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Abstract: Recently, online learning platforms have proven to help people gain
knowledge more conveniently. Since the outbreak of COVID-19 in 2020, online
learning has become a mainstream mode, as many schools have adopted its for-
mat. The platforms are able to capture substantial data relating to the students’
learning activities, which could be analyzed to determine relationships between
learning behaviors and study habits. As such, an intelligent analysis method is
needed to process efficiently this high volume of information. Clustering is an
effect data mining method which discover data distribution and hidden character-
istic from uncharacterized online learning data. This study proposes a clustering
algorithm based on brain storm optimization (CBSO) to categorize students
according to their learning behaviors and determine their characteristics. This
enables teaching to be tailored to taken into account those results, thereby,
improving the education quality over time. Specifically, we use the individual
of CBSO to represent the distribution of students and find the optimal one by
the operations of convergence and divergence. The experiments are performed
on the 104 students’ online learning data, and the results show that CBSO is fea-
sible and efficient.

Keywords: Online learning; learning behavior analysis; big data; brain storm
optimization; cluster

1 Introduction

Online learning is becoming more popular as courses can easily and repeatedly be taken from anywhere
and at any time. As such, the number of students is virtually unlimited, as even individuals who are not
enrolled in a learning institution are able to sign up. With the outbreak of COVID-19 in 2020, many
educational institutions were compelled to embrace online learning. As these learning platforms are able
to capture substantial data related to the ongoing learning activities of each student, a considerable
amount of information regarding learning behavior could be gathered. For example, analysis of the data
can reveal relationships between learning behaviors and performance scores, enabling tailoring of lectures
accordingly for better results, improving on the educational quality and experience [1,2].
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Students have different learning manners, habits, basic knowledge, and interests. Manual analysis
method are difficult to process this complex information. As such, intelligence methods are needed to
solve these problems. This paper designs a clustering algorithm based on brain storm optimization
(CBSO) to analyze online learning behaviors [3,4].

Brain storm optimization (BSO) simulates the brainstorming process, and is an optimization algorithm
based on swarm intelligence [5]. As BSO has a good ability to solve optimization problems [6], it has been
applied to fields such as classification [7–10], clustering [11], multi-objective optimization [12–14], and
feature selection [15–17].

BSO combines swarm intelligence techniques with data mining and data analysis. The distribution of
generated solutions can be changed according to the properties of a problem. However, BSO has the
defects of converge slowly and falling into local optimum easily. As such, many BSO variants have been
proposed. For example, Zhu proposed a BSO algorithm that replaced k-means with k-medians [18] and
used the median to calculate the center point, which is the point that is closest to the other points in the
cluster. Yang proposed a BSO algorithm which replaced Gaussian variation with differential variation
[19], thereby improving greatly the running speed and search efficiency. Shi introduced the idea of a
target space [20], which reduced the complexity of clustering by dividing solutions into elite and ordinary
solutions. Zhang replaced k-means with SGM clustering [21], and Gaussian variation with differential
variation to improve the operational efficiency and optimization accuracy. Wu used differential mutation
and clustering to improve the search speed and accuracy [22]. Yang introduced a new method, which
used the discussion mechanism to generate new individuals to avoid falling into a local optimum [23].
Wu proposed an adaptive inertial selection strategy to solve the problem of low accuracy and slow
convergence [24]. Xue used BSO to solve multi-objective problems, and employed a non-dominant sort
to update the archive set composed of non-inferior solutions [25]. Wu proposed a multi-dimensional BSO
algorithm with high objectives to improve convergence and diversity, enhancing the efficiency in solving
multi-objective problems [26].

The BSO algorithm has good robustness in solve clustering problems, and current clustering methods
have some defects. For example, k-means depends on the selection of initial centers and is sensitive to
noise and outliers. Density-based spatial clustering of applications with noise (DBSCAN) does not
perform well on the problems that are high-dimensional or have large changes in density.

Clustering is an important technique which uses data mining to discover data distribution and hidden
patterns. Through clustering, the relationship between learning behavior and performance can be found from
uncharacterized online learning behavior data. As such, the characteristics of students are able to be obtained.

In this paper, CBSO is applied to cluster and analyze students’ online learning data. Our objectives
are as follows:

1) to construct a clustering optimization model based on BSO;

2) to improve the accuracy of the cluster;

3) to apply the proposed model to data of students’ online learning behaviors;

4) to provide suggestions for students for better education quality.

The remainder of this paper is organized as follows. Section 2 provides background information.
Section 3 describes the CBSO algorithm. Section 4 describes an experiment design. Section 5 presents
results and discussion, and Section 6 relates our conclusions.
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2 Related Work

Human brainstorming is a method proposed by Osborne in 1953 to enable a group of people to come up
with as many ideas as possible. Everyone can present ideas freely, find inspiration by listening to others.
After all ideas are evaluated, the best is selected.

BSO simulates this process and has three corresponding steps of initializing individuals, generating new
ones, and selecting the best one [27]. The steps are as follows:

Step 1: N individuals are initialized and grouped into k clusters, and the best individual in each cluster is
selected as the cluster center.

Step 2: Updating strategies are selected according to probability functions. These strategies and random
disturbances are used to generate new individuals.

Step 3: The fitness function is used to evaluate individuals and retain the better ones.

To strength the search ability of BSO, Gaussian variation is used to update individuals in Step 2. The
updating method is shown in Eqs. (1) and (2).

X i
new ¼ X i

select þ n � n l;r2
� �

(1)

n ¼ logsig
0:5 � maxit � nit

K

� �
� rand (2)

where ζ is the step length, maxit is the maximum number of iterations, nit is the current number of iterations,
K adjusts the convergence rate of the algorithm, rand is used to generate randomly a number from (0,1),
logsig is the sigmoid function, X i

new is the ith dimension of the generated individual, X i
select is the ith

dimension of the old individual, and n l; r2ð Þ is a normally distributed random number.

3 Proposed Clustering Method Based on BSO Algorithm

3.1 Main Idea

Clustering method is dividing the samples with high similarity into a cluster. Hence samples in same
cluster have high similarity, and in different clusters have high heterogeneity. In addition, the Euclidean
distance is used as the fitness value to judge the similarity of samples. As the division of samples can be
represented well by a solution of the intelligent swarm algorithm, and BSO is a good global optimization
method, CBSO is used to find the optimal solution of clustering samples [28].

3.2 Initialization and Representation of Solutions

Algorithm 1 describes the initialization and representation of solutions for clustering problems. The
value of each dimension of an individual is generated randomly in (0,1). This range is divided averagely
into small intervals according to the number of clusters. A discrete value is obtained for each dimension
by calculating which interval the corresponding continuous values fall in. The xi in individual x = {x1,x2,
x3,…,xn} is the cluster label. The steps are shown in Algorithm 1.

3.3 Object Function

The Euclidean distance is used as object function to gather similar samples into the same cluster. The
closer the distance, the more similar the samples are. The object function is given as Eq. (3).
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F ¼
Xk
j¼1

Xmj

i¼1

xi � cj
�� ��2 (3)

where k is the number of clusters, cj is the center of the j
th cluster, xi is value of each sample in the jth cluster,

mj is the number of members in the jth cluster, and F is the fitness value.

3.4 Clustering Method for Individuals in the Population of BSO

To reduce the search space and accelerate convergence, individuals in BSO are clustered by k-means
[29–31]. Then, through the judgment of fitness value, the central individual can be obtained. In addition,
A random probability p is used to judge whether to replace the current central individual with the new
one to avoid premature convergence and falling into a local optimum. The steps are shown in Algorithm 2.

Algorithm 1: Initialization and Representation of Solutions

Input: Population size n, cluster size k, sample size m
Output: The initialized solutions
1 i=0;
2 Divide the linear space from 0 to 1 into k intervals;
3 while i<n do
4 Initialize a solution containing k random numbers between 0 to 1;
5 Generate the label according to the corresponding interval of the m random numbers in the solution;
6 i=i+1;
7 end

Algorithm 2: Selection of Cluster Centers

Input: n solutions of clustering problems, number of clusters m, probability p
Output: Central solutions
1 i=0, j=0;
2 while i<n do
3 Calculate the fitness value of each individual according to equation (3);
4 i=i+1;
5 end
6 Cluster n into m clusters through k-means;
7 while j<m do
8 Take the solution with the best fitness value as the central individual;
9 Generate Randomly probability pg from 0 to 1;
10 if pg<p do
11 Regenerate a new individual to replace the central individual;
12 else
13 Keep the original central individual;
14 j=j+1;
15 end
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3.5 The Operations for Generating New Solutions

New individuals are generated according to Eqs. (1), (2), and (4). The probability parameters such as p1,
p2, and p3 are used to avoid falling into a local optimum, as the specific operations are described in this
section. The global optimal solution can be found by enhancing the search capability with these
parameters in iterative processes [32]. Probability parameter p1 determines whether one or two clusters
are selected. If the probability value generated is less than p1, we select one cluster; otherwise, we select
two clusters. Probability parameter p2 is used to select the central or ordinary individual in a cluster to
generate new individuals, and probability parameter p3 is used to select the central or ordinary individual
from each of the two clusters and combine them to generate new individuals. The steps are shown in
Algorithm 3.

X i
select ¼ rand � X i

class1 þ 1� randð Þ � X i
class2 (4)

where X i
select is the ith dimension of the selected individual, rand is used to generate randomly a number

between (0,1), X i
class1 is the ith dimension of the selected class 1, and X i

class2 is the ith dimension of the
selected class 2.

4 Experiments

4.1 Datasets

We collected the online learning data of students in the spring of 2020, including student number,
student name, course number, days and times logged in to the web, days and times logged in to a course,
number of posts, number of replies, post points, and total points. To avoid the impact of abnormal and

Algorithm 3: Generation of New Solutions

Input: Probability p1, probability p2, probability p3
Output: New solutions
1 i=0;
2 while i<n do
3 Generate Randomly probability pg from 0 to 1;
4 if pg<p1 do
5 Select Randomly a cluster;
6 Generate Randomly probability pj from 0 to 1;
7 if pj< p2do
8 Add random disturbance to the central individual to generate a new individual;
9 else
10 Add random disturbance to the ordinary individual to generate a new individual;
11 else
12 Select Randomly two clusters;
13 Generate Randomly probability pk from 0 to 1;
14 if pk< p3 do
15 Add random disturbance to the two central individuals to generate a new individual;
16 else
10 Add random disturbance to the two ordinary individuals to generate a new individual;
18 i=i+1;
19 end
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useless information, some abnormal samples were removed, 104 sample data without student number and
name were reserved for subsequent analysis.

Since data in the collected dataset differed greatly, we standardized the data with a Z-score to reduce
their impacts on CBSO.

yi ¼ xi � l
r

(5)

where yi is the normalized value, xi is the original value, and l and r are the mean and standard
deviation, respectively, of all samples.

Since the original data had nine types of features, when drawing the graph of clustering results, we used
principal component analysis (PCA) to reduce the dimensions to two.

4.2 Parameter Settings

In the CBSO algorithm, the maximum number of iterations was 12000, and runtimes was 30, ensuring
the stability and accuracy of the experiment. The probability parameters of four updating strategies and initial
number are shown in Tab. 1.

4.3 Experiment Design

Students were clustered into four categories, and the average value of all student data for each category
was calculated. Then, the characteristics of each category are able to be found by analyzing these values,
enabling tailoring of lectures accordingly for better educational quality and high enthusiasm in learning.

5 Experiment Results

5.1 Computational Results and Analysis

The cluster results are shown in Tab. 2, in which the value in each row is an average. The first through
fourth classes had 23, 25, 37, and 19 students, respectively. In Tab. 2, the values of days logged in to web and
courses, times logged in to web and courses, times released and replied posts can reflect the enthusiasm of
students in learning. The posting integral and total integral can reflect students’ performance. Thus, four
characteristics of students were defined according to enthusiasm and performance. For example, the
values of the first-category were –0.3178, 0.4574, 0.9209, 0.7142, 0.6771, –0.0177, 1.1724, 1.1665, and
1.4339, respectively. Compared to the other three types of data, this kind of student’s learning enthusiasm
and performance are the best. Therefore, such students are defined as those with good performance and
high enthusiasm.

The same method is used to define the remaining three characteristics of students as follows: poor
performance and high enthusiasm, good performance and low enthusiasm, and poor performance and low
enthusiasm. Tab. 3 describes the four characteristics of students.

Fig. 1 shows the clustering situation of 104 students after dimensional reduction, which can reflect that
the CBSO algorithm cluster samples with similar characteristics together.

Table 1: Parameter values in the CBSO Algorithm

n p p1 p2 p3

100 0.2 0.8 0.4 0.5
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5.2 Teaching Advice

Tailoring of lectures can be provided to help students achieve better learning results. For example, first-
category students are highly motivated to learn and have strong learning capabilities. So, they should be
provided with more learning resources for further improvement. Although the students in the second-
category are motivated to learn, they do not achieve good results. They need to be given learning
guidance to avoid study blindly. Conversely, students in the third-category have low learning enthusiasm,
but their grades are acceptable. We should enhance teaching supervision and cultivate their interest in

Table 2: Average values of indicators for four categories of students

Category Number
of
courses

days
logged
in to
web

times
logged in
to web

days
logged in
to courses

times
logged in
to courses

times
released
posts

times
replied
to posts

Posting
integral

Total
integral

1 –0.3178 0.4574 0.9209 0.7142 0.6771 –0.0177 1.1724 1.1665 1.4339

2 –0.4268 0.5774 0.0216 0.4697 –0.1387 –0.5210 –0.3456 –0.4004 –0.4265

3 0.0372 –0.8082 –0.2955 –0.7079 –0.1492 0.2675 0.0116 0.0402 –0.0588

4 0.9088 –0.4283 –0.4743 –0.5760 –0.1741 0.5621 –0.4252 –0.3632 –0.4345

Table 3: Characteristics of students

Category Number of students Characteristic of students

1 23 good performance and high enthusiasm

2 25 poor performance and high enthusiasm

3 37 good performance and low enthusiasm

4 19 poor performance and low enthusiasm

Figure 1: Cluster diagram after dimensionality reduction
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learning to raise their potential. Finally, students in the fourth-category have neither learning enthusiasm nor
good grades. Thus, we should strengthen teaching supervision, cultivate their interest in learning, and change
the manner of teaching to improve their performance.

6 Conclusions

The BSO algorithm takes advantage of swarm intelligence and data analysis, and can be used to solve
efficiently clustering problems. Thus, the paper proposed a cluster algorithm based on BSO. Individuals were
discretized to present the distribution of samples. Besides, Euclidean distance was used to calculate the
similarity of individuals. Experiments showed that CBSO is feasible and efficient to solve clustering
problems. As such, CBSO is applied to analyze the relationship between learning data and performance,
so as to provide tailored guidance to each characteristic of student. However, BSO still falls easily into
local optima. We look forward to optimizing the model to obtain more accurate clustering results.
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