Computer Systems Science & Engineering K Tech Science Press

DOI:10.32604/csse.2021.017144
Article

Efficient Concurrent L1-Minimization Solvers on GPUs

Xinyue Chu', Jiaquan Gao"" and Bo Sheng’

!Jiangsu Key Laboratory for NSLSCS, School of Computer and Electronic Information, Nanjing Normal University, Nanjing
210023, China
“Department of Computer Science, University of Massachusetts Boston, MA 02125, USA
*Corresponding Author: Jiaquan Gao. Email: springf12@163.com
Received: 20 January 2021; Accepted: 22 February 2021

Abstract: Given that the concurrent L1-minimization (L1-min) problem is often
required in some real applications, we investigate how to solve it in parallel on
GPUs in this paper. First, we propose a novel self-adaptive warp implementation
of the matrix-vector multiplication (4x) and a novel self-adaptive thread imple-
mentation of the matrix-vector multiplication (4”x), respectively, on the GPU.
The vector-operation and inner-product decision trees are adopted to choose the
optimal vector-operation and inner-product kernels for vectors of any size. Sec-
ond, based on the above proposed kernels, the iterative shrinkage-thresholding
algorithm is utilized to present two concurrent L1-min solvers from the perspec-
tive of the streams and the thread blocks on a GPU, and optimize their perfor-
mance by using the new features of GPU such as the shuffle instruction and
the read-only data cache. Finally, we design a concurrent L1-min solver on multi-
ple GPUs. The experimental results have validated the high effectiveness and
good performance of our proposed methods.

Keywords: Concurrent Ll-minimization problem; dense matrix-vector
multiplication; fast iterative shrinkage-thresholding algorithm; CUDA; GPUs

1 Introduction

Due to the sparsity of the solution of the L1-min problem, it has been successfully applied in various
fields such as signal processing [1-3], machine learning [4—8], and statistical inference [9]. Moreover, the
concurrent L1-min problem where a great number of L1-min problems need be concurrently computed is
often required in these real applications. This motivates us to discuss the concurrent L.1-min problem in
this paper. Here the following concurrent L1-min problem is considered:

min |[x'||, st AX=b, i=1,2,-k, (1)

where 4 € R™" (m << n) is a full-rank dense matrix, b’ € R™ is a pre-specified vector, and x' € R" is an
unknown solution. Each one of these L1-min problems is independent except that they share the matrix
A. This makes it suitable for parallel computing.

This work is licensed under a Creative Commons Attribution 4.0 International License, which
@ @ permits unrestricted use, distribution, and reproduction in any medium, provided the original

work is properly cited.

mailto:springf12@163.com
http://dx.doi.org/10.32604/csse.2021.017144
http://dx.doi.org/10.32604/csse.2021.017144

306 CSSE, 2021, vol.38, no.3

Given their multiple core structures, graphics processing units (GPUs) have sufficient computation
power for scientific computations. Processing big data by GPUs has drown much attention over the
recent years [10—14]. Following the introduction of the compute unified device architecture (CUDA), a
programming model that supports the joint CPU/GPU execution of applications by NVIDIA [15], GPUs
have become strong competitors as general-purpose parallel programming systems.

Due to high compute capacity of GPUs, accelerating algorithms that are used to solve the L1-min
problem on the GPU has attracted considerable attention recently [16,17]. As we know, there exists a
great number of L1-min algorithms such as the gradient projection method [18], truncation Newton
interior-point method [19], homotopy methods [20], augmented Lagrange multiplier method (ALM) [21],
class of iterative shrinkage-thresholding methods (FISTA) [22], and alternating direction method of
multipliers [23]. And most of them are composed of dense matrix-vector multiplications such as 4x and
A”x, and vector operations. In 2011, Nath et al. [24] presented an optimization symmetric dense matrix-
vector multiplication on GPUs. In 2016, Abdelfattah et al. [25] proposed an open-source, high-
performance library for the dense matrix-vector multiplication on GPU accelerators, KBLAS, which
provides optimized kernels for a subset of Level 2 BLAS functionalities on CUDA-enabled GPUrs.
Moreover, a subset of KBLAS high performance kernels has been integrated into the CUBLAS library
[26], starting from version 6.0. In addition, there have been highly efficient implementations for the
vector operation on the GPU in the CUBLAS library. Therefore, the existing GPU-accelerated L1-min
algorithms are mostly based on CUBLAS.

However, for the implementations of Ax and A”x in CUBLAS, the performance value fluctuates as m
(row) increases when n (column) is fixed or n increases when m is fixed, and the difference between the
maximum and minimum performance values is distinct. In [17], Gao et al. observe these phenomena, and
present two novel Ax and A’x implementations on GPU to alleviate the drawbacks of CUBLAS.
Furthermore, they take FISTA and ALM to propose two adaptive optimization L1-min solvers on GPU.

In this paper, we further investigate the design of effective algorithms that are used to solve the L1-min
problem on GPUs. Different from other publications [16,17], here we emphasize the design of concurrent
L1-min solvers on GPUs. First, we enhance Gao’s GEMV and GEMV-T kemels by optimizing the warp
allocation strategy of the GEMV kernel and the thread allocation strategy of the GEMV-T kernel, and
designing the optimization schemes for the GEMV and GEMV-T kernels. Second, the vector-operation
and inner-product decision trees are established automatically to merge the same operations into a single
kernel. For any-sized vector, the optimization vector-operation and inner-product implementation methods
are automatically and rapidly selected from the decision trees. Furthermore, the popular L1-min
algorithm, fast iterative shrinkage-thresholding algorithm (FISTA), is taken for example. Based on the
proposed GEMYV, GEMV-T, vector-operation and inner-product kernels, we present two optimization
concurrent L1-min solvers on a GPU that are designed from the perspective of the streams and the thread
blocks, respectively. Finally, we design a concurrent L.1-min solver on multiple GPUs. In this solver, each
GPU only solves a L1-min problem every time instead of solving multiple L1-min problems by utilizing
multiple streams or thread blocks. This solver is applied to this case where the number of L1-min
problems included in the concurrent L1-min problem is much less than the number of streams (or thread
blocks). Experimental results show that our proposed GEMV and GEMV-T kernels are more robust than
those that are suggested by Gao et al. and CUBLAS, and the proposed concurrent L1-min solvers on
GPUs are effective. The main contributions are summarized as follows:

e Two novel adaptive optimization GPU-accelerated implementations of the matrix-vector
multiplication are proposed.

e Two optimization concurrent L1-min solvers on a GPU are presented from the perspective of the
streams and thread blocks, respectively.

CSSE, 2021, vol.38, no.3 307

e Utilizing new features of GPU and the technique of merging kernels, an optimization concurrent L1-
min solver on multiple GPUs is proposed.

The remainder of this paper is organized as follows. In Section 2, we describe the fast iterative
shrinkage-thresholding algorithm. Two adaptive optimization implementations of the matrix-vector
multiplication on the GPU and the vector-operation and inner-product decision trees are described in
Section 3. Sections 4 and 5 give two concurrent L.1-min solvers on a GPU and a concurrent L1-min
solver on multiple GPUs, respectively. Experimental results are presented in Section 6. Section 7 contains
our conclusions and points to our future research directions.

2 Fast Iterative Shrinkage-Thresholding Algorithm

The L1-min problem is known as the basis pursuit (BP) problem [27]. In practice, a measurement data b
often contains noise (such as the measurement error:¢), which is called the BPDN problem. A variant of this
problem is also well known as the unconstrained BPDN problem with a scalar weight A or the Lasso problem
[28] in the statistics perspective:

1
min EHAx—bllﬁJr)\llJCH]- 2

The fast iterative shrinkage-thresholding algorithm (FISTA) is a kind of accelerations, and achieves an
accelerated non-asymptotic convergence rate of O(k’) by combining Nesterov’s optimal gradient method
[22]. For FISTA, it adds a new sequence{yy, k = 1,2,---} as follows.

1 A
Xi+1 = SOﬁO’k _L_fvf(yk)’L_f)’

1+ 4/1+ 4 3)

lpp) = —————,

+lk—1
=X
kyk-&-l k PR

(X6 — Xk—1),

where soft(u,a) = sign(u) max{|u| — a,0} is the soft-thresholding operator, y; =xp, #; =1 and the
associated Lipschitz constant L, of Vf(+) is given by the spectral norm of 474, denoted by ||4”4||,. For
large-scale problems, L, is not always easily computable. Thus, a backtracking stepsize rule is suggested
to alleviate this drawback. Algorithm 1 summarizes the generic FISTA algorithm with a backtracking
stepsize rule [22].

3 GPU Kernels

For FISTA, its main components include Ax (GEMV) and 4”x (GEMV-T), vector operations, and inner
product of vector. In the following subsection, we present their implementations on the GPU, respectively.
Tab. 1 lists the symbols that are used in this paper. N, N"¢¢, N™¢" N and N are constants for a specific
GPU. A row major and 0-based indexing array a is used to store the matrix 4 and the float precision values
are only used for all computations in this paper.

3.1 GEMYV Kernel

Given that the GEMYV, Ax, is composed of dot products of x and 4’ (the ith row of 4),i = 1,2, - - -, m, and
these dot products can be independently computed, we assign one warp or multiple warps to a product dot for
our proposed GEMV kernel. To optimize the GEMV kernel performance, for a given nt, we propose the
following self-adaptive warp allocation strategy to select the number of warps . for a product dot:

308 CSSE, 2021, vol.38, no.3

Algorithm 1: Fast Iterative Shrinkage-Thresholding Algorithm (FISTA)
Input: AcR™", beR", A=1||A"D||,

Init: L=1k=0,x,=x,=0€R",t,=t,=1,4=1.5,7=0.951=10"°

1. while not converged (k=1,2,---) do

2. k=k+1
-1
3. Vi =X+ (x5 =x,21)
T
4. Vf(y) =4 (dy, —b)
S. while (stop_backtrack I=1) do
6. “k:yk—%vf(yk)
7. X = soft(uy, %)
8. templ =3[b— Ax;., |E , X
9. temp2 =3 || Ay, =b |, +#(x =) V() + 1% =y |l
10. if (templ <temp2) stop_backtrack=1
11. else L*=f
12. end while _
13. A =max(ni, 1)
—1 [2 — —
14. L = 5(1 +y1+ 4t/<)7 Ly =hoh =0y,
15. Xiol = X X = Xpy
16. end while
Output: x" =x,

Table 1: Symbols used in this paper

Symbol Remark

nt Number of threads per block

nb Number of blocks per grid

N Number of streaming multiprocessors

N8 Maximum number of 32-bit registers per multiprocessor
N Maximum amount of shared memory per multiprocessor
N Maximum number of blocks per multiprocessor

N Maximum number of threads per multiprocessor

max k = N*" x N™ x nt/32/w,

4
S.t. ()
m<w, (5)
k<nt/32and k =2°, z€ {0,1,2,---}. ©6)

Eq. (4) denotes the objective of maximizing the number of warps. Eq. (5) guarantees that each warp
group (k warps are grouped into a warp group) calculates at least a product dot. Eq. (6) guarantees that
k must be a power of two and the warp-group size is at most the number of threads per block. N in
Eq. (4) is calculated as follows:

Nmb: min(Nreg/N;)’eg,Nmem/N;;nem’Ntd/nt,Ntb)’ (7)

where N, and N}""denote the number of registers and the amount of shared memory required by the threads
per block for our proposed GEMV kernel, respectively. Here N” is the minimum number of blocks per grid
that maximize the resource utilization per multiprocessor. In this paper, we take N*" x N as nb.

CSSE, 2021, vol.38, no.3 309

The GEMV kernel is mainly composed of the following three steps:

1. x-load step: The step is used to make threads per block parallel read x into the shared memory xS.
Because the size of x is large, x is segmentally read into the shared memory. To take full
advantage of the amount of shared memory per multiprocessor, the size of shared memory per
block is set as follows:

SIZE_MEM = N"*" /[N"" /4, (8)

where N is calculated by Eq. (7). The time of loading x is xTimes = n/SIZE_MEM. By this way, the
accesses to x are coalesced, and the access number is reduced by letting threads in the same thread block
to share the section of elements of x.

2. Partial-Reduction Step: Each time after a section of elements of x is read into the shared memory, the
threads in each warp group perform in parallel a partial-style reduction. Obviously, each thread in a
warp group at most performs 7 /SIZE_WG times of reductions and the accesses to the global memory
a are coalesced. Here SIZE_WG is the number of threads in the warp group, and is equal to & x 32.

3. Warp-Reduction Step: After the threads in each warp group have completed the partial-style
reductions, the fast shuffle instructions are utilized to perform a warp-style reduction for each
warp in these warp groups. The warp-style reduction values are stored in the shared memory.
Then the warp-style reduction values in the shared memory for each warp group are reduced to an
output value in parallel.

3.2 GEMV-T Kernel

The GEMV-T, A%, is composed of dot products of x and (47)’ (the ith column of 4),i = 1,2, -, n, and
these dot products can be independently computed. Given that the size of the vector x in the GEMV-T is
small, we assign one thread or multiple threads to a dot product in our proposed GEMV-T kernel. To
optimize the GEMV-T kernel performance, for a given nt, we propose the following self-adaptive thread
allocation strategy to select the number of threads & for a product dot:

max k = N*" x N"™ x 2 x nt/w,

9
s.t. ©)
n<w, (10)
k<32and k =2, z € {0,1,2,---}. (11)

Eq. (9) denotes the objective of maximizing the number of threads. Eq. (10) guarantees that each thread
group (k threads are grouped into a thread group) calculates at least a product dot. Eq. (11) guarantees that k&
must be a power of two and the thread-group size is at most the size of a warp. N in Eq. (9) is calculated by
the same equation as Eq. (7) except that N, and N;"" denote the number of registers and the amount of
shared memory required by the threads per block for our proposed GEMV-T kernel. To maximize the
resource utilization per multiprocessor, we take N*” x N as nb.

Similar to the GEMV kernel, our proposed GEMV-T kernel is also composed of the x-load step, partial-
reduction step and warp-reduction step.

1. x-load step: Like the GEMYV kemel, this step is used to make threads per block parallel read elements
of x into the shared memory xS. Given that the size of x is small, x is once read into the shared
memory in the GEMV-T kernel.

310 CSSE, 2021, vol.38, no.3

2. partial-reduction step: Since a row major and 0-based index format is used to store the matrix 4, the
accesses to 4 will not be coalesced if the thread groups are constructed in an inappropriate way. For
example, we assume that 4 is a 4 x 8 matrix as shown in Fig. 1, 16 threads in a thread block are
launched, and 2 threads are assigned to a dot product in the GEMV-T kernel. If we use the
following thread groups {0,1},{2,3},{4,5},---,{14,15}, the accesses to 4 will not be
coalesced. However, when the thread groups {0,8},{1,9},{2,10},---,{7,15} are utilized, the
accesses to A are coalesced, as shown in Fig. 1b. Therefore, in the partial-reduction step, the
thread groups are created according to Definition 3.1 below in order to ensure that the accesses to
A are coalesced.

1]12(3[4|5]|16]7]8
9 |10 11 [12| 13| 14[15] 16

Matrix A

17|18 19]20| 21 22|23 |24
25(26|27|28[29|30(31|32

iter1|1|9|2|10|3|11|4|12|5|13|6|14|7|15|8|16|

iter2|17|25|18|26| 19|27|20|28|21|29|22|30|23|31|24|32|
(a)

itel‘1|l|2|3|4|5|6|7|8|9|10|11|12|13|l4|15|16|

iter2|17| 18| l9|20|21|22|23|24|25|26|27|28|29|30| 31|32|
(b)
Figure 1: Access to A

Definition 3.1: Assume that the size of the thread block is s, /4 threads are assigned to a dot product in A'x,
and z = s/h. The thread groups are created as follows {0,z,---,(h — 1) x z}, {l,z+ 1,---, (h — 1) x z+ 1},
o fz—1,2xz—1,---2%x (h—1)xz— 1}

For these elements of x that are read into the shared memory, the threads in each thread group perform in
parallel a partial-style reduction similar to that in the GEMV kernel.

3. warp-reduction step: These threads in a thread group are usually not in the same warp, so we cannot
use the shuffle instruction to reduce their partial-style reduction values. Therefore, in the warp-
reduction stage, we store the partial-style reduction values that are obtained by threads in each
thread group to the shared memory, and then reduce them in the shared memory to an output
value in parallel.

3.3 Vector-Operation and Inner-Prodcut Kernels

When parallelizing FISTA on the GPU, the vector-operation and inner-product kernels are needed.
Although CUBLAS has shown good performance for the vector operations and the inner product of
vector, the use of CUBLAS does not allow to group several operations into a single kernel. Here in order
to optimize these operations, we try to group several operations into a single kernel. Therefore, we adopt
the idea of constructing the vector-operation and inner-product decision trees that are suggested by Gao
et al. [29]. Utilizing the vector-operation and inner-product decision trees, the optimal vector-operation
and inner-product kernels and their corresponding CUDA parameters can be obtained. For readers that
are interested in this work, please refer to the publication [29].

CSSE, 2021, vol.38, no.3 311

3.4 Optimization

Assume that s = N x N x nt/32, where N™ is calculated by Eq. (7), and m = [4+ s + As, where
[=0,1, 2, ---, and As is a smaller positive integer than s. We observe that for a matrix with
m=2x9604 30 and n = 102,400 on the GTX 1070 GPU, nt = 1,024, the GEMV kernel with one
warp per row is utilized according to Eq. (4), and thus achieves 103.18 GFLOPS. Let us divide this
matrix into two blocks B(m =2 x 960,n = 102,400) and C(m = 30,n = 102,400). If B and C are
calculated by one warp per row and 32 warps per row, respectively, we will obtain 107.25 GFLOPS. In
this way, the performance of the GEMV kernel increases 4.07 GFLOPS. Why? Obviously, for the GEMV
kernel, if As = 0 and / > 0, each warp will calculate the same number of rows and thus it obtains good
performance. However, when As # 0 and / > 0, the performance of the GEMV kernel decreases because
many warps are idle when computing the remaining As rows. Based on the above observations, we
optimize the GEMYV kernel as follows.

e When As =0, / > 0 or As # 0, [=0, the GEMV kernel shown in Section 3.1 is applied.

e Otherwise, on the basis of the GEMYV kernel, we construct a new kernel GEMV Kernel-I to calculate
the GEMV on the GPU. In this kernel, each row of the first / x s rows is assigned to one warp, and
each row of the last As rows is calculated by self-adaptive multiple warps.

Similar to the GEMV kernel, for the GEMV-T kemel, we assume that s = N*" x N x nt and
m=1[+s+ As,where /=0, 1,2, ---, and As is a smaller positive integer than s, and then optimize it as follows.

e When As =0, /> 0or As # 0, [=0, the GEMV kernel shown in Section 3.2 is applied.

o Otherwise, on the basis of the GEMV-T kernel, we construct a new kernel GEMV-T Kernel-I to
calculate the GEMV on the GPU. In this kernel, each row of the first / X s rows is assigned to one
thread, and each row of the last As rows is calculated by self-adaptive multiple threads.

4 Concurrent L1-min Solvers on a GPU

In this section, based on FISTA, we present two concurrent L1-min solvers on a GPU, which are
designed from the perspective of the streams and the thread blocks, respectively.

4.1 Streams

Utilizing the multi-steam features of GPU, on the basis of FISTA, we design a concurrent L.1-min solver,
called CFISTASOL-SM, to solve the concurrent L1-min problem. Given that these L1-problems that are
included in the concurrent L.1-min problem can be independently computed, each one of them is assigned
to a stream in the proposed CFISTASOL-SM. Fig. 2 shows the parallel framework of CFISTASOL-SM,
which defines the following contents: 1) illustrating the tasks of the CPU and the stream, 2) listing the
execution steps of CFISTASOL-SM on each stream, and 3) designating which operations should be
grouped into a single kernel.

For temp = Ay, — b, Vf (i) = A temp, and z; = Ax;, 1 in Fig. 2, they are easy to be implemented on
the basis of our proposed GEMV and GEMV-T implementation methods on the GPU. The optimal vector-

operation and inner-product kernels and their corresponding CUDA parameters are chosen by using the
vector-operation and inner-product decision trees.

4.2 Thread Blocks

For a specific GPU, the maximum thread blocks can be calculated as 7Bs = N*" x N'. Utilizing the

features of multiple thread blocks, based on FISTA, we present a concurrent L1-min solver, called
CFISTASOL-TB, to solve the concurrent L1-min problem. In CFISTASOL-TB, a L1-min problem is

312 CSSE, 2021, vol.38, no.3

assigned to one thread block. For each thread block, the idea of constructing the parallel FISTA to solve the
L1-min problem is similar to that of implementing FISTA on the stream in Section 4.1 except that here
CFISTASOL-TB is implemented in a kernel.

(CPU:Load 4eR™ beR”, A=1| 4"b]|, ,and initialize parameters)
v

| CPU: Define cudaStream_t stream[SM] and creat them |

v
| CPU: k=1 |
v
+| GPU-ith SM: y; = x, + “};71 (x, —=x,y) , wherei < no.prob % SM |
v
[GPU-ith SM: remp = Ay, —b |
v
[GPU-ith SM: Vf(y,) = A" temp |
v
[GPU-ith SM: 4 =y, =Y/ (3) |, Xy = 50fi (%) k<
| GPU-ith SM: z, = 4x,, |
v
GPU.ith sp: Pt =F1b== 1k
SN fp2 = L temp | 45~ V) + % -, B
v
. if (templ < temp2) stop_backtrack =1
CPU: else L*=/f
GG o b T
N
A =max(ni, 1)

CPU: s T, =tk =1,
v
| GPU-ith SM: %, =%, X% =X,

CPU-k—k+l J& @

N
(GPU-ith SM: Output x,)

Figure 2: Parallel framework of CFISTASOL-SM

4.3 Optimization

When the ith element of x is equal to zero, all elements in the ith column of 4 do not need to be accessed
because they do not have any contribution to the output vector. With the increasing iteration in FISTA, x
becomes sparser and sparser, and thus many columns in 4 are not accessed. By this way, we can improve
the CFISTASOL-SM and CFISTASOL-TB performance by reducing accesses to the global memory a.
Furthermore, for CFISTASOL-TB and CFISTASOL-SM, each thread block needs to access the global
memory a, so we let a be cached in the read-only data cache in order to reduce the number of accesses to
a. With the read-only data cache, a is shared by all thread blocks and can be accessed fast.

5 Concurrent L1-min Solver on Multiple GPUs

For the concurrent L1-min problem, if it includes a great number of L1-min problems, we can easily
construct a solver on multiple GPUs to solve it by letting each GPU execute CFISTASOL-SM or
CFISTASOL-TB. However, here we design a concurrent L1-min solver on multiple GPUs, called
CFISTASOL-MGPU, where each GPU only solves a L1-min problem every time instead of solving
multiple L1-min problems by utilizing the streams and the thread blocks. This solver is applied to this
case where the number of L1-min problems that are included in the concurrent L1-min problem is much

CSSE, 2021, vol.38, no.3 313

less than the number of the streams or the thread blocks. Fig. 3 shows the parallel framework of
CFISTASOL-MGPU, which defines the following contents: 1) illustrating the CPU/GPU tasks, 2) listing
the execution steps of CFISTASOL-MGPU on each GPU, and 3) designating which operations should be
grouped into a single kernel. The operations in Fig. 3 are easily executed on each GPU using the kernels
in Section 3.

CCPU: Load A€ R™",beR", A=1|A"b||, , and initialize parameters)

[CPU:k=1 |
v
"| ith GPU: y, =x, + r‘}lil (x, —x,.,), wherei < no.prob % num _gpu|
v
| ith GPU: temp = Ay, —b |
v
| ith GPU: Vf'(y,) = A"temp . |
[ith GPU: u, =y, —+V/ (1), X, = soft(u,. %) l
| ith GPU: z, = dx,, |
v
templ =4[b—z, |;
ith GPU:) e 5
temp2 =3[temp|[; +(x;, = v,) V() +1 150 = v |2
v
CPU: if (templ < temp2) stop_backtrack =1

" elseLx=f

CPU: stop_backtrack != 1

CPU A =max(n4,1)
) tm:%(lJr\]l*‘”E% Ly =l =6,
v

| ith GPU: X, =X, x, =X, |

CPU k=k+1 Je¥ @

N
(ith GPU: Output x, D

Figure 3: Parallel framework of CFISTASOL-MGPU

6 Performance Evaluation and Analysis

In this section, we first investigate the effectiveness of our proposed GEMV and GEMV-T kernels by
comparing them with GEMV and GEMV-T implementations in the CUBLAS library [26] and those that
are presented by Gao et al. [17]. Second, we test the performance of our proposed concurrent L1-min
solvers on a GPU, CFISTASOL-SM and CFISTASOL-TB. Finally, we test the performance of our
proposed concurrent L1-solver on multiple GPUs, CFISTASOL-MGPU. In the experiments, the number
of threads per block is set to 1024 for all algorithms.

Tab. 2 shows NVIDIA GPUs that are used in the performance evaluations. Our source codes are
compiled and executed using the CUDA toolkit 10.1. The measured GPU performance for all
experiments does not include the data transfer (from the GPU to the CPU or from the CPU to the GPU).
The test matrices, which come from the publication [17], are shown in Tab. 3. The elemental values of
each test matrix are randomly generated according to the normal distribution. The performance is
measured in terms of GFLOPS, which is obtained by 2 x m x n the matrix-vector multiplication kernel
execution time (the time unit is second) [30].

314 CSSE, 2021, vol.38, no.3

Table 2: Overview of GPUs

Hardware K40c GTX1070
Cores 2880 1920
Clock speed (GHz) 0.74 1.56
Memory type GDDRS5 GDDRS5
Memory size (GB) 12 8
Max-bandwith (GB/s) 288 256
Compute capability 3.5 6.1

Table 3: Test matrices

Seq Matrix Rows (m) Columns ()
1 Mat01 32 8,388,608
2 Mat02 50 5,368,709
3 Mat03 64 4,194,304
4 Mat04 100 2,684,350
5 Mat05 128 2,097,152
6 Mat06 200 1,342,200
7 Mat07 256 1,048,576
8 Mat08 400 671,100
9 Mat09 512 524,288
10 Mat10 800 335,850
11 Matl1 1024 262,144
12 Mat12 1600 166,900

6.1 Performance Evaluation and Analysis of Matrix-Vector Multiplications

First, we compare GEMV and GEMV-T kernels with the implementations in the CUBLAS library [26]
and those that are presented by Gao et al. [17]. The test matrices are shown in Tab. 3. Figs. 4 and 5 show the
performance comparison of the GEMV kernel with CUBLAS and that of Gao et al., respectively. From
Fig. 4, we observe that our proposed GEMV kernel on K40c and GTX1070 is always advantageous
over CUBLAS and that of Gao et al. for all test matrices. On K40c and GTX1070, the average
performance ratios of the proposed GEMV kernel versus CUBLAS are 3.15x and 1.12x, respectively,
and those of the proposed GEMV kernel versus Gao’s GEMV kernel are 3.18x and 1.19x,
respectively. For the proposed GEMV-T kernel, it outperforms CUBLAS and Gao’s GEMV-T kernel
for all test matrices on all two GPUs, as shown in Fig. 5. On K40c and GTX1070, the average
performance improvement is respectively 1.40 x and 1.05 x compared to CUBLAS, and is
respectively 1.09x and 1.02x compared to Gao’s GEMV-T kernel. These observations verify the
effectiveness of the proposed GEMV and GEMV-T kernels.

CSSE, 2021, vol.38, no.3 315

40c-Gao =—— K40c-Our

I K40c-CUBLAS
TX1070-Gao —— GTX1070-Our

Il GTX1070-CUBLAS

120

90

60

GFLOPs

30¢

0
\N O %)] & © 4 o) O Q N v
@@ &@ w\“ @\Q @\“ @@ &@‘ @@ &@ @\\ &\\ @Q,\\

Figure 4: Performance comparison of GEMV kernels

E K40c-CUBLAS K40c-Gao —— K40c-Our
120

GTX1070-CUBLAS GTX1070-Gao ——| GTX1070-Our

90+

60

GFLOPs

30

N

\¥ L > > S © A) O Q N v
R ARG

Figure 5: Performance comparison of GEMV-T kernels

Second, we take GTX1070 to investigate whether can the proposed GEMV and GEMV-T kernels
alleviate the CUBLAS fluctuations? The test matrix sets are as follows: 1) Set 1: » = 100,000 and
m =50, 100, 150, ---, 5,000; 2) Set 2: m = 1,000 and » = 5,000, 10,000, 15,000, -- -, 500,000.

Figs. 6 and 7 show the performance curves of GEMV and GEMV-T kernels for the matrices in the two
sets, respectively. From Fig. 6, we observe that whether m increases when # is fixed to 100,000 or » increases
when m is fixed to 1,000, the CUBLAS performance fluctuates, and the difference between the maximum and
minimum performance values is significant. However, for our proposed GEMV kernel, it is advantageous
over CUBLAS, and its performance almost remains invariable, and always preserves around
107 GFLOPS for all cases. Furthermore, for the test matrices in Set 1, the performance of our proposed
GEMV-T kernel has been maintained at around 107 GFLOPS as m increases, as shown in Fig. 7(a).
However, the CUBLAS performance fluctuates as m increases. For the test matrices in Set 2, when n
increases, our proposed GEMV-T kernel has high performance as CUBLAS, and always achieves around
107 GFLOPS.

120 T T T 120

60 1 60
30F —— GEMV Kernel g 30} —— GEMV Kernel

0

90

GFLOPS
GFLOPS

0 1000 2000 3000 4000 5000 0 125000 250000 375000 500000

(a) b)
Figure 6: GEMYV (a) Performance curves with m (n = 100,000) (b) performance curves with n (m = 1,000)

316 CSSE, 2021, vol.38, no.3

120 120

e
60 60

—— CUBLAS —— CUBLAS

0

GFLOPS
GFLOPS

n n 1 1 0 L n n
0 1000 2000 3000 4000 5000 0 125000 250000 375000 500000

(@) (b)
Figure 7: GEMV-T (a) Performance curves with m (n = 100,000) (b) performance curves with n (m = 1,000)

Based on the above observations, we conclude that our proposed GEMV and GEMV-T kernels enhance
those that are suggested by Gao et al., and achieve high performance, and are able to alleviate the
performance fluctuations of CUBLAS.

6.2 Performance of Concurrent L1-min Solvers on a GPU

In this section, we test the performance of our proposed CFISTASOL-TB and CFISTASOL-SM. Given
that these L.1-min problems included in the concurrent L1-min problem can be independently computed, as a
comparison, we use the FISTA implementation on the CPU using the BLAS library (denoted by BLAS), the
FISTA implementation using the CUBLAS library (denoted by CUBLAS), and the FISTA solver (denoted
by GAO) that is proposed in [17] to calculate them. 12 test cases are applied. For each test case, 60 L1-min
problems are concurrently calculated, and the matrix 4 comes from Tab. 3. For each L1-min problem, the
initial xo with 1024 non-zero elements is randomly generated according to the normal distribution, and
b = Axy. All algorithms stop after the number of iterations is more than 100 for all test cases. Tabs. 4 and 5
show the execution time of all algorithms on a K40c and a GTX1070, respectively. The time unit is second
(denoted bys). In Tabs. 4 and 5, our proposed CFISTASOL-TB and CFISTASOL-SM are abbreviated as TB
and SM, respectively.

Table 4: Execution time of all algorithms on a K40c (The time unit is)

Prob BLAS CUBLAS GAO TB SM BLAS CUBLAS GAO BLAS CUBLAS GAO

TB TB TB SM SM SM
01 2962.98 1307.39 256.26 39.28 58.95 75.43 33.28 6.52 5026 22.18 4.35
02 2203.57 847.17 167.35 38.42 40.05 57.35 22.05 436 55.02 21.15 4.18
03 2371.43 641.59 190.00 32.83 32.84 72.23 19.54 579 7222 19.54 5.79
04 1832.85 436.34 134.57 31.11 35.29 58.92 14.03 433 5193 12.36 3.81
05 2050.07 342.21 158.41 29.46 29.40 69.58 11.61 538 69.72 11.64 5.39

06 1670.28 246.36 120.09 29.03 29.42 57.53 8.49 4.14 56.77 8.37 4.08
07 1925.79 206.70 141.73 27.55 27.47 69.90 7.50 514 7011 7.53 5.16
08 1568.12 223.16 126.04 28.12 29.09 55.77 7.94 448 5390 7.67 4.33
09 1851.47 188.22 147.64 26.81 26.71 69.05 7.02 551 6931 7.05 5.53
10 1558.87 159.74 115.13 28.09 28.74 5549 5.69 4.10 5424 5.56 4.01
11 1753.49 151.16 111.93 28.71 28.63 61.07 5.27 390 61.24 528 3.91

12 1487.32 121.96 114.12 29.15 29.16 51.03 4.18 392 51.02 4.18 3.92

CSSE, 2021, vol.38, no.3 317

On two GPUs, both TB and SM outperform BLAS, CUBLAS and GAO for all test cases (Tabs. 4 and 5).
On a K40c, the execution time ratios of CUBLAS to TB range from 4.18 to 33.28, and the average execution
time ratio is 12.22; The execution time ratios of GAO to TB range from 3.92 to 6.52, and the average
execution time ratio is 4.80; The minimum and maximum execution time ratios of CUBLAS to SM are
4.18 and 22.18, respectively, and the average execution time ratio is 11.04; The minimum and maximum
execution time ratios of GAO to SM are 3.92 and 5.79, respectively, and the average execution time ratio
is 4.54. Furthermore, we observe that TB is slightly better than SM in most cases. On a GTX1070, we
obtain the same conclusion as on a K40c from Tab. 5. The average execution time ratios of CUBLAS
versus TB and CUBLAS versus SM are 18.00 and 15.76, respectively, and the average execution time
ratios of GAO versus TB and GAO versus SM are 7.24 and 6.38, respectively. Especially, compared to
the solver on the CPU, BLAS, TB respectively obtains average speedups of 62.78x and 126.16x, and
SM respectively obtains average speedups of 59.65x and 110.99 %, on a K40c and a GTX1070 (Fig. 8).
These observations verify that our proposed TB and SM have high performance and parallelism.

Table 5: Execution time of all algorithms on a GTX1070 (The time unit is s)

Prob BLAS CUBLAS GAO TB SM BLAS CUBLAS GAO BLAS CUBLAS GAO
TB TB B SM SM SM
01 296298 413.46 156.09 18.84 29.76 157.29 21.95 829 99.57 13.89 5.25
02 2203.57 345.98 123.19 1998 21.26 110.29 17.32 6.17 103.66 16.28 5.8
03 237143 300.18 129.08 16.24 17.38 146.03 18.48 795 136.47 17.28 7.43
04 1832.85 269.14 110.25 16.11 19.84 113.74 16.7 6.84 9236 13.56 5.56
05 2050.07 259.65 116.27 1499 16.2 136.73 17.32 7.75 126.56 16.03 7.18
06 1670.28 416.32 102.91 15.02 16.61 111.18 27.71 6.85 100.54 25.06 6.19
07 1925.79 473.56 101.74 14.04 15.24 137.19 33.74 7.25 126.37 31.07 6.68
08 1568.12 461.44 99.67 14.63 16.81 107.21 31.55 6.81 9326 2744 5.93

09 1851.47 99.26 100.29 13.66 14.57 135.55 7.27 7.34 127.04 6.81 6.88
10 1558.87 130.62 97.37 13.61 1539 114.55 9.6 7.16 101.26 8.48 6.33
11 1753.49 95.84 96.58 13.29 14.22 131.97 7.21 7.27 12332 6.74 6.79
12 1487.32 95.05 95.7 13.25 14.66 112.25 7.17 7.22 101.47 6.48 6.53

K40c-TB W/ GTX1070-TB

160

120}

80}

Speedups

Figure 8: Speedups of TB and SM on a GPU

318 CSSE, 2021, vol.38, no.3

6.3 Performance of the Concurrent L1-min Solver on Multiple GPUs

We take two GPUs and four GPUs for example to test the performance of our proposed CFISTASOL-
MGPU. The test setting is as same as in Section 6.2. Fig. 9 shows speedups of CFISTASOL-MGPU versus
BLAS on the K40c and GTX1070 GPUs.

2K40c 2GTX1070

105

70

Speedups

o8]
v

NMENGR NN BN X NeMENBN
P LT EES OO

A

Figure 9: Speedups of CFISTASOL-MGPU on multiple GPUs

From Fig. 9, we can observe that the speedups of CFISTASOL-MGPU versus BLAS on the two K40c
GPUs range from 30.53 to 50.97 for all test cases, and the average speedup is 39.69. On the four K40c GPUs,
the speedups of CFISTASOL-MGPU versus BLAS range from 61.06 to 101.9 for all test cases, and the
average speedup is 79.38. On the two GTX1070 GPUs, the minimum and maximum speedups of
CFISTASOL-MGPU versus BLAS for all test cases are 49.7 and 64.81, respectively, and the average
speedup is 54.22. On the four GTX1070 GPUs, the minimum and maximum speedups of CFISTASOL-
MGPU versus BLAS for all test cases are 99.39 and 129.6, respectively, and the average speedup is
108.4. All observations show that CFISTASOL-MGPU is effective for solving the concurrent L1-min
problem, and has high parallelism.

6.4 Discussion

From the experimental results, we can observe that CFISTASOL-TB is slightly better than
CFISTASOL-SM, and CFISTASOL-SM is advantageous over CFISTASOL-MGPU. In fact, each one of
these solvers has its own advantage. Tab. 6 lists the experimental results with different number of L1-min
problems that are included in the concurrent L1-min problem on GTX1070. In this experiment, Mat12 is
set as the coefficient matrix in the test concurrent L1-problem, and the test setting is as same as in
Section 6.2. For the GTX1070, the maximum thread blocks that it launches is 30 when nt = 1024, the
number of streams is 15. When the number of L1-min problems is enough to make all thread blocks
busy, CFISTASOL-TB is better than other two algorithms (see the first problem in Tab. 6). Otherwise,
CFISTASOL-SM will outperform other two algorithms if the number of L1-min problems is enough to
make all streams busy (see the second problem in Tab. 6). When the number of L1-min problems is
much more than the number of thread blocks and the number of streams, CFISTASOL-MGPU is the best
of all three algorithms (see the third problem in Tab. 6). Therefore, we can get better algorithms by
utilizing their own advantages to combine them. For example, on the four GTX1070 GPUs, assume that
the number of L1-min problems that are included in the concurrent L1-min problem is 128, the first
120 problems are calculated in parallel by letting each GPU execute CFISTASOL-TB, and the remaining
8 problems are computed in parallel by executing CFISTASOL-MGPU.

CSSE, 2021, vol.38, no.3 319

Table 6: Execution time of algorithms (The time unit is)

Num CFISTASOL-TB CFISTASOL-SM CFISTASOL-MGPU

30 6.6251 7.3302 7.8149
15 6.4342 3.6253 3.8074
4 6.0126 3.1398 0.9768

7 Conclusion

We investigate how to solve the concurrent L1-min problem in this paper, and present two concurrent
L1-min solvers on a GPU and a concurrent L1-min solver on multiple GPUs. Experimental results show that
our proposed concurrent L1-min solvers are effective, and have high parallelism.

Next, we will further do research in this field, and apply the proposed algorithms to more practical
problems to improve them.

Funding Statement: The research has been supported by the Natural Science Foundation of China under
great number 61872422, and the Natural Science Foundation of Zhejiang Province, China under great
number LY 19F020028.

Conflicts of Interest: We declare that there are no conflicts of interest to report regarding the present study.

References

[1T J. Tropp, “Just relax: convex programming methods for subset selection and sparse approximation,” IEEE Trans.
on Information Theory, vol. 52, no. 3, pp. 1030-1051, 2006.

[2] A. Bruckstein, D. Donoho and M. Elad, “From sparse solutions of systems of equations to sparse modeling of
signals and images,” SIAM Review, vol. 51, no. 1, pp. 34-81, 2009.

[3] G. Ravikanth, K. V. N. Sunitha and B. E. Reddy, “Location related signals with satellite image fusion method
using visual image integration method,” Computer Systems Science and Engineering, vol. 35, no. 5, pp. 385—
393, 2020.

[4] E. Elhamifar and R. Vidal, “Sparse subspace clustering: algorithm, theory, and applications,” /EEE Trans. on
Pattern Analysis and Machine Intelligence, vol. 35, no. 11, pp. 2765-2781, 2013.

[51 W. Sun, X. Zhang, S. Peeta, X. He and Y. Li, “A real-time fatigue driving recognition method incorporating
contextual features and two fusion levels,” IEEE Trans. on Intelligent Transportation Systems, vol. 18, no. 12,
pp. 3408-3420, 2017.

[6] G.Zhang, H. Sun, Y. Zheng, G. Xia, L. Feng et al., “Optimal discriminative projection for sparse representation-
based classification via bilevel optimization,” IEEE Trans. on Circuits and Systems for Video Technology, vol. 30,
no. 4, pp. 1065-1077, 2020.

[71 X. Zhang and H. Wu, “An optimized mass-spring model with shape restoration ability based on volume
conservation,” KSII Trans. on Internet and Information Systems, vol. 124, no. 3, pp. 17381756, 2020.

[8] X.Zhang, X. Yu, W. Sun and A. Song, “An optimized model for the local compression deformation of soft tissue,”
KSII Trans. on Internet and Information Systems, vol. 14, no. 2, pp. 671-686, 2020.

[91 J. Wright, Y. Ma, J. Mairal and G. Sapiro, “Sparse representation for computer vision and pattern recognition,”
Proc. of the IEEE, vol. 98, no. 6, pp. 1031-1044, 2010.

[10] L. He, H. Bai, D. Ouyang, C. Wang, C. Wang et al., “Satellite cloud-derived wind inversion algorithm using
GPU,” Computers, Materials & Continua, vol. 60, no. 2, pp. 599—-613, 2019.

[11] Y. Guo, Z. Cui, Z. Yang, X. Wu and S. Madani, “Non-local dwi image super-resolution with joint information
based on GPU implementation,” Computers, Materials & Continua, vol. 61, no. 3, pp. 1205-1215, 2019.

320 CSSE, 2021, vol.38, no.3

[12] T. Chang, C. Chen, H. Hsiao and G. Lai, “Cracking of WPA & WPA2 using GPUs and rule-based method,”
Intelligent Automation & Soft Computing, vol. 25, no. 1, pp. 183-192, 2019.

[13] G. He, R. Yin and J. Gao, “An efficient sparse approximate inverse preconditioning algorithm on GPU,”
Concurrency and Computation-Practice & Experience, vol. 32, no. 7, pp. 5598, 2020.

[14] J. Gao, Q. Chen and G. He, “A thread-adaptive sparse approximate inverse preconditioning algorithm on multi-
GPUs,” Parallel Computing, vol. 101, pp. 102724, 2021.

[15] NVIDIA, “CUDA C Programming Guide v101. 2019. [Online]. Available at: http://docs.nvidia.com/cuda/cuda-c-
programming-guide.

[16] V. Shia, A. Yang, S. Sastry, A. Wagner and Y. Ma, “Fast 11-minimization and parallelization for face recognition,”
in Conf. Record of the Forty Fifth Asilomar Conf. on Signals, Systems and Computers (ASILOMAR’1I),
Piscataway, NJ: IEEE, pp. 1199-1203, 2011.

[17] J. Gao, Z. Li, R. Liang and G. He, “Adaptive optimization 11-minimization solvers on GPU,” Int. Journal of
Parallel Programming, vol. 45, no. 3, pp. 508-529, 2017.

[18] M. Figueiredo, R. Nowak and S. Wright, “Gradient projection for sparse reconstruction: application to
compressed sensing and other inverse problem,” IEEE Journal of Selected Topics in Signal Processing, vol. 1,
no. 4, pp. 586-597, 2007.

[19] S. Kim, K. Koh, M. Lustig, S. Boyd and D. Gorinevsky, “An interior-point method for large-scale 1-regularized
least squares,” Int. Journal of Parallel Programming, vol. 1, no. 4, pp. 606-617, 2007.

[20] D. Donoho and Y. Tsaig, “Fast solution of 1;-norm minimization problem when the solution may be sparse,
Stanford University, Technical Report, 2006.

[21] A. Yang, Z. Zhou, A. Balasubramanian, S. Sastry and Y. Ma, “Fast /;-minimization algorithms for robust face
recognition,” IEEE Transactions on Image Processing, vol. 22, no. 8, pp. 3234-3246, 2013.

[22] A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding algorithm for linear inverse problems,” SIAM
Journal on Imaging Sciences, vol. 2, no. 1, pp. 183-202, 2009.

[23] B. Stephen, P. Neal and C. Eric, “Distributed optimization and statistical learning via the alternating direction
method of multipliers,” Foundations and Trends in Machine Learning, vol. 3, no. 1, pp. 1-122, 2011.

[24] R. Nath, S. Tomov, T. Dong and J. Dongarra, “Optimizing symmetric dense matrix-vector multiplication on
GPUs,” in Proc. of 2011 Int. Conf- on High Performance Computing, Networking, Storage and Analysis
(SC’11), ACM, New York, NY, USA, pp. 1-10, 2011.

[25] A. Abdelfattah, D. Keyes and H. Ltaief, “KBLAS: An optimized library for dense matrix-vector multiplication on
GPU accelerators,” ACM Transactions on Mathematical Software, vol. 42, no. 3, pp. 1-31, 2016.

[26] NVIDIA, “CUBLAS Library v10.1.” 2019. [Online]. Available at: http://docs.nvidia.com/cuda/cublas.

[27] S. Chen, D. Donoho and M. Saunders, “Atomic decomposition by basis pursuit,” SIAM Journal on Scientific
Computing, vol. 20, no. 1, pp. 33—-61, 1998.

[28] R. Tibshirani, “Regression shrinkage and selection via the lasso,” Journal of the Royal Statistical Society Series B,
vol. 58, no. 1, pp. 267288, 1996.

[29] J. Gao, Y. Wang, J. Wang and R. Liang, “Adaptive optimization modeling of preconditioned conjugate on multi-
GPUs,” ACM Transactions on Parallel Computing, vol. 3, no. 3, pp. 1-33, 2016.

[30] J. Gao, Y. Zhou, G. He and Y. Xia, “A multi-GPU parallel optimization model for the preconditioned conjugate
gradient algorithm,” Parallel Computing, vol. 63, pp. 1-16, 2017.

http://docs.nvidia.com/cuda/cuda-c-programming-guide
http://docs.nvidia.com/cuda/cuda-c-programming-guide
http://docs.nvidia.com/cuda/cublas

	Efficient Concurrent L1-Minimization Solvers on GPUs
	Introduction
	Fast Iterative Shrinkage-Thresholding Algorithm
	GPU Kernels
	Concurrent L1-min Solvers on a GPU
	Concurrent L1-min Solver on Multiple GPUs
	Performance Evaluation and Analysis
	Conclusion
	References

