ � 0; y; tð Þ 2 0; h �� ½0; T½ �;
B3ð Þ v1t x; tð Þ � 0; v2t x; tð Þ � 0; x; tð Þ 2 0; l �� ½0;T½ �:

Then, the IP2 Eqs. (1) to (4) and Eq. (6) has a unique solution a tð Þ; u x; tð Þð Þ 2 C 0; T½ ��
C2;2;1 Dð Þ \ C1;1;0 �Dð Þ, a tð Þ > 0, t 2 0;T½ �.

3 Discretization of the Forward Problem

Consider the forward (direct) initial boundary value problem given by Eqs. (1) to (4), when a tð Þ, ’ x; yð Þ;
l1 y; tð Þ, l2 y; tð Þ, v1 x; tð Þ, v2 x; tð Þ are given and u x; y; tð Þ is to be found. Subdivide the domain D intoM1,M2

and N intervals of equal lengths Dx ¼ l=M1; Dy ¼ h=M2; and Dt ¼ T=N . We denote uni;j :¼ u xi; yj; tn
� �

;

where xi ¼ iDx; yj ¼ jDy; tn ¼ nDt, an :¼ a tnð Þ for i ¼ 0;M1; j ¼ 0;M2, n ¼ 0;N .

We apply the FTCS-FDM to solve the Eq. (1) which is conditionally stable, [26]. So we obtain

unþ1
i;j � uni;j

Dt
¼ an

uni�1;j � 2uni;j þ uniþ1;j

ðDxÞ2 þ uni;j�1 � 2uni;j þ uni;jþ1

ðDyÞ2
 !

(7)

for i ¼ 1;M1 � 1, j ¼ 1;M2 � 1 and n ¼ 0;N . In order to obtain explicit expression for unþ1
i;j , the Eq. (7) is

rearranged as

unþ1
i;j ¼ uni;j þ

anDt

ðDxÞ2 uni�1;j � 2uni;j þ uniþ1;j

� �
þ anDt

ðDyÞ2 uni;j�1 � 2uni;j þ uni;jþ1

� �
: (8)

The initial condition Eq. (2) gives

u0i;j ¼ ’ xi; yj
� �

; i ¼ 0;M1; j ¼ 0;M2; (9)

the Neumann boundary conditions Eqs. (3) and (4) give

un�1;j � un1;j
2 Dxð Þ ¼ l1 yj; tn

� �
;

unM1þ1;j � unM1�1;j

�2 Dxð Þ ¼ l2 yj; tn
� �

; j ¼ 0;M2; n ¼ 1;N ; (10)

uni;�1 � uni;1
2 Dyð Þ ¼ v1 xi; tnð Þ; uni;M2þ1 � uni;M2�1

�2 Dyð Þ ¼ v2 xi; tnð Þ; i ¼ 0;M1; n ¼ 1;N ; (11)

where un�1;j, u
n
M1þ1;j, u

n
i;�1 and uni;M2þ1 are fictitious values situated outside the domain. These values can be

obtained as follows:
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un�1;j ¼ un1;j þ 2 Dxð Þl1 yj; tn
� �

; unM1þ1;j ¼ unM1�1;j � 2 Dxð Þl2 yj; tn
� �

; j ¼ 0;M2; n ¼ 1;N ;

uni;�1 ¼ uni;1 þ 2 Dyð Þv1 xi; tnð Þ; uni;M2þ1 ¼ uni;M2�1 � 2 Dyð Þv2 xi; tnð Þ; i ¼ 0;M1; n ¼ 1;N :

The stability condition of the explicit FDM Eq. (8) is given as [26]

~aDt

ðDxÞ2 þ
~aDt

ðDyÞ2 �
1

2
; (12)

where ~a is a maximum value of a tð Þ.
Finally, the trapezoidal rule is applied for all integrals conditions in Eqs. (5) and (6) asZ l

0
u x; 0; tð Þdxþ

Z h

0
u l; y; tð Þdy�

Z l

0
u x; h; tð Þdx�

Z h

0
u 0; y; tð Þdy ¼ I1 þ I2 � I3 � I4; (13)

where

I1 :¼
Z l

0
u x; 0; tnð Þdx ¼ Dx

2
u 0; 0; tnð Þ þ 2

XM1�1

i¼1

u xi; 0; tnð Þ þ u l; 0; tnð Þ
 !

; n ¼ 0;N ;

I2 :¼
Z h

0
u l; y; tnð Þdy ¼ Dy

2
u l; 0; tnð Þ þ 2

XM2�1

j¼1

u l; yj; tn
� �þ u l; h; tnð Þ

 !
; n ¼ 0;N ;

I3 :¼
Z l

0
u x; h; tnð Þdx ¼ Dx

2
u 0; h; tnð Þ þ 2

XM1�1

i¼1

u xi; h; tnð Þ þ u l; h; tnð Þ
 !

; n ¼ 0;N ;

I4 :¼
Z h

0
u 0; y; tnð Þdy ¼ Dy

2
u 0; 0; tnð Þ þ 2

XM2�1

j¼1

u 0; yj; tn
� �þ u 0; h; tnð Þ

 !
; n ¼ 0;N ;

andZ l

0
u x; Y0; tnð Þdx ¼ Dx

2
u 0;Y0; tnð Þ þ 2

XM1�1

i¼1

u xi; Y0; tnð Þ þ u l; Y0; tnð Þ
 !

;

Y0 2 0; h½ �; n ¼ 0;N : (14)

4 Numerical Solution of the Inverse Problems

The numerical solution of the inverse problems Eqs. (1) to (5) or, Eqs. (1) to (4) and (6) is obtanied by
minimizing the nonlinear Tikhonov regularization function

F1 að Þ ¼
XN

n¼1
½
Z l

0
u x; 0; tnð Þdxþ

Z h

0
u l; y; tnð Þdy�

Z l

0
u x; h; tnð Þdx

�
Z h

0
u 0; y; tnð Þdy� j tð Þ�2 þ �

XN

n¼1
a2n; (15)
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for IP1, and

F2 að Þ ¼
XN

n¼1

Z l

0
u x;Y0; tnð Þdx� ~j tð Þ

� �2
þ �

XN

n¼1
a2n; (16)

for IP2, where u solves the direct problem Eqs. (1) to (4) for given a tð Þ, and � > 0 is regularization parameter
to be prescribed. The unregularized case, i.e., � ¼ 0, yields the ordinary nonlinear least-squares method
which is usually producing unstable solutions when noisy data are inverted. The minimization of F1, or
F2, is performed using the MATLAB subroutine lsqnonlin [27]. This subroutine attempts to find the
minimum of a sum of squares by starting from a given initial guess. Simple bounds on the variable are
allowed and the explicit calculation (analytical or numerical) of the gradient is not required to be supplied
by the user.

5 Numerical Results and Discussion

This section presents two benchmark test examples in order to test the accuracy and stability of the FDM
numerical procedure introduced in Section 3. The root mean square errors (RMSE) is used to evaluate the
accuracy of the numerical results as follows:

RMSE að Þ ¼ ½T
N

XN

n¼1
ðanumerical tnð Þ � aexact tnð ÞÞ2�1=2: (17)

Let us take l ¼ h ¼ T ¼ 1, for simplicity. The lower and upper bounds for the time-dependent
conductivity coefficient a tð Þ > 0 is taken as 10�3 and 103, respectively.

The inverse problems are solved subject to both exact and noisy input data which is numerically
simulated as follows:

je1 tnð Þ ¼ j tnð Þ þ e1n ; n ¼ 0;N ; (18)

~je2 tnð Þ ¼ ~j tj
� �þ e2n ; n ¼ 0;N ; (19)

where e1n , e2n are random variables generated from a Gaussian normal distribution with mean zero and
standard deviations r1 and r2, respectively, given by

r1 ¼ p� max
t2 0;T½ �

j tð Þj j; (20)

r2 ¼ p� max
t2 0;T½ �

~j tð Þj j; (21)

where p represents the percentage of noise. In the case of noisy data Eqs. (18) and (19), we replace j tnð Þ by
je1 tnð Þ for n ¼ 0;N in Eq. (15) , and ~j tj

� �
by ~je2 tnð Þ for n ¼ 0;N in Eq. (16).

5.1 Example 1 (for IP1)

Consider the IP1 Eqs. (1) to (5) with unknown time-dependent coefficient a tð Þ, and solve it with the
input data:

’ x; yð Þ ¼ exp x� yþ 1

50

� 	
; l1 y; tð Þ ¼ exp 1=50ð�1� tÞ2 � y

� �
;
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l2 y; tð Þ ¼ exp 1þ 1=50ð�1� tÞ2 � y
� �

; v1 x; tð Þ ¼ �exp 1=50ð�1� tÞ2 þ x
� �

;

v2 x; tð Þ ¼ �exp �1þ 1=50ð�1� tÞ2 þ x
� �

; (22)

j tð Þ ¼ R 10 u x; 0; tð Þdxþ R 10 u 1; y; tð Þdy� R 10 u x; 1; tð Þdx
� R 10 u 0; y; tð Þdy ¼ ð�1þ expÞ2exp 1=50 �49þ 2t þ t2ð Þð Þ: (23)

We remark that the conditions A1ð Þ– A5ð Þ of Theorem 1 are holds and thus, the uniqueness of the
solution is ensured. It can be easily verified that the analytical solution u x; y; tð Þ; a tð Þð Þ is given by

u x; y; tð Þ ¼ expð1=50 �1� tÞ2 þ x� y
� �

; x; y; tð Þ 2 0; 1 �� ½0; 1 �� ½0; 1½ �; (24)

a tð Þ ¼ 1þ t

50
; t 2 0; 1½ �: (25)

Let us solve the direct problem Eqs. (1)–(4) with the data Eq. (22), when a tð Þ is known and given by
Eq. (25), using the FDM with the mesh sizes Dx ¼ Dy ¼ 0:05 and Dt ¼ 0:0125 ensure that the stability
condition Eq. (12) is always satisfied. The analytical Eq. (24) and numerical solutions for u x; y; tð Þ is
plotted in Fig. 1(a). The exact Eq. (23) and numerical solutions for j tð Þ is shown in Fig. 1(b). From this
figure, one can observe that an excellent agreement is obtained.

Figure 1: (a) The analytical Eq. (24) and numerical solutions for u x; y; 1ð Þ, and (b) the analytical Eq. (23)
and numerical solutions for j tð Þ, for direct problem
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Next, we solve the IP1 Eqs. (1) to (5) with the input Eqs. (22) and (23) using the subroutine lsqnonlin
minimization of the objective functional F1 in Eq. (15) with the initial guess for the vector a ¼ ða tnð ÞÞn¼1;N
given by

a0 tnð Þ ¼ a 0ð Þ ¼ 0:02; n ¼ 1;N : (26)

The mesh size is taken as the direct problem above and we start the examination for reconstructing the
time-dependent coefficient a tð Þ, when p ¼ 0 in Eq. (20). The objective function F1 is illustrated, as a function
of the number of iterations, in Fig. 2(a), where a convergence, which is monotonically decreasing, is obtained
in about 31 iterations to reach a very low prescribed tolerance of O 10�29

� �
. Fig. 2(b) illustrates the

corresponding numerical results for the time-dependent term a tð Þ; obtaining RMSE(a)=1.9E-04. From
this figure, we found an excellent agreement, between the analytical and the numerical solutions.

Now, we study the stability of the approximate solution with respect to various levels of
p 2 0:01%; 0:1%f g noise in Eq. (20) included in the input data j tð Þ. The decreasing monotonic
convergence of the objective function F1, without and with regularization is shown in Fig. 3. The
reconstruction of the estimated a tð Þ is shown in Figs. 4 and 5. From Figs. 4(a) and 5(a) one can notice
that unstable (highly oscillation) and inaccurate solutions for a tð Þ are obtained with RMSE
að Þ 2 0:0100; 0:0272f g, if no regularization, i.e. � ¼ 0, is employed. This is expected since the IP1 is
ill-posed. Therefore, regularization is required in order to retrieve the loss of stability. From all
regularization parameters that were selected, we conclude that � ¼ 10�4, for p ¼ 0:01% and � ¼ 10�3,
for p ¼ 0:1% noise gives a stable and reasonable accurate numerical solution for the time-depndent term
a tð Þ; obtaining RMSE að Þ 2 f2:2E-04; 0:0014g, respectively. From Figs. 2(b), 4, 5 and Tab. 1 it is
observed that when p decreasing from 0:1% to 0:01% and then to zero, the numerically achieved results
become more accurate and stable.

Figure 2: (a) The objective function F1 Eq. (15) and (b) the exact Eq. (25) and numerical solutions for a tð Þ,
with no noise and no regularization, for Example 1
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5.2 Example 2 (for IP2)

In this example, we consider the IP2 given by Eqs. (1) to (4) and (6) with unknown time-dependent
coefficient a tð Þ, and solve it with the input data:

’ x; yð Þ ¼ ð�2� xÞ2 þ ð�2� yÞ2; l1 y; tð Þ ¼ 4; l2 y; tð Þ ¼ 6;

v1 x; tð Þ ¼ 4; v2 x; tð Þ ¼ 6; Y0 ¼ 0: (27)

Figure 3: The objective function F1 Eq. (15) versus the number of iterations: (a) without regularization, and
(b) with regularization, for p ¼ 0:01% noise, for Example 1

Figure 4: The analytical Eq. (25) and numerical solutions for a tð Þ, with p ¼ 0:01% noise, without and with
regularization, for Example 1
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Figure 5: The analytical Eq. (25) and numerical solutions for a tð Þ, with p ¼ 0:1% noise, without and with
regularization, for Example 1

Table 1: The RMSE values Eq. (17) for p 2 0:01%; 0:1%f g noise, for Example 1

p ¼ 0:01% � ¼ 0 � ¼ 10�6 � ¼ 10�5 � ¼ 10�4 � ¼ 10�3

RMSE(a) 0.0100 0.0013 5.5E-04 2.2E-04 4.6E-04

p ¼ 0:1% � ¼ 0 � ¼ 10�5 � ¼ 10�4 � ¼ 10�3 � ¼ 10�2

RMSE(a) 0.0272 0.0049 0.0021 0.0014 0.0090

The data j tð Þ given by Eq. (5) is replaced by the measured data ~j tð Þ given by Eq. (6) as

~j tð Þ ¼
Z x2

x1

u x; Y0; tð Þdx ¼ 1=60 767þ 12t � 12cos ptð Þð Þ; 0 � x1 < x2 � 1; t 2 0; 1½ �: (28)

We observe that the conditions A1ð Þ, A2ð Þ, B1ð Þ– B3ð Þ of Theorems 1 and 2 are fulfilled and thus,
the uniqueness condition of the solution is guaranteed. In fact, the exact solution u x; y; tð Þ; a tð Þð Þ of the
IP2 is given by

u x; y; tð Þ ¼ ð�2� xÞ2 þ ð�2� yÞ2 þ 1=5 1þ t � cos ptð Þð Þ; x; y; tð Þ 2 �D; (29)

a tð Þ ¼ 1þ psin ptð Þ
20

; t 2 0; 1½ �: (30)

The initial guess for the vector a is taken as 0.05, namely,

a0 tnð Þ ¼ a 0ð Þ ¼ 0:05; n ¼ 1;N : (31)

We take a mesh size withM1 ¼ M2 ¼ 10 and N ¼ 60, which together with the upper bound 103 for the
time-dependent term a satisfying the stability condition Eq. (12).

As in Example 1, first consider the case where there is no noise (p ¼ 0) in the input data ~j tð Þ in Eq. (21).
The objective function F2 Eq. (16), with � ¼ 0 is plotted in Fig. 6(a), where a convergence, which is
monotonically decreasing, is obtained in about 31 iterations to achieve a low tolerance of O 10�29

� �
. The

analytical Eq. (30) and numerical solutions for a tð Þ is illustrated in Fig. 6(b), where the reconstructed
timewise term is in very excellent agreement with their corresponding exact solutions, obtaining with
RMSE að Þ ¼2.9E-3.
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Next, we add p 2 0:01%; 0:1%f g noise in the input data ~j tð Þ, as in Eq. (21). The corresponding exact
Eq. (30) and numerical solutions for a tð Þ are illustrated in Figs. 7 and 9 for various regularizations. When
� ¼ 0, we achieve unstable and inaccurate numerical solutions, with RMSE að Þ ¼ 0:0281 for p ¼ 0:01%,
see Fig. 7(a), and with RMSE að Þ ¼ 0:1590 for p ¼ 0:1%, see Fig. 9(a). We apply the Tikhonov
regularization method in order to overcome this instability. We deduce that � ¼ 10�5, for p ¼ 0:01%, see
Fig. 7(b), and � ¼ 10�4, for p ¼ 0:1%, see Fig. 9(b), provides a accurate and stable approximate
solutions for a tð Þ, with RMSE að Þ ¼0.0038 and RMSE að Þ ¼0.0116, respectively. Also, from Figs. 7, 9
and Tab. 2 it is observed that when p decreasing from 0:1% to 0:01% and then to zero, the numerically
achieved results become more accurate and stable. The related absolute errors between the approximate
and analytical Eq. (29) solutions for u x; tð Þ with p 2 0:01%; 0:1%f g noise, without and with
regularization parameters, are illustrated in Figs. 8 and 10. From these figures it can be noticed that the
temperatures u x; tð Þ component is stable and accurate by adding a penalty term � > 0 as in Eq. (16) to
stabilize the solution. The same conclusions as those obtained for Example 1 can be carried out about the
stable reconstructions for the time-dependent coefficient a tð Þ by observing these figures.

Figure 6: (a) The objective function F2 Eq. (16) and (b) the exact Eq. (30) and numerical solutions for a tð Þ;
with no noise and no regularization, for Example 2

Figure 7: The analytical Eq. (30) and numerical solutions for a tð Þ, with p ¼ 0:01% noise, without and with
regularization, for Example 2
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Figure 8: The absolute error between the analytical Eq. (29) and numerical solutions for u x; y; tð Þ with: (a)
� ¼ 0, (b) � ¼ 10�6, (c) � ¼ 10�5 and (d) � ¼ 10�4, with p ¼ 0:01% noise, for Example 2

Figure 9: The analytical Eq. (30) and numerical solutions for a tð Þ, with p ¼ 0:1% noise, without and with
regularization, for Example 2
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6 Conclusions

A couple of inverse problems which require finding a time-dependent thermal conductivity coefficient
a tð Þ along with the temperature u x; y; tð Þ in the two-dimensional heat equation Eq. (1) with initial and
Neumann boundary conditions from the nonlocal integrals as over-determination conditions Eqs. (5) and
(6) have been investigated numerically. A direct solver based on the forward time central space FDM has
been developed. The inverse solver based on a nonlinear least-squares minimization has been solved
computationally using the MATLAB subroutine lsqnonlin. The Tikhonov regularization has been used in
order to obtain stable solutions since the inverse problem is ill-posed and very sensitive to noise. The
main difficulty in regularization when we solve the ill-posed problem is how to choose an appropriate
regularization parameter � which compromises between accuracy and stability. However, one can use
techniques such as the L-curve method [28] or Morozov's discrepancy principle [29] to find such a

Table 2: The RMSE values Eq. (17) for p 2 0:01%; 0:1%f g noise, for Example 2.

p ¼ 0:01% � ¼ 0 � ¼ 10�6 � ¼ 10�5 � ¼ 10�4 � ¼ 10�3

RMSE(a) 0.0281 0.0074 0.0038 0.0046 0.0084

p ¼ 0:1% � ¼ 0 � ¼ 10�5 � ¼ 10�4 � ¼ 10�3 � ¼ 12

RMSE(a) 0.1590 0.0263 0.0116 0.0149 0.0467

Figure 10: The absolute error between the analytical Eq. (29) and numerical solutions for u x; y; tð Þ with: (a)
� ¼ 0, (b) � ¼ 10�5, (c) � ¼ 10�4 and (d) � ¼ 10�3, with p ¼ 0:1% noise, for Example 2
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parameter, but in our work we have used trial and error. The numerical results have been presented and
discussed for the two inverse problems, showing that accurate and stable approximate solutions have
been achieved.
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