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Abstract: Classification is one of the data mining processes used to predict pre-
determined target classes with data learning accurately. This study discusses data
classification using a fuzzy soft set method to predict target classes accurately.
This study aims to form a data classification algorithm using the fuzzy soft set
method. In this study, the fuzzy soft set was calculated based on the normalized
Hamming distance. Each parameter in this method is mapped to a power set from
a subset of the fuzzy set using a fuzzy approximation function. In the classifica-
tion step, a generalized normalized Euclidean distance is used to determine the
similarity between two sets of fuzzy soft sets. The experiments used the Univer-
sity of California (UCI) Machine Learning dataset to assess the accuracy of the
proposed data classification method. The dataset samples were divided into train-
ing (75% of samples) and test (25% of samples) sets. Experiments were per-
formed in MATLAB R2010a software. The experiments showed that: (1) The
fastest sequence is matching function, distance measure, similarity, normalized
Euclidean distance, (2) the proposed approach can improve accuracy and recall
by up to 10.3436% and 6.9723%, respectively, compared with baseline techni-
ques. Hence, the fuzzy soft set method is appropriate for classifying data.

Keywords: Soft set; fuzzy soft set; classification; normalized euclidean distance;
similarity

1 Introduction

Nowadays, Big Data is used in Tuberculosis (TBC) patient data in healthcare, stock data in economics
and business fields, and BMKG data (containing weather, temperature, and rainfall data), etc. Data mining is
the process of extracting knowledge from large amounts of data [1], and is done by extracting information
and analyzing data patterns or relationships [2,3].
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Classification is one of the data mining processes used to predict predetermined target classes with data
learning accurately. The classification has been used in health [4–6], economics, and agriculture fields [7,8].
Classifying data is challenging and requires further research [9].

In 1965, Zadeh [10] introduced a fuzzy set in which each element object had a grade of memberships
ranging between zero and one. In comparison, Molodtsov [11] introduced soft set theory to collect
parameters from the universal set subsets (set U). Soft set theory is widely used to overcome the presence
of elements of uncertainty or doubt, such as those found in decision-making. Roy developed fuzzy soft
set theory by combining soft set theory and fuzzy set theory. This theory was then used in decision-
making problems [12,13]. Majumdar and Samanta [14] presented a fuzzy soft set for similarity
measurement between two generalized fuzzy soft sets for decision-making.

The fuzzy soft set, an extension of the classical soft set, was introduced by Maji [15]. There have been
many works about fuzzy soft set theory in decision-making. Ahmad et al. [16] defined arbitrary fuzzy soft
union and fuzzy soft intersection and proved Demorgan laws using fuzzy soft set theory. Meanwhile, Aktas
and Cagman [17] studied fuzzy parameterized soft set theory, related properties, and decision-making
applications. Rehman et al. [18] studied some fuzzy soft sets’ operations and gave fuzzy soft sets the
fundamental properties. Finally, Celik et al. [19] researched applications of fuzzy soft sets in ring theory.

The critical issue in fuzzy soft sets is the similarity measure. In recent years, similarity measurement
between two fuzzy soft sets has been studied from different aspects and applied to various fields, such as
decision-making, pattern recognition, region extraction, coding theory, and image processing. For
example, similarity measurement [20] has been researched in fuzzy soft sets based on distance, set-
theoretic approaches, and matching functions. Sut [21] and Rajarajeswari [22] used the notion of the
similarity measure in Majumdar and Samanta [20] to make decisions. Several similarity measurement
[23] based on four types of quasi-metrics were introduced to fuzzy soft sets. Sulaiman [24] researched a
set-theoretic similarity measure for fuzzy soft sets, and applied it to group decision-making. However,
some studies haphazardly investigated the similarity measurement of fuzzy soft sets based on distance,
resulting in high computational costs [20,23]. Feng and Zheng [25] showed that the similarity measure
based on the Hamming distance and normalized Euclidean distance in the fuzzy soft set is reasonable.
Thus, the similarity of generalized normalized Euclidean distance is applied in the present paper to a
fuzzy soft set for classification. The similarity is used to classify the label of data. The experimental
results show that the proposed approach can improve classification accuracy.

2 The Proposed Method/Algorithm

This section presents the basic definitions of fuzzy set theory, soft set theory, and some useful definitions
from Roy and Maji [12].

2.1 Fuzzy Set

Definition 2.1 [10] Let U be a universe. A fuzzy set A over U is a set defined by a function

lA : U ! ½0; 1� (1)

where lA is the membership function of A, and the value lA (x) is the membership value of x 2 U. The value
represents the degree of x belonging to the fuzzy setU. Thus, a fuzzy set A overU can be represented as in (2).

A ¼ lAðxÞ j x 2 U ; lAðxÞ 2 ½0; 1�f g (2)

The notion that the set of all the fuzzy sets over U was denoted by F(U).
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Definition 2.2 [10] Let A be a fuzzy set, where A 2 F(U). Then, the complement of A is as in (3)

Ac ¼ lA
cðxÞ j x 2 U ; lA

cðxÞ ¼ 1� lAðxÞf g (3)

Definition 2.3 [10] Let A, B be the fuzzy set, where A, B 2 F(U). The membership degree of union of A
and B is denoted by lA [ B(x):

lA [ BðxÞ ¼ max mAðxÞ; mBðxÞf g; (4)

for all x 2 U and lA [ B(x) 2 [0,1].

Definition 2.4 [10] Let A,B be the fuzzy set, where A,B 2 F(U). The membership degree of intersection
of A and B is denoted by lA\B xð Þ:
lA\B xð Þ ¼ min lAðxÞ; lBðxÞf g; (5)

for all x 2 U and lA [ B(x) 2 [0,1].

2.2 Fuzzification

Fuzzification is a process that changes the crisp value to a fuzzy set, or a fuzzy quantity into a crisp
quantity [26]. This process uses the membership function and fuzzy rules. The fuzzy rules can be formed
as fuzzy implications, such as (x1 is A1) ° (x2 is A2) ° … ° (xn is An); then Y is B, with ° being the
operator “AND” or “OR”. B can be determined by combining all antecedent values [14].

2.3 Fuzzy Soft Set (FSS)

Definition 2.5 [12] Let U be an initial universe set and E be a set of parameters. Let P(U) denote the
power set of all fuzzy subsets of U, and A ⊆ E. ΓA is called a fuzzy soft set over U, where the function of
cA is a mapping given by cA : A ! P Uð Þ such that cA eð Þ ¼ [ if e =2 A:

Here, the function cA is an approximate function of the fuzzy soft set �A, and the value cA eð Þ is called
an e-element of a fuzzy soft set for all e =2 A. Fuzzy soft set �A over U can be represented by the set of
ordered pairs:

�A ¼ f e; cA eð Þð Þje 2 A; cA eð Þ 2 P Uð Þg: (6)

Note that the set of all the fuzzy soft sets over U was denoted by FS(U).

Example 1 [14] Let a fuzzy soft set �A describe the attractiveness of the shirt concerning the given
parameters, which the authors are going to wear. U ¼ u1; u2; u3; u4; u5f g is the set of all shirts under
consideration. P Uð Þ be the collection of all fuzzy subsets of U . Let E = {e1 = “colorful”, e2 = “bright”,
e3 = “cheap”, e4 = “warm”}. If A ¼ e1; e2; e3f g can be the approximate value of the function fuzzy,

γA (e1) = {0.5|u1, 0.9|u2},

γA (e2) = {1|u1, 0.8|u2, 0.7|u3},

γA (e3) = {1|u2, 1|u5}.

The family {γA (ei); i = 1,2,3} of P(U) is then a fuzzy soft set �A. The tabular representation for fuzzy
soft set �A is shown in Tab. 1.

Definition 2.6 [14] Let ΓA, ΓB 2 FS(U). ΓA is a fuzzy soft subset of ΓB, denoted by ΓA ⊆ ΓB, if γA(e) ⊆
γB(e) for all e 2 A, A ⊆ B.

Definition 2.7 [14] Let ΓA, 2 FS(U). The complement of fuzzy soft set ΓA is denoted by ΓA
c such that

cAc eð Þ ¼ ccA eð Þ for all e 2 A.
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Definition 2.8 [14] Let ΓA, ΓB 2 FS(U). The union of ΓA and ΓB is denoted by ΓA∪B(e) = γA(e) ∪ γB(e) for
all e 2 A ∪ B e 2 A [ B:

Definition 2.9 [14] Let ΓA, ΓB 2 FS(U). The intersection of ΓA and ΓB is denoted by ΓA∩B(e) = γA(e) ∪
γB(e) for all e 2 A ∪ B e 2 A \ B:

Definition 2.10 [14] Let ΓA, 2 FS(U). The cardinal set of ΓA, denoted by cΓA, can be defined by
cΓA = {µ cΓA (e)|e:e 2 A}, where membership function µ cΓA of cΓA is defined by

c�A : E ! 0; 1½ � (7)

l c�A
eð Þ ¼ lA eð Þj j

Uj j : (8)

Uj j is the cardinality of universe U , and

jlA eð Þj ¼
X

u2U lcA eð Þ uð Þ: (9)

The set of all cardinal sets of fuzzy soft set over U can be denoted by cFS Uð Þ:

2.4 Classification

Classification involves learning a target function that maps each collection of data attributes to several
groups of predefined classes. The purpose of the classification is to see the class’s target predictions as
accurate as possible for each case in the data. The classification algorithm consists of two stages. In the
training stage, the classifier is trained on predefined classes or data categories. An X tuple, represented by
the n-dimensional vector attribute, X ¼ x1; x2; . . . ; xNf g, describes by the measurements made on the
tuples with n attributes A1;A2; . . . ; AM . Each tuple belongs to a class, as identified by its attributes. Class
attribute labels have discreet, non-consecutive values, and each value acts as a category or class. Next,
the second step is Classification. In this step, the built-in classifier was used to classify the data by
looking at the classification algorithm’s accuracy in the estimated data testing. The step is to see the
accuracy in the first classification; the predicted classifier’s accuracy is estimated. If using a training set to
measure the classifier’s accuracy, then the estimate would be optimal because the data used to form the
classifier comprise the training set. Therefore, a test set (a set of tuples and their class labels selected
randomly from the dataset) were used. Test sets are independent of the training sets because test sets were
not used to build a classifier.

2.5 Similarity Measurement

A measurement of similarity or dissimilarity defines the relationships between samples or objects.
Similarity measurements were used to determine which patterns, signals, images, or sets are alike. For the

Table 1: The representation of the fuzzy soft set ΓA

U/A e1 e2 e3

x1 0.5 1 0

x2 0.9 0.8 1

x3 0 0.7 0

x4 0 0 0

x5 0 0 0.3
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similarity measure, the resemblance is more critical when its value increases, but, conversely, for a
dissimilarity measurement, the resemblance is more robust when its value decreases [27]. An example of
the dissimilarity measure is a distance measure. Measuring similarity or distance between two entities is
crucial in various data mining and information discovery tasks, such as classification and clustering.
Similarity indicators calculate the degree that various patterns, signals, images, or sets are alike. A few
researchers have measured the similarity between fuzzy sets, fuzzy numbers, and vague sets. Recently
[14,20,28] studied the similarity measure of the soft set and fuzzy soft set. They explained the similarity
between the two generalized fuzzy soft sets as follows.

Let U ¼ x1; x2; . . . ; xnf g be the universal set of elements and E ¼ e1; e2; . . . ; emf g be the universal
set of parameters. Let Fq and Gd be two generalized fuzzy soft sets over the parameterized universe U ;Eð Þ:
Hence, Fq ¼ F eið Þ; q eið Þ; i ¼ 1; 2; . . . ;mf g and Gd ¼ G eið Þ; d eið Þ; i ¼ 1; 2; . . . ;mf g. Thus,
F ¼ F eið Þ; i ¼ 1; 2; . . . ; mf g and G ¼ G eið Þ; i ¼ 1; 2; . . . ; mf g are two families of fuzzy soft sets.

The similarity between F and G is found and denoted by M(F,G). Next, the similarity between the two
fuzzy sets q and d is found and denoted by m (q,d). Then, the similarity between the two generalized fuzzy
soft sets Fq and Gd is denoted as S(Fq,Gd) = M(F,G) � m(q,d).

Therefore, M (F, G) = max Mi (F,G), where:

Mi F�;G�ð Þ ¼ 1�
Pn

j¼1 F�ij � G�ij

�� ��Pn
j¼1 F�ij þ G�ij

� � : (10)

Furthermore,

m q; dð Þ ¼ 1�
Pn

j¼1 qi � dij jPn
j¼1 qi þ dið Þ : (11)

If we use the universal fuzzy soft set, then q ¼ d ¼ 1 and m(q,d) = 1. Now, the formula for similarity is

S Fq;Gd
� � ¼ Mi F�;G�ð Þ ¼ 1�

Pn
j¼1 F�ij � G�ij

�� ��Pn
j¼1 F�ij þ G�ij

� � : (12)

Example 2. In this example, U ¼ x1; x2; x3; x4f g and E ¼ e1; e2; e3f g. Let there be two generalized
fuzzy soft sets over the parameterized universe U ;Eð Þ.

Here,

m q; dð Þ ¼ 1�
P3

i¼1 qi � dij jP3
i¼1 qi þ dið Þ ¼ 1� 0:1þ 0:1þ :05

1:1þ 1:5þ 1:3
¼ 0:82

and M1(F,G) ≅ 0.73; M2(F,G) ≅ 0.43; M3(F,G) ≅ 0.50. Thus, max [ Mi(F,G) ] ≅ 0.73.

Hence, the similarity between the two GFSS Fq and Gd were S(Fq,Gd) = M(F,G) � m(q,d) = 0.73 �
0.82 = 0.60 for a universal fuzzy soft set, where q ¼ d ¼ 1 and m(q,d) = 1. Then, the similarity S
(Fq,Gd) = 0.73.

2.6 Distance Measurement

In this study, the fuzzy soft set was calculated based on the normalized Hamming distance [25].
We assume fuzzy soft sets (F,A) and (G,B) have the same set of parameters, namely, A = B. The
normalized Hamming distance and normalized distance in Fuzzy Soft Set (FSS) are obtained using
Eqs. (13) and (14).
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d1 F;Að Þ; G;Bð Þð Þ ¼ 1

mn

Xm

i¼1

Xn

j¼1
F eið Þ xj

� �� G eið Þ xj
� ��� �� (13)

d2 F;Að Þ; G;Bð Þð Þ ¼ 1

mn

Xm

i¼1

Xn

j¼1
F eið Þ xj

� �� G eið Þ xj
� ��� ��2� �1

2
(14)

Example 3. As in Roy and Maji [12], let U = {u1, u2, u3} be a set with parameters ¼ a1; a2; a3f g. Two
FSS G;Að Þ and H ;Að Þ are represented by Tabs. 2 and 3, respectively.

Using Eqs. (13) and (14), respectively, the normalized Hamming distance and normalized distance in
FSS between G;Að Þ and H ;Að Þ can be calculated as follows:

d1 G;Að Þ; H ;Að Þð Þ ¼ 1

3� 3

X3
i¼1

X3
j¼1

0:2þ 0:1þ 0:1þ 0:2þ 0:1þ 0þ 0:3þ 0:1þ 0:2ð Þ � 0:144

and

d2 F;Eð Þ; G;Eð Þð Þ ¼ 1

3�3

X3

i¼1

X3

j¼1
0:22þ0:12þ0:12þ0:22þ0:12þ02þ0:32þ0:12þ0:22
� �1

2 � 0:056

.
Feng and Zheng [13] extended Eq. (14) into a generalized normalized distance in FSS:

d4 F;Að Þ; G;Bð Þð Þ ¼ 1

m

Xm

i¼1
½1
n

Xn

j¼1
jF eið Þ xj

� �� G eið Þ xj
� �jpÞ1p�; p 2 Nþ: (15)

If p ¼ 1, then Eq. (13) is reduced to Eq. (14).

From Eq. (14), it can be known that

d0 ¼ 1

n

Xn

j¼1
F eið Þ xj

� �� G eið Þ xj
� ��� �� (16)

d0 indicates the distance between the ith parameter of F;Að Þ and G;Bð Þ, and d1 F;Að Þ; G;Bð Þð Þ indicates
the distance among all parameters of F;Að Þ and G;Bð Þ.

Table 2: Fuzzy set G;Að Þ
G;Að Þ a1 a2 a3

u1 0.7 0.8 0.6

u2 0.6 0.7 0.5

u3 0.5 0.8 0.8

Table 3: Fuzzy set H ;Að Þ
H ;Að Þ a1 a2 a3

u1 0.5 0.6 0.9

u2 0.7 0.8 0.6

u3 0.4 0.8 1
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3 Discussion

In this section, the proposed approach and experimental results of the Fuzzy Soft Set Classifier (FSSC)
using the normalized Euclidean distance are discussed.

3.1 Proposed Approach

This study proposed a new classification algorithm based on the fuzzy soft set; we call it the Fuzzy Soft
Set Classifier (FSSC). This algorithm used the normalized Euclidean distance of similarity between two
fuzzy soft sets to classify unlabeled data. Before training and classification steps, we first conducted
fuzzification and created a fuzzy soft set.

3.1.1 Training Step
The goal of training the algorithm is to determine the center of each existing class.

Let U ¼ u1; u2; . . . ; uNf g, E be the set of parameters, A � E; and A ¼ ei; i ¼ 1; 2; . . .Mf g. There are k
classes with nr samples in each class, where r ¼ 1; 2; . . . ; k and

Pk
r¼1 nr ¼ N . Let us say that Cr � U is

r-class data, and �Cr; is the set of fuzzy soft sets of the r-class data. Thus, the center set of class Cr is
denoted as �PCr and be defined as in Eq. (17).

�PCr ¼ c �Cr ¼ lc �Cr eið Þ ¼ cCr
eið Þ

Crj j ¼
Pnr

j¼1 lcCr eið Þ uj
� �

nr

Thus,

�PCr ¼
1

nr

Xnr

j¼1
lcCr eið Þ uj

� �
; 8ei; i ¼ 1; 2; . . . ;m; 8Cr; r ¼ 1; 2; . . . ; k (17)

3.1.2 Classification Step
The new data of the training step results were used to determine the classes in the new data; that is, by

measuring the similarity of two sets of fuzzy soft sets acquired in the class center vector and new data.

Given �Cr ; r ¼ 1; 2; . . . ; k fuzzy soft set of new data �G. The formula for measuring similarity:

similarity measure ¼ 1� disctance measure.

We use the generalized normalized Euclidean distance for normalized Euclidean distance of the fuzzy
set. With relation to Eq. (15), rather than the normalized Euclidean distance fuzzy set,

q A;Bð Þ ¼ 1

m

Xm

i¼1
½1
n

Xn

j¼1
jF eið Þ xj

� �� G eið Þ xj
� �jpÞ1p�; p 2 Nþ: (18)

The generalized normalized Euclidean distance fuzzy soft set is as follows:

Q � �PCr
;�G

� � ¼ 1

m:n

Xm

i¼1

Xnr

j¼1
cPCr

eið Þ xj
� �� cG eið Þ xj

� �� �p� �� �1
p

; (19)

, Q � �PCr
;�G

� � ¼ 1

m:1

Xm

i¼1
cPCr

eið Þ x1ð Þ � cG eið Þ x1ð Þ
� �p� �� �1

p

; (20)

, Q � �PCr
;�G

� � ¼ 1

m

Xm

i¼1
cPCr

eið Þ xð Þ � cG eið Þ xð Þ
� �p� �� �1

p

: (21)
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Thus, the formula for the similarity measure becomes:

S � �PCr
;�G

� � ¼ 1� Q � �PCr
;�G

� �
; (22)

, S � �PCr
;�G

� � ¼ 1� 1

m

Xm

i¼1
cPCr

eið Þ xð Þ � cG eið Þ xð Þ
� �p� �� �1

p

: (23)

After the value the similarity for each class was obtained, the algorithm looked for which class label is
appropriate for new data �G by determining the maximum similarity.

prediction ¼ arg maxkr¼1 S � �PCr
;�G

� �	 

: (24)

3.2 Experimental Results

We conducted experiments using the University of California (UCI) dataset to assess the accuracy of the
proposed data classification method. The dataset samples were divided into training (75% of samples) and
test (25% of samples) sets. Experiments were performed in MATLAB R2010a software. Figs. 1–4 show the
classification results obtained by our fuzzy soft set method and other baseline techniques.

As seen in Fig. 1, calculations using the normalized Euclidean distance method yield the highest
accuracy results. Fig. 2 shows that the normalized Euclidean distance method obtains the second-highest
precision; the highest precision is obtained by the comparison table method in MatLab.

Figure 1: Comparison of accuracy
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Figure 2: Comparison of precision

Figure 3: Comparison of recall
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Fig. 3 shows that the normalized Euclidean distance method produces the highest recall results, whereas
Fig. 4 illustrates that the method has the highest computation time.

The fastest sequence is matching function, distance measure, similarity, normalized Euclidean distance.
Comparisons are shown in Tab. 4.

4 Conclusions

In this study, a new classification algorithm based on fuzzy soft set theory was proposed. Experimental
results show that the normalized Euclidean distance method improves accuracy by 10.3436% and increases
by 6.9723%, compared to baseline techniques. We also find that all similarity measurements proposed in this
paper are reasonable.

Funding Statement: The authors received no specific funding for this study.

Figure 4: Comparison of computational time

Table 4: Improvement of accuracy and recall

Comparison
Table

Similarity Distance
Measure

Matching
Function

Normalized
Euclidean Distance

Improvement

Accuracy 0.6580 0.6688 0.6671 0.6689 0.7380 10.3436 %

Recall 0.6986 0.7212 0.7221 0.7222 0.7725 6.9723 %
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