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Abstract: Great strides have been made to realistically deploy multiple Unmanned
Aerial Vehicles (UAVs) within the commercial domain, which demands a proper
coordination and reliable communication among the UAVs. UAVs suffer from
limited time of flight. Conventional techniques suffer from high delay, low
throughput, and early node death due to aerial topology of UAV networks. To deal
with these issues, this paper proposes a UAV parameter vector which considers
node energy, channel state information and mobility of UAVs. By intelligently
estimating the proposed parameter, the state of UAV can be predicted closely.
Accordingly, efficient clustering may be achieved by using suitable metaheuristic
techniques. In the current work, Elbow method has been used to determine opti-
mal cluster count in the deployed FANET. The proposed UAV parameter vector is
then integrated into two popular hybrid metaheuristic algorithms, namely, water
cycle-moth flame optimization (WCMFO) and Grey Wolf-Particle Swarm optimi-
zation (GWPSO), thereby enhancing the lifespan of the system. A methodology
based on the holistic approach of parameter and signal formulation, estimation
model for intelligent clustering, and statistical parameters for performance analysis
is carried out by the energy consumption of the network and the alive node analysis.
Rigorous simulations are run to demonstrate node density variations to validate
the theoretical developments for various proportions of network system sizes.
The proposed method presents significant improvement over conventional state-
of-the-art methods.

Keywords: Clustering; elbow method; hybrid; UAVs; FANETs; energy
consumption

1 Introduction

UAVs have witnessed widespread application in a varied range of application area. Collaboration of UAVs
has been employed for patrolling of borders [1], disaster management [2], rescue and search operations [3],
wildfire monitoring [4], remote sensing and agriculture [5], ground and position tracking [6,7], etc. The
unique characteristics and advantages of the UAVs such as flexible operation, minimal cost requirements,
scalability, flexibility and speed of operation qualify them for the diverse set of applications [8].
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With the help of UAVs, a new area of ad-hoc networking is introduced as the Flying Ad-hoc Network. In
this network architecture, all the UAVs communicate among each other and at the most one UAV will
communicate with the control station for coordination and exchange of information. FANETs face certain
challenges owing to the unique features of the UAVs [9]. Most of the design requirements are with
respect to these features. The first challenge encountered is the unstable topology due to high mobility of
the UAVs [10]. This results in high overhead in routing due to frequent change in positions, unreliable
communication and link outage. When the UAVs are very sparsely deployed, the distance over which the
communication is taking place is high. Consequently, the energy requirement increases which alleviates
the performance of the FANETs as they are equipped with limited battery resources [11].

Clustering is an efficient approach to address the stable topology and energy efficiency requirement of
the UAVs [12]. This is by virtue of the scalable and the minimum overhead requirement characteristics of
clustering [13]. The clustering process will divide the UAVs in the FANETs into different groups. Based
on the performance of the UAVs, one UAV from each group takes up the task of head-node [14]. The
head-node aggregates the information of its cluster and forwards it to the destination. This ensures
topology maintenance with minimum resource overheads [15] and lowered cost for communication
amongst the UAVs. An illustration of UAV clustering is shown in Fig. 1.

Swarm intelligence has found extensive applications in the field of clustering in ad-hoc networks [16].
Clustering process requires certain benchmarks to achieve the formation of optimal clusters. Further,
clustering can also be viewed as an optimization problem [17]. Literature shows the execution of various
metaheuristic techniques for clustering in ad-hoc networks. Optimization techniques like Particle Swarm
Optimization (PSO) involve position and velocity update for every iteration, and it has been extensively
used in mobile ad hoc networks (MANETs) [18]. Ant Colony Optimization (ACO) closely mimics the
pheromone-dependent behavior of honeybees popularly used in vehicular ad hoc networks (VANETs)
[17]. Glowworm swarm optimization (GSO) is yet another luciferin-based metaheuristic technique
amongst many more which are being implemented for clustering in flying ad hoc networks (FANETs) [19].

Figure 1: An illustration of UAV Clustering topology; Red ones denote cluster head and blue ones denote
cluster members. Dotted lines indicate a cluster
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1.1 Literature Review

Various works considering the design restrictions of UAVs and its resulting problems have been carried
out in the past. Authors in Zafar et al. [20] proposed a clustering technique to ensure the reliable transmission
of data in FANETS. Based on their position, they are divided into clusters. Appointment of head-node is
dependent on the signal to noise ratio (SNR). Data transmission can be from either cluster head to cluster
head, or from relaying of data to the destination based on the link quality of the cluster heads between
which the communications needs to take place. Shi et al. [21] considers both clustering and route
maintenance for improving the efficiency in the collaboration of the UAVs. It defines two transmission
ranges each, for intra cluster and inter cluster communication. Head nomination is based on the speed,
degree, residual energy, and tactical value. The tactical value is defined as the node weightage.

In Zang et al. [22], an algorithm focused on the high mobility of the UAVs based on weighted-clustering
technique has been proposed. Several factors such as neighborhood probability of the UAV node, link
expiration time and degree of connectivity etc. dominate the selection of the optimal cluster head. Based
on these factors, a weightage function is created. Node having the highest weightage is elected as cluster
head. Park et al. [23] proposes multiple approaches for cluster head election in UAVs by considering
distance between ground control station (GCS) and the UAV, and the residual energy as the primary
metrics. The clustering process is controlled by the GCS. The first method works on random election of
cluster heads, while the second method selects the cluster heads based on its highest residual energy.
Finally, the last method considers both the metrics for election. Addressing the issue of routing and
battery resource limitations, a k-means sorted algorithm is proposed in Aadil et al. [11]. The algorithm
implements the k-means algorithm which appoints the head-nodes with the highest reservoir of energy,
neighborhood, and the distance parameter. It also has a provision for electing different transmission
power based on the distance between the two UAVs under communication. Different power levels for
different transmission ranges are also defined.

It is evident from literature that metaheuristic techniques are being employed for clustering in FANETs
and other ad-hoc networks. Also, implementation of hybrid algorithm is carried out to improve the efficacy of
the network. A three phase method based on the combined effect of luciferin attraction of glowworm swarm
optimization (GSO) and the marine ecosystem inspired Krill Herd (KH) algorithm is proposed in Khan et al.
[8]. The method attempts to improve the energy efficiency of the network, thereby, improving the lifetime of
the network. The first phase of the method is the cluster formation, which is carried out by GSO. This is
followed by management of the topology by the KH. Finally, the network-maintenance phase monitors
the energy and working levels of the UAVs. However, the work lacks intelligent estimation techniques
that would have, otherwise, helped in cluster formation. In Khan et al. [19], GSO is implemented as a
self-organization based method for clustering. Based on the behavioral nature of GSO, the connectivity
and the residual energy of each UAV node, clustering of nodes is carried out. If the connectivity is not
there, the node with highest residual energy is elected as the cluster head. The method also includes the
management of its topology for stability and improved lifetime. However, it leaves the scope of
improvement because of exclusion of channel state information, which is critical to the performance of
FANETs because of rapidly changing environment around the UAVs.

A polynomial time algorithm and spiral network discovery for optimal count of UAV to cover the target
area is devised in Lyu et al. [24]. UAV clustering may also be optimized by formulation of a constrained
mixed integer cost function to deal with high communication cost without data aggregation, as described
in Thammawichai et al. [25]. While some works have treated UAVs as static, a more accurate
representation is to incorporate dynamic clustering, which would subsequently lower the transmit power
as compared to traditional clustering schemes such as k-means clustering. One such approach has been
attempted using modified Louvain method [26] and the results are shown to be superior in several
aspects. Besides mobility of the UAVs, there are restrictions on cluster size in terms of physical coverage
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area as well as the number of UAVs per cluster. By considering these constraints, the inefficiency of
clustering process may be improved. A game theoretic proposition has been worked out in Xing et al.
[27] for coalition framework modelling, and the results have been shown to enhance UAV clustering
efficiency under controlled conditions. Since UAV networks suffer from high delay during transmission
of data, an intelligent clustering method using block coordinate descent method has been demonstrated to
reduce this delay by improving cluster coverage in FANETs. The recent related works on UAVs have
been given in Tab. 1.

1.2 Motivations and Applications

UAV has been used extensively by governing bodies to secure hostile [29] terrains by scanning them
aerially. Typically, human intervention is nil. UAVs are beneficial in agricultural mapping [30,31] and
monitoring. E-commerce is at its nascent stage of delivering goods [32,33] and services with the help of
UAVs. The commercial viability has enabled in providing mobile base stations with the help of UAVs to
selectively sense and gather data in an on-demand basis.

Since most of the works in literature have addressed various parameters of UAV clusters in detail, it is
imperative that we consider some of these parameters together to come up with intelligent estimation
technique that would determine the clustering behavior of UAVs in FANETs. This is the prime
motivation behind current work, and the authors have tried to quantify their findings to the best of their
knowledge. A holistic overview of the approach in this paper has been illustrated in Fig. 2. Here, the
formulation phase leads to a mathematical implementation phase, followed by a verification phase to
come up with lifetime and computation related parameters of the proposed method. Considering the
restrictions and the possible approaches, the paper contributes the following:

Table 1: Awalkthrough of the recent related works

Reference Challenges identified Approach taken Outcomes

[24] High count of UAVs required
for network coverage

Polynomial time algorithm
and successive UAV
placement. Spiral network
discovery

Improved time complexity,
optimal count of UAVs.

[25] High communication cost
without data aggregation and
clustering

Mixed integer optimization
formulation

Optimal multi-hop
hierarchical clustering UAV
network

[26] High transmit power, high
energy consumption of
conventional k-means clustered
UAVs

Modified Louvain method for
dynamic clustering

Lower transmit power due to
dynamic clustering of UAVs

[27] Inefficiency of conventional
link subsistence probability
during UAV clustering

Game theoretic coalition
framework for distributed
mobility

Efficient UAV clustering
decision under cluster size
and diameter constraints

[28] High delay in response between
cluster head and sink node in
FANETs

Penalty and block coordinate
descent method

Lower delay and coverage
efficient clustering of UAVs
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a) A System Model is presented which highlights parameters of the UAVs critical to clustering and data
transmission.

b) An intelligent estimation of UAV-parameters is derived mathematically to be integrated into
clustering techniques.

c) Elbow Method is implemented to determine the suitable size of cluster in the deployment scenario of
the FANET.

d) Estimated UAV parameter vector is used to modify two popular hybrid metaheuristic algorithms,
first, a combined framework of Water Cycle Algorithm (WCA) inspired from the hydrological
balance between the three states of water on earth, and the spiral hovering of moth around a light
source, named aptly Moth Flame Optimization (MFO). Second, Grey Wolf Optimization (GWO)
which mimics the cooperative hunting ability of a pack of wolves, is combined with the swarm
behavior of Particle Swarm Optimization (PSO) for performing the clustering and election of
cluster heads.

e) To corroborate the theoretical findings, rigorous simulations are run to demonstrate node density
variations for various proportions of network system sizes. The results are compared with other
techniques to highlight the improvement gained due to intelligent UAV parameter estimation.

To the best of the authors’ knowledge, hybrid metaheuristics with UAV parameter estimation have not
been attempted together in the literature for efficient clustering of UAV networks. Therefore, the findings of
the current paper are new. The paper has been organized as mentioned: Section 2 describes the Parameter,
Signal and System Model of clustering of UAVs. Numerical computations are carried out in Section 3 to
validate theoretical findings. Closing remarks are mentioned in Section 4.

Figure 2: A holistic representation of the approach presented in this paper
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2 Proposed Method

UAV nodes in the FANETs have been clustered to address the issues of limited energy and stability in
FANETs. The method initially determines the number of clusters required for the deployment scenario. It
optimizes the energy consumed in the FANETs as it ensures a tradeoff distance for communication
among the head-node and the cluster members. The number of clusters is achieved by the Elbow Method.
Further, the network area is partitioned into sub regions based on the number of appropriate clusters to be
formed via the k-means algorithm. This is followed by the clustering process and cluster head selection
done by the hybrid algorithms, namely, water cycle-moth flame optimization (WCMFO) and Grey Wolf-
particle swarm optimization (GWPSO). Cluster heads are elected depending upon the energy level of the
UAV nodes and the delay apprehended in the network. Communication amongst the UAVs is carried out
via the head UAV which forwards the data towards the control station either directly or via nearest cluster
head UAV. Re-clustering is carried out when the head UAV node reaches its threshold condition. The
broad outline of clustering approach is presented in Fig. 3. This section provides the network model,
details of the hybrid algorithms implemented and the fitness function.

2.1 System Model

We consider a group of multi- energy UAVs where the cluster heads are equipped with the ability to
transmit short pulses of higher amplitude. The clusters count of a consist of similar energy UAVs that are

Figure 3: Flowchart of the estimation-based clustering method
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within connectivity range of each other. The received pulse cij at any UAV uj in a cluster ai under Gaussian
noise di;j is given by

cij ¼ gij txuj
� �þ di;j 8j ¼ 1; . . . jmax and i ¼ 1; . . . ; imax (1)

where, gij is the free space channel impulse response of jth UAV in ith cluster. The vector form of Eq. (1) is
given as

c ¼ gT txð Þ þ d (2)

where, gT is the free space channel vector from the cluster members to the cluster head. The critical
dependence of optimal clustering is decided by energy level and communication range of any UAV,
amongst other parameters. We propose a ‘Span-out model’ to enable efficient clustering as explained below:

Proposition 1:

Let a trio of UAV elements u1, u2, u3 cover a span of aerial space denoted by region S. Based on the
proximity of these three UAVs, they share the updated values of energy E, channel state information C
and mobility l. A vector H called ‘UAV- parameter’ is proposed, which is a linearly weighted mixture of
three parameters, namely, energy E, channel state information C and mobility l.

H ¼ AT
1Eþ AT

2Cþ AT
3l (3)

where A1, A2 and A3 are the linear coefficient matrices corresponding to each of the three respective
parameters. Since a triangulated region is the bare-minimum criteria to form an enclosed space, these
three UAV elements are now free to assess any other UAV endurance and continuously monitor this
parameter in order to assist in election of next set of cluster heads optimally. Once this information spans
out throughout the cluster, the cluster head UAV selection becomes much easier. Based on the current
UAV parameter vector, the estimated UAV parameter vector needs to be predicted for the next instance
for improved head selection.

Let the minimum mean square estimate (MMSE) bH of the UAV parameter be given by

bH ¼ bA1bA2bA3

h i
(4)

where, the signal model is as followsbH ¼ bAT
1Eþ bAT

2Cþ bAT
3lþ d (5)

where d is Gaussian Noise with zero mean and variance r2d. To estimate the unknown UAV parameter, let the
unknown parameter be h ¼ H½ �T . Then, the likelihood function associated with h is given by

f hð Þ ¼
Yjmax

j¼1

2pr2
� ��1

2 exp � 1

2
h� E hð Þð ÞTK�1 h� E hð Þð Þ

� �� �
(6)

where, K is the covariance matrix of the noise associated with measurement of h. To gauge the suitability of
measured values, the correlation matrix between energy E and mobility l is found to be
vE;l ¼ corrcoef q; vð Þ, where, q represents the charge content of energy cells which power up the UAVs
and v is the matrix associated with the rate of change of position of the UAVs. Then, the covariance
matrix of h, denoted by KHH is computed by

KHH ¼ E HHT
� 	

(7)
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Thus, the MMSE estimate bHmay be calculated according to Bayesian Gauss-Markov Theorem [34] as:

bH¼ E bH
 �
þKHHg

T gKHHg
T þKd

� ��1
c� gE Hð Þð Þ ¼ E bH
 �

þ K�1
HH þ gTK�1

d g
� ��1

gTK�1
d c� gE Hð Þð Þ (8)

where, Kd is the covariance matrix of measurement noise. The estimated UAV parameter has an error
performance of e ¼ H� bH, which is yet again a random variable. e is characterized by zero mean and
covariance Ke ¼ Ec;H eeTð Þ
¼ KHH � KHHg

T gKHHg
T þ Kd

� ��1
gKHH

¼ K�1
HH þ gTK�1

d g
� ��1

(9)

The significance of Proposition 1 is that it enables us to monitor UAV health parameters for improved
cluster head prediction.

2.2 Network Model

In this paper, FANET is considered over a network area of q×q m2 area deploying ‘K’UAV nodes having a
geographical location of (xk, yk, zk) and an initial energy level of Ek. Fig. 4a depicts the initial deployment
scenario. The control station is assumed to be at the boundary of the network area. Since the UAVs are
mostly in line of sight (LoS) [9], Free Space Path Loss (FSPL) propagation model is considered. The
implementation of the presented method yields ‘N’ clusters with each cluster having a cluster head HN. The
scenario after clustering is shown in Fig. 4b. The communication among the UAVs follows the First Order
Radio Model as in Aadil et al. [11] where the L2-norm between the UAVs decides the energy consumption
during transmission-reception of signals. In view of maintaining a stable topology the Reference Point
Group Mobility (RPGM) Model is followed [35]. According to this, the cluster members congregate in
tandem with the movement of the head UAV nodes, thus maintaining the topology.

A flowchart describing the estimation of parameter- based UAV clustering is shown in Fig. 3. The
general framework of any metaheuristic clustering technique requires initialization of UAV positions
followed by residual energy calculation of each UAV. If the UAVs require clustering, then first the
parameters discussed in section 2.1 are estimated for each UAV. Then, the number of clusters is optimally
found by utilizing elbow method. Using K-means technique, an initial set of clusters is created. Based on
estimated individual parameter values, a cost function is formulated and subjected to various constraints.
The cost function is then solved using emerging hybrid metaheuristic techniques to determine the
optimum cluster heads. After every round of transmission, the same technique is evaluated again, till the

Figure 4: (a) Deployment scenario of FANETs (b) Scenario after clustering of the UAV nodes
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UAVs have either completed all transmissions, or they deplete their energies completely. The role of
estimation-based clustering enables accurate cluster head prediction. This cluster head prediction is
possible when the UAV health vector is tuned according to UAV energy, its channel state information and
the mobility factor of FANET.

2.3 Elbow Method

The elbow method is introduced to ensure optimal numbers of clusters for clustering [36]. The method
considers the L2-norm between the cluster head and the cluster members to determine the optimal situation.
This distance is known as the within cluster sum of squares (WCSS). It tries to deduce the number of clusters
wherein there is tradeoff between the WCSS in terms of forming distinct and closed clusters. Considering
two network areas of 1000 � 1000 m2 and 2000 � 2000 m2, for a node density of 55, the optimal
number of clusters was found to be 6, using the Elbow Method. This is depicted in Fig. 5.

2.4 Clustering by Hybrid Metaheuristics

In this method, after the initial segmentation to ‘N’ sub regions based on the K-means algorithm, a
hybrid metaheuristic algorithm is implemented for selecting the optimal cluster heads. The optimal
selection depends on certain factors such as energy levels and the delay introduced by it. This section
details the hybrid algorithm and the process by which it is being incorporated into the proposed method.

2.4.1 Algorithm 1: WCMFO
The hybrid algorithm of the Water Cycle Algorithm (WCA) and the Moth Flame Optimization (MFO) is

implemented as in Khalilpourazari et al. [37]. The algorithm improves the exploration and exploitation
capacity of the WCA. The local search is improved by introducing the spiral movement of the moth,
while the randomization by the Levy flight increases the global search ability in the area where the ‘K’
UAV nodes are randomly deployed. The solution for the algorithm is the sea, which is the fittest among
‘M’ streams initialized. Hence, the solution space is ‘M’ streams that contains ‘N’ eligible cluster heads
selected from each sub-region. The streams are further segregated to sea, rivers and streams as shown in
Eqs. (10) and (11), respectively.

Msr ¼ #Riversð Þ þ Sea (10)

Mstreams ¼ M �Msr (11)

Figure 5: Elbow method implemented for two different network areas of (a) 1000 × 1000 m2 (b) 2000 ×
2000 m2
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where,Msr is the combined count of all rivers and a sea,Mstreams is the number of streams which flow into the
rivers or may flow directly into the sea. The distance of the sea from the river and stream respectively is
calculated further. The position of the streams, rivers are updated based on the spiral movement of the
moths as in Eqs. (12)–(14). Based on the fitness function of the new position, again the sea, rivers and
streams are designated.

X tþ1
k ¼ X t

k � distsea�streams

�� ��ebt � cos 2ptð Þ þ distsea�streams (12)

a ¼ �1þ current iteration �1=maxiterationð Þð Þ (13)

t ¼ a� 1ð Þ � rand þ 1 (14)

where, X tþ1
k denotes the new position of kth water body at t þ 1ð Þth iteration, X t

k denotes the old position of
kth water body at tth iteration, distsea�streams denotes the distance between sea and streams. a is the
convergence constant which has an output range of �1;�2½ �, b is a constant for defining shape of
the spiral and t is a random number between �1; 1½ �. The streams undergo the Levy flight to introduce
the randomization factor and also, the evaporation condition is checked as in Eqs. (15)–(17). The process
continues till the termination condition is attained. Output of the algorithm is ‘N’ cluster heads and its
corresponding cluster members.

diþ1
max ¼ dimax � dimax=maxiteration

� �
(15)

X i
river � X i

stream, dmax (16)

X i
stream ¼ LBþ rand � UB� LBð Þð Þ (17)

where, dimax and diþ1
max are the maximum distance between any two consecutive water bodies during tth and

t þ 1ð Þth iteration, maxiteration is the maximum number of iterations, X i
stream and X i

river are the respective
positions of stream and river in the ith iteration. UB and LB are the upper and lower bounds respectively
of their stream positions.

The flowchart of the estimator modified WCMFO algorithm is given in Fig. 6. The network and
algorithmic parameters are initialized first, followed by selection of UAVs having energy higher than the
threshold. Then the eligible cluster heads are initialized just like rain drops of water cycle algorithm. The
UAV parameter vector is then intelligently estimated to determine the future mobility, energy, and
channel state information of the UAVs and the network. Based on these parameters, the fitness function
of each UAV is computed. Fitness value also determines the classification of water bodies into streams,
rivers, and seas. The upcoming position of UAVs is determined by following the spiral movement of
moths towards the central flame, and the position of streams using Levy’s flight. Depletion of UAV
energy is emulated by evaluating the evaporation condition. Upon completing a finite number of rounds,
the process is terminated, and we check for the number of rounds which have been optimally clustered.

2.4.2 Algorithm 2: GWPSO
In the implementation of the GWPSO [38], Particle Swarm Optimization (PSO) and the Grey Wolf

Optimization (GWO) are incorporated. In this algorithm, the improvement in the local search of PSO is
introduced by the global search capabilities of the GWO. The search space for the algorithm is the
network area of the FANET with the ‘N’ sub region. A set of ‘M’ particles with ‘N’ cluster heads is
initialized as the search space. Based on the fitness these particles are designated as the alpha, beta, and
delta particles. An inertia constant value w is introduced in the Eq. (18) which governs the encircling
behavior of the particles. ‘p’ in Eq. (18) can be alpha, beta, or delta particle. The position of these
particles are then updated as in Eqs. (19)–(21), where i = 1, 2, 3.
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rp ¼ c � xp � w � xhead
�� �� (18)

xi ¼ xp � ai � dp (19)

a ¼ 2� l � r1 � l (20)

c ¼ 2� r2 (21)

where, rp, c, xp are respectively the radius of encirclement of particle, the inertia of the particle p, the position
of the particle p.

Vk iterð Þ¼w � Vk iter�1ð Þð Þþ r1c1 x1�Xk iter�1ð Þð Þþ r2c2 x2�Xk iter�1ð Þð Þþ r3c3 x3�Xp iter�1ð Þ� �
(22)

Xk iterð Þ ¼ Xk iterð Þ þ Vk iterð Þ (23)

where, l decreases linearly from 2 to 0. r1, r2, r3 are random values. V and X are the respective velocities and
positions. The final position is determined as in Eqs. (22) and (23). The process continues till the termination
condition is reached, yielding the cluster heads and the corresponding clusters.

Figure 6: Flowchart of working of the modified WCMFO algorithm
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The flowchart of the intelligent estimator modified GWPSO algorithm is shown in Fig. 7. The first phase
involves initialization of set of parameters for the algorithm as well as the UAV network. The UAVs having
energy above threshold are selected and cluster heads are eligible for particle initialization. Then the UAV
parameter vector is intelligently estimated to determine the next potential UAV energy, mobility, and
channel state information of the network. This parameter vector is used to determine the position of three
kinds of particles, namely alpha, beta and delta. The position and velocity of UAVs are updated according
to the particles of swarm. The convergence constant ‘a’ is computed to check for optimality condition.
These steps are iterated till the UAV nodes run out of energy, or successful transmissions are completed.

2.4.3 Fitness Function
The quality of the cluster head required for the process of clustering is determined by the fitness

function. The main function of the optimization approach is to bring about a tradeoff among the
objectives to be achieved. The fitness function in this method considers the energy level and the delay as
the basis for cluster head election. Energy level is considered to check the survivability of the head
nodes, while delay is associated with the reliable and timely transmission of the data. The multi-objective
minimization function as shown in Eq. (24).

Figure 7: Working Flowchart of the modified GWPSO algorithm
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Fmin ¼ wafa þ wbfb (24)

The functions fa, fb are adapted from [39,40] and incorporated to obtain the optimum situation in the
FANETs. They denote the cost functions related to energy requirement and delay associated with each
UAV. The Eqs. (25) and (26) govern these factors, wa þ wb ¼ 1. ‘K’ number of UAV nodes are deployed
and ‘N’ number of clusters are formed in the search space. HN denotes the cluster head for the cluster N.
Eres depicts the residual energy of each nodes and NumN denotes the degree of nodes in the cluster K.

fb ¼
XK
i¼1

Eres Kið Þ
 !

=
XN
j¼1

Eres HNð Þ
 !

(25)

fc ¼ NumNð Þ=K (26)

3 Results and Analysis

This section briefs the simulation setup and the results obtained based on the parameter evaluation. The
parameters considered are the energy consumption and the alive node analysis. Both the parameters give an
insight to the lifetime and efficiency of the network. The correlation coefficient between different UAV
estimation parameters is crucial because it links charge content of UAV power source with the rate of
change of position of UAV, in the presence of a dynamically changing channel state information.

3.1 Simulation Setup

The proposed method is simulated for a FANET setup, where the nodes are randomly deployed. Two
network areas, 1000 × 1000 m2 and 2000 × 2000 m2 are considered and the node density is varied from
25 to 55. Simulation parameters are tabulated in Tab. 2. MATLAB is the platform used for the simulations.

Table 2: Parameters

Sl. No. Parameter Range

1. Network Model FANET

2. Number of UAVs 25,35,45,55

3. Network Area 1 km � 1 km, 2 km � 2 km

4. Mobility Model Reference Point Group Mobility Model

5. Initial Energy of UAVs 10 J

6. Transmission Range Dynamic

7. Transmission Frequency 2.4 GHz

8. Data Rate 100 kbps

9. Receiver Sensitivity –90 dBm

10. Electronics Consumption Energy 50 nJ/bit

11. Number of Iterations 50

CSSE, 2021, vol.38, no.3 333



3.2 Performance Analysis

The performance of the two hybrid algorithms implemented in the proposed method is compared with
respect to network energy consumption and the analysis of the number of alive-nodes. In both the proposed
methods, UAV parameter estimation phase is exploited to compute the fitness function to come up with the
requisite node analyses. Energy consumption of the proposed method depends on the following
constraints: Correlation coefficient between the charge content of UAV power source and the rate of
change of position of UAV.

3.3 Energy Consumption

The importance of controlled energy exhaustion is critical due to the limited battery availability of the
UAVs. The communication amongst the UAVs are considered using First Order Radio Model. The energy
consumption is checked for a stipulated number of transmissions. Fig. 8. depicts the energy consumption
of the network for both the network areas. It is evident that WCMFO performs better than the GWPSO,
which implies limited energy consumption and a longer network lifetime. With increasing node distance,
energy consumption sees an upward growth trend, with the proposed method exhibiting slower growth
than the competing models, meaning improved performance.

3.4 Alive Node Analysis

Alive nodes analysis gives an insight of the operational nodes per round of transmission in the network.
The lifetime and operation of the network can be determined with the help of alive node analysis. Fig. 9. shows
the alive node analysis of the network where the number of nodes operational is checked for the first
5000 rounds. It is carried out for an initial node density of 45. The graphs reveal that WCMFO lifetime is
better compared to the GWPSO, hence depicting its efficiency in terms of node lifetime. The number of
alive nodes rapidly ceases during the first 3000 rounds in case of competing methods (PSO and WCA).

Tab. 3 summarizes the comparative results in tabular form.

Summarizing the findings of Section 3, the computational analysis included energy consumption and
alive node determination for different node deployment sizes. Observing the results, the superiority of the
proposed techniques was established with respect to the convergence rate, node density, node death rate
etc. In terms of convergence rate, the proposed GWPSO was found to converge faster than conventional
PSO, and the proposed WCMFO was found to converge faster than WCA. Energy consumption wise
WCMFO was found to be the most efficient, then followed by the proposed GWPSO, while PSO
consumed the most energy.

Figure 8: Network energy consumption for a network area of (a) 1000 × 1000 m2 (b) 2000 × 2000 m2
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4 Conclusion

In this paper, the proposed method for clustering in FANETs was presented. It addressed the limited
battery availability and unstable topology issues of the UAVs. An intelligent estimation of UAV
parameter vector was formulated, and mathematical expression was derived to compute the errors
associated with prediction of next state of UAVs. Ideal number of clusters required by the network
scenario was then determined by the Elbow Method. Clustering by two emerging hybrid methods
WCMFO and GWPSO was implemented by incorporating UAV parameter estimation into the respective
fitness functions. Simulations were run for two network areas by varying the node densities. The
performances were evaluated based on the energy consumption of the network and the alive nodes to
analyze the improvement in the lifetime of the network and to compare with existing schemes. The
results demonstrated superior attributes of WCMFO algorithm within the scope of analysis. The better
performance of the WCMFO might be attributed to the improvement in the exploration and exploitation
phase in the WCA with the inclusion of spiral movement and Levy flight, making it more robust and
efficient. The superior performance of modified hybrid techniques over the existing conventional ones
highlighted the importance of accurately estimating the UAV parameters and their subsequent inclusion
into the cost function to incorporate machine-intelligent UAV clustering in modern-day FANETs.

Figure 9: Analysis of the operational nodes per rounds of transmission for an assumed network area of (a)
1000 × 1000 m2 (b) 2000 × 2000 m2 when the node density is 45

Table 3: Summary of comparative results

Parameter Comment

Convergence rate GWPSO>PSO; WCMFO>WCA

Energy
consumption

Lowest: WCMFO; WCMFO<GWPSO<WCA<PSO

Dense node
clustering

GWPSO exploitation is nearly as good as WCA

Sparse node
clustering

Both GWPSO and WCMFO perform nearly equivalently. PSO requires significantly
more resources, WCA has intermediate requirements.

Node death rate For smaller area, GWPSO ~ WCMFO, and PSO>WCA.
For larger area, GWPSO>WCMFO, and initially PSO>WCA.
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