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ABSTRACT

Freezing in ice rubble is a common phenomenon in cold regions, which can consolidate loose blocks and change
their mechanical properties. To model the cohesive effect in frozen ice rubble, and to describe the fragmentation
behavior with a large external forces exerted, a freeze-bondmodel based on the dilated polyhedral discrete element
method (DEM) is proposed. Herein, imaginary bonding is initialized at the contact points to transmit forces and
moments, and the initiation of the damage is detected using the hybrid fracture model. The model is validated
through the qualitative agreement between the simulation results and the analytical solution of two bonding
particles. To study the effect of freeze-bond on the floating ice rubble, punch-through tests were simulated on
the ice rubble under freezing and nonfreezing conditions. The deformation and resistance of the ice rubble are
investigated during indenter penetration. The influence of the internal friction coefficient on the strength of the
ice rubble is determined. The results indicate that the proposed model can properly describe the consolidated ice
rubble, and the freeze-bond effect is of great significance to the ice rubble properties.
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1 Introduction

Ice rubble is very common in cold regions; it consists of broken ice formed by the deforma-
tion, aggregation, and stacking of the floating ice sheet under the driving force of wind, wave, and
current. Ice rubble can be defined as an “ice ridge” in lakes, seas, and oceans and an “ice jam” in
rivers [1]; it could pose as a potential threat to bridge piers, lighthouses, pipelines, offshore wind
turbines, and navigation system [2–4]. As ice blocks pile up in a relatively static state in the cold
air and supercooling water, the interstitial water between the blocks can freeze and form a solid
ice crust [5,6], which can consolidate the loose ice blocks, resist their relative movement, and alter
the global mechanical performance of the ice rubble. The evaluation of the mechanical properties
of ice rubble, whether consolidated or not, is a crucial problem that has attracted considerable
attention.
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Since the beginning of the seventies some investigations have been conducted on ice rubble
and the effects of freeze-bonding on ice rubble. Laboratory and in-situ tests are two mainstream
approaches at an early stage. The initial tests performed in laboratories were direct shear box
tests [7–9]. Subsequently, biaxial shear tests [10–13], triaxial shear tests [14,15] and punch-through
tests [16–18] have been conducted. Based on laboratory tests, an elastic-perfectly plastic model
based on the Mohr–Coulomb law was proposed to describe ice rubble behavior [19,20]. Further-
more, in-situ punch-through experiments can provide reliable information about the properties and
failure of ice rubble under actual environmental conditions [21–24].

To simulate ice rubble, the finite element method (FEM) and discrete element method (DEM)
have mainly been used over the years. In FEM, ice rubble is modeled as a continuum and a
homogeneous material. FEM has been successfully used in the simulation of punching tests of
ice rubble [23,25–27]. However, as ice rubble is modeled as a continuum, FEM cannot provide
detailed granular properties of the rubble, and there is uncertainty in determining whether there
are enough blocks to consider the rubble as a continuum [28]. The DEM was developed by
Cundall et al. [29] and was introduced by Hopkins and Hibler into ice simulations [30–32]. In the
DEM, large deformations and discontinuous properties of ice can be modeled using the movement
of individual ice blocks within it [33]. In addition, owing to its good performance in modeling
the continuous breakage of ice, DEM has wide applications in ice engineering, e.g., ice ridge
property experiments [34,35], interaction of ice with ships [36–38], and offshore structures [39–42].
Furthermore, the coupled FEM-DEM or FDEM provides a new alternative for analyzing the
breaking process, in which the FEM is used to calculate the deformation of individual particles,
while DEM is used for modeling the contact and movement of the particles or fragments [43,44].
This method has been successful in replicating the freeze bonding between individual rubble blocks
in ice ridges in a two-dimensional space [28]. However, the FEM calculation for each DEM
particle requires additional computation, which limits its application in practical engineering.

In this study, a freeze-bond model based on the dilated polyhedral DEM was proposed, in
which the initialization of the bonds between individual particles is emphasized. The model was
validated through several fundamental examples and then applied to simulate the freeze-bond
effect on ice rubble.

2 Freeze-Bond Model Based on Dilated Polyhedral DEM

For modeling ice rubble consisting of arbitrary shapes of ice blocks, a dilated polyhedral
element was constructed based on the Minkowski sum theory. To describe the freeze bonding
between ice blocks and random pores in ice rubble, a new bond model was developed, inherited
from the “interface-based” bond model and applied to simulate the breaking process of void-free
material [45,46].

2.1 Dilated Polyhedral Element
The dilated polyhedral element was constructed using an arbitrary polyhedron dilated by a

sphere element based on the Minkowski sum theory, as shown in Fig. 1 and formulated as [47]

A⊕B= {�x+ �y|�x ∈A, �y ∈B} , (1)

where A represents a polyhedron and B represents a sphere. The Minkowski sum theory essentially
indicates sweeping one geometric feature around the surface of another geometric feature; for
a dilated polyhedron, the theory indicates sweeping a sphere over the surface of a polyhedron.
Through dilatation, the conventional vertices and edges of the polyhedron are transformed into
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spherical and cylindrical surfaces of the dilated polyhedron, allowing the easy and efficient
detection of the contact between two elements.

Figure 1: Dilated polyhedron constructed from a polyhedron and a sphere

Based on the theory on potential particles, the dilated polyhedron can be represented by
approximate envelope function, which can be obtained by the weighted summation of the func-
tions of polyhedron and sphere [48]. The second-order dilated function of the polyhedron can be
expressed as:

f (x,y, z)=
N∑
i=1

〈aix+ biy+ ciz −di〉2− r2, (2)

where (ai, bi, ci) is the unit normal vector of the face i on the polyhedron; N is the total number
of faces in the polyhedron; 〈 〉 is the Macaulay bracket, 〈x〉 = x,x > 0; 〈x〉 = 0,x ≤ 0; di is the
distance of the coordinate origin to face i; r is the dilated radius. Accordingly, the approximate
envelope function is given by:

f (x,y, z)= (1− k)

(
N∑
i=1

〈aix+ biy+ ciz −di〉2
r2

− 1

)
+ k

(
x2 + y2+ z2

R2 − 1
)
, (3)

where k is the weighting coefficient and R is the radius of the spherical function. The geometric
shape represented by the function can approach the dilated polyhedron when k varies from 1 to
0.001. Therefore, it is assumed that the approximate envelope function can represent the dilated
polyhedron when k reaches to 0.001.

In addition, the particle shape represented by the approximate envelope function belongs
to “potential particle” so the contact detection for the contact center between two adjacent
elements A and B can be solved by the optimization model between their respective functions.
The corresponding non-linear equations based on the optimization algorithm can be expressed as:⎧⎨
⎩

(1+λ)∇fA(X)+ (1−λ)∇fB(X)= 0

fA(X)− fB(X)= 0
(4)

where X = (x, y, z)T and λ is the Lagrange multiplier, fA and fB are the approximate envelope
function of particles A and B, respectively. The Newton-Raphson method is used to solve the
system of Eq. (4).

The initial point X0 is selected as the contact center between two minimum envelope spheres
of each dilated polyhedron, which are expressed as:

X0 = RBXOA+RAXOB

RA+RB
, (5)
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where XOA and XOB are the mass center of each element, respectively; and RA and RB are the

radii of the minimum envelope sphere of the elements. New initial points X
′
0 is obtained by

Newton-Raphson iterations with the point X0, while the weighting coefficient k changes from 1 to
0.001. It can be used as the initial point in solving Eq. (4). For more details about the calculation
of the overlap between dilated polyhedron elements, please refer to [48].

In the numerical simulation based on dilated polyhedron DEM, a given element has transla-
tional and rotational motions, which are calculated by the Newton’s second law of motion:

mi
dvi
dt

=
∑Nc

j=1
(Fc)+

∑Nb

j=1
(Fb)+Fe, (6)

I i
dωi

dt
=
∑Nc

j=1
(Mc)+

∑Nb

j=1
(Mb)+Me, (7)

where mi, I i, vi, and ωi are the mass, inertia tensor, translation velocity, and angular velocity of
element i, respectively; Fc, Fb, Mc, Mb are the contact force, bond force and their corresponding
torques; Nc and Nb are the total number of particles in contact with element i and the total
number of particles in bond with element i. Fe and Me are the forces and torques induced by
external force.

2.2 Contact Model
Contact overlap and direction must be determined through DEM calculation. Liu et al. [48]

proposed an approximate envelope function derived from the weighted summation of the second-
order dilated function of polyhedral and spherical functions to represent dilated polyhedral.
Thereby, the contact center can be determined using the optimization model between the approx-
imate envelope functions of the two adjacent elements.

The Hertzian model, which exhibits good performance for nonspherical materials, was applied
to calculate the contact force. Normal force Fn consists of normal elastic force Fen and viscous
force Fvn, which are expressed as:

Fen = knδ
3
2
n δ

3
2 , (8)

Fvn =−cn
√
|δn|δ̇n, (9)

where kn is the normal contact stiffness, kn = 4E∗√r∗/3, E∗ =E/2(1−ν2), r∗ = rirj/(ri+ rj), and ri
and rj are the dilated radii; E and ν are the Young’s modulus and Poisson’s ratios, respectively; δn

and δ̇n are the normal overlap and relative normal velocity, respectively; cn is the normal damping

coefficient, cn = ζn
√
mijkn and ζn = − lne/

√
π2+ ln2 e; e is the restitution coefficient; mij is the

equivalent mass of two particles mi and mj; mij =mimj/(mi+mj).

The tangential contact force, Ft, includes elastic force Fet and viscous force Fvt , which are
expressed as follows:

Fet =μ
∣∣Fen∣∣

[
1−

(
1− δt

δmax
t

)]
t, (10)

Fvt = ct

√
6μmij

∣∣Fen∣∣√1− δt/δ
max
t

δmax
t

δ̇t, (11)
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where μ and t are the friction coefficient and unit direction vector, respectively; δt and δ̇t are the
tangential relative displacement and velocity, respectively; δmax

t is the maximum overlap in shear
that characterizes the maximum tangential friction, δmax

t =μδn(2− ν)/(2− 2ν); ct is the damping
coefficient in the tangential direction, ct = cn/2(1+ ν).

2.3 Freeze-Bond Model
Because freeze bonding is generated at the contact positions between the ice blocks, a freeze

bonding model was developed to connect the contact points of two particles that resist relative
motion and rotation. As shown in Fig. 2, to sinter two particles, contact points P and P′ of
two particles DP1 and DP2 are used to form a bond at the initialization step. Points Pc and P′

c
are the midpoints of P and P′, respectively, and are fixed on the local coordinates of particles
DP1 and DP2, respectively. Subsequently, two imaginary bonding surfaces (face ABCD and face
A′B′C′D′) are established at points Pc and P′

c, respectively, which are perpendicular to the line
PP′. Points A,B,C, and D are four evenly distributed points centered at Pc on the bond face.
Similarly, points A′,B′,C′, and D′ are centered at point P′

c. Points A,B,C,D, A
′,B′,C′, and D′,

called as bond points, are correspondingly coincident at the initial state and deform with the
movement of their own particles. ni and nj are the outer normal vectors of each bond face and
are initially in opposite directions.

Figure 2: Bond model based on arbitrary contact

Cohesion between the two adjacent particles is established by the four sets of points, i.e.,
A–A′, B–B′, C–C′, and D–D′. The normal and shear forces are calculated based on the changes
in their relative positions. Ultimately, the forces on the bond points are transferred to the mass
centers (points O and O′) of the elements.

The normal strain can be obtained from the variation in the relative position of the bond
point [46], which can be expressed as:

εbn =
d · n
Lij

, (12)
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where d is the distance vector between two bond points; n is the normal vector of the bond face,
which can be written as: n= (ni−nj)/

∣∣ni− nj
∣∣; Lij is the characteristic length that can be described

as: Lij = hi + hj, where hi and hj are the distances from the particle centers (points Oand O′) to

the imaginary bond faces, hi =OPc · ni, hj =OP
′
c · nj.

The shear strain can be expressed as:

εt = |d− (d · n)n|
Lij

, (13)

where the tangential strain is in the plane of the imaginary bond face and is perpendicular to the
normal strain of the element.

The elastic stress of the two bond points is obtained from the three-dimensional elastic
matrix [46], which is derived using the rigid finite element method, and it can be expressed as

σ be =
[
kbn 0

0 kbs

]
εb= E(1− ν)

(1+ ν)(1− 2ν)

⎡
⎢⎣
1 0

0
1− 2ν
2(1− ν)

⎤
⎥⎦εb, (14)

where σ be consists of normal and tangential parts, i.e., σ be = {σ b τ b
}T

and εb = {εbn εbt
}T

.

Viscous stress is introduced to dissipate the kinetic energy and provide stability to the
simulation; it can be expressed as:

σ bv =
[
cbn 0

0 cbs

]
ε̇b= β

[
kbn 0

0 kbs

]
ε̇b, (15)

where ε̇b is the strain rate, which can be calculated using the relative velocity of the bond point,

ε̇b = {
ε̇bn ε̇bt

}T
. cbn and cbs are the damping coefficients in the normal and tangential directions,

respectively, which can be determined from the scalar constant β related to the stiffness.

The bond force between the two bond points can be calculated as:

Fb = (σ be + σ bv ) · A
N
, (16)

where A is the area of the imaginary bond face and N is the number of bond points on the
imaginary bond face. Ultimately, all forces at the bond points are transferred to the mass center
of the particle, and the corresponding resultant force and moment transmitted by the bond model
can be determined. In this way, the torsional behavior can be indirectly characterized through
the in-plane shear deformation of four adhesive points. Similarly, the bending behavior can be
characterized through the resultant force of the stretching and compression of bond points.

Notably, the area of the imaginary bond face and the number of bond points can directly
determine the force and moment transmitted between the bonded elements. It is more scientific
to set up the bond face area and bond points based on the freezing degree, which is related to
the temperature and freezing time. However, few studies have been conducted on the quantitative
relationship between the micro freeze bonding strength of the two blocks and the environmental
conditions. Here, the bond face was simplified as a circular surface, and the radius of the circular
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face was consistent with the dilated radius. Furthermore, four bonding points were uniformly
distributed on the circumference of the circle.

To model the fracture of the bond, a hybrid fracture criterion considering both tensile
and shear failure is applied [49], which avoids the disadvantage of the traditional criterion that
implements separate detection for tensile and shear failure [50]. In the hybrid fracture criterion,
the criteria of failure for normal and tangential directions are unified as:(〈

σ b
〉

ft

)2

+
(

τ b

fs

)2

≥ 1, (17)

where 〈 〉 is the Macaulay bracket, which indicates that if σ b > 0,
〈
σ b
〉= σ b, and if σ b < 0,

〈
σ b
〉= 0,

which indicates that compression does not affect the damage; ft and fs are the normal and shear
strengths of the bond between the bonded points, respectively. Based on the failure model of
sea ice, tensile and shear failure may happen in tensile status, while shear failure may happen in
compressive status. The hybrid fracture criterion represents the stress state at failure, as shown in
Fig. 3.

In the failure model, the normal strength is set as a constant, while the shear strength is
controlled by normal stress based on the Mohr–Coulomb criterion, which can be expressed as:

fs =
⎧⎨
⎩
C−μbσ

b if σ b < ft

C−μbft if σ b ≥ ft
, (18)

where C is the internal cohesion and μb is the internal friction coefficient. This indicates that
compression causes a large shear strength while stretch causes a small shear strength.

Figure 3: Hybrid failure criterion determined using normal and shear strengths

3 Validation and Analysis

The freeze bonding of the elements can transmit tension, compression, shear, bending
moment, and torque. Furthermore, the motion of the elements in the bonding state should be
relatively stable. Because it is difficult to identify a quantitative analysis solution for multiple
elements, the bond model was validated by testing the motion of two bonded elements.
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3.1 Motion Test of Bonded Elements
Two elements, bonded together as shown in Fig. 4, were used to simulate their movements,

and one of them was subjected to an external force and moment. Three cases were considered
corresponding to the transmissions of compression, tension, and torque. The external force and
moment were perpendicular to the surface and passed through the centers of the two particles.
The translational displacement and rotation angle in the moving process were recorded to verify
whether the bond force transferred by the bond was corrected. The analytical solutions of the
translational displacement and rotation angle of the particles were obtained according to the

function as x= 1
2

(
F
m

)
t2 and θ = 1

2

(
M
J

)
t2, where m and J are the mass and moment of inertia,

respectively. The comparison of the simulation results and analytical solutions is shown in Fig. 5,
indicating that the simulation results are in good agreement with the analytical solutions.

Figure 4: External force on elements with face to face contact

Figure 5: Simulation results and analytical solutions for the elements with face to face contact
(a) Translational displacement (b) Rotation angle

The postures of the two cubic elements were adjusted such that one vertex of one element was
in contact with one vertex of another and their main diagonals were on the same line, as shown
in Fig. 6. Similar cases were conducted to validate the bond model. The simulation results are
shown in Fig. 7. These cases illustrate the effectiveness of the bond model under the vertex–vertex
contact condition.
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Figure 6: External force on elements with vertex to vertex contact

Figure 7: Simulation results and analytical solutions for the elements with vertex to vertex contact
(a) Translational displacement (b) Rotation angle

3.2 Impact between the Bonded Elements and Wall
The bonding effect can sinter two elements together. For a proper bond model, no difference

should exist between a single element and the bonded elements with the same geometrical features
in the simulation. To validate the bond model, simulations of particles impacting on a flat static
wall were conducted, where one particle was made up of a single element and another was
made up of two elements bonded together, as shown in Fig. 8. The bond strength was set to
a large value such that the bond did not break. No gravity and friction were considered when
the polyhedral particles impacted the wall with a vertical downward translational velocity v−z .
The analytical solutions of the rebound translational velocity v+y and angular speed ω+

y can be
expressed as [51]:

v+z =ω+
y r cos (α+ θ)− ev−z , (19)

ω+
y = mv−z (1+ e)r cos(α+ θ)

Iyy+mr2 cos2(α+ θ)
, (20)

where m is the mass of the particle; e is the restitution coefficient; α and θ are the angles between
the diagonal and edge and the edge and wall, respectively, as shown in Fig. 8; Iyy is the moment
of inertia about the y-axis; r is the distance between the center of the face and the corner of the
face, as shown in Fig. 8. The simulation parameters are listed in Table 1.

The impact angles varied from 2◦ to 88◦. For each impact angle (θ), the dimensionless
rebound transitional velocity (v+z /v−z ) and angular velocity (r ω+

y /v−z ) were calculated using the
DEM, and a comparison with the analytical solutions is shown in Fig. 9. The results show that
the bonded element corresponds with the single element, and the results also agree well with the
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analytical solution. The slight difference was possibly caused by the kinetic energy loss due to the
deformation and damping of the bond in the calculation and can be neglected.

Figure 8: Sketches of single element and bonded elements impacting on the wall

Table 1: DEM simulation parameters for polyhedral impact

Definitions Symbols Values

Element size Ai (m3) 1.0 × 1.0 × 2.0, 1.0 × 1.0 × 1.0
Dilated radius rd (m) 0.1
Mass m (kg) 1056.38
Moment of inertia Iyy (kg·m2) 341.6
Poisson’s ratio ν 0.3
Restitution coefficient e 0.9
Pre-impact translational velocity v−z (m/s) −1.0

Figure 9: Dimensionless speed obtained from the analytical and simulation results (a) Translational
speed (b) Angular speed



CMES, 2022, vol.130, no.1 11

3.3 Failure of Bonded Elements
Two cases were considered to determine the failure behavior of the bond. Two cubic elements

(1.0 × 1.0 × 1.0 m3) were bonded together in the simulation; one was fixed, and the other applied
tensile and shear forces, increasing linearly from zero. Since the freeze-bond effect is applied at the
contact point, which is obtained by the optimization model based on the approximate envelope
function and has avoided the complex geometric computations of the traditional contact detection
approach. The vertex-face bond, edge-face bond and vertex-edge bond are all actually point-point
bond, and have no essential difference. Consequently, only the failure modes of bonds created on
the contact faces of two dilated polyhedrons are verified here. The parameters considered in the
simulation were: normal bonding strength ft = 0.6MPa, internal cohesion C= 1.8MPa, and bond
area = 0.1 m2. Since bending and torsional failures are essentially due to tensile or shear forces
reaching the strength, only pure tensile and pure shear simulations were studied here. Fig. 10
shows the time-history curve of the force transmitted by the bond during loading, where the
results agree with the fracture criterion mentioned in Eqs. (17)–(18).

Figure 10: Force history during bonding failure (a) Tension (b) Shear

4 Simulation of the Punch-through Test of Ice Rubble

In order to study the effect of freezing on the mechanical properties of ice pile, the punch-
through tests of consolidated and unconsolidated ice-rubble piles were simulated by the freeze-
bond model of dilated polyhedral DEM.

4.1 Simulation Setup of Punch Test
The simulation setup refers to previous works on field punch-through experiments [23,52,53]

and numerical simulation. Fig. 11 shows the simulation of the punch-through test of ice rubble.
The model set consists of three parts: an indenter platen, consolidation layer, and ice rubble. The
consolidated layer was like a boundary covering over the ice rubble and consisted of one-layer
static ice blocks of 1.8 m × 1.8 m × 0.4 m, with the bottom fixed at z=−1 m. A circular hole
was provided at the center for the indenter to press down. An ice-rubble pile floated under the
consolidated layer. To construct the ice rubble, two sizes of ice blocks were used, 1.8 m × 1.8 m
× 0.4 m and 0.6 m × 0.6 m × 0.4 m. A circular flat indenter with a diameter wI was moved
down vertically into the ice rubble, its reactive force F and displacement δ were recorded, and the
buoyancy on the indenter was ignored.

Initially, the bottom of the indenter was slightly higher than the bottom of the consolidated
layer, trying not to touch the ice blocks. A total of 4,404 ice blocks of two sizes with random
positions, orientations, and translational and rotational velocities were released underwater in
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a pool of 40 m × 40 m and allowed to float with their buoyancy until they remained static
beneath the consolidated layer. Fig. 12 shows the initial state of the DEM simulation, where the
red portion represents the consolidated layer and the ice rubble mass is displayed in green and
blue layers according to the vertical position for better display of the relative movement of ice
blocks. The initial thickness of the ice rubble was h= 4 m, and the length and width were l =
w = 40 m. The ice rubble is surrounded by four vertical fixed walls, whose friction coefficients
are set as zero. The rubble length and width are enough to ensure that the punching process and
force exerted on the wall were not affected by wall constraints. The porosity of the initial ice
rubble was approximately 51.55%, and the main parameters of the simulation are listed in Table 2.
Following the work of Heinonen [23], the indenter had a diameter of 4 m and thickness of 1.0
m and moved downward vertically with a constant velocity of 0.01 m/s.

Figure 11: Sketch of punch-through test for ice rubble

Figure 12: DEM model of punch-through test

4.2 Punch-through Test of the Unconsolidated Ice Rubble
The effect of freezing on the mechanical properties of ice rubble was studied by comparing

the punch-through test results of the unconsolidated and consolidated ice rubble. This section
presents the results for unconsolidated ice rubble; the process is shown in Fig. 13, and the friction
coefficient used is 0.03. As the indenter penetrated, the ice blocks beneath the indenter were
squeezed, resulting in their vertical downward displacement, and the ice blocks near the edge of
the indenter also slipped.

Fig. 14 shows the force–displacement curve of the indenter from the simulation of the uncon-
solidated ice rubble. According to the characteristics of the curve, the punch-through test was
divided into four stages:
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Table 2: Parameters of the punch-through test simulation

Definitions Symbols Value

Ice block number N 4044
Element size Ai (m2) 1.8 × 1.8, 0.6 × 0.6
Ice thickness hi (m) 0.4
Dilated radius of element rd (m) 0.15
Poisson’s ratio ν 0.35
Elastic modulus E (GPa) 1
Density of ice ρi (kg/m3) 917.00
Density of water ρw (kg/m3) 1,000.00
Depth of rubble h (m) 4.0
Length and width of rubble l, w (m) 40, 40
Diameter of indenter wI (m) 4.0
Loading velocity vI (m/s) 0.01
Friction coefficient of blocks μ 0.03, 0.1, 0.2, 0.3, 0.6, 1.0

In Stage I, with the penetration of the indenter, the indenter resistance initially increased
rapidly until the force reached a maximum value of approximately 54 kN. At δ = 200 mm, a
sudden drop in the force occurred, which was caused by the release of shape interlocking and
redistribution of inter-particle forces within the rubble at this time. The subsequent loading made
the ice recompact, and then the resistance of the indenter continued to rise.

In Stage II, the resistive force remained at an approximately constant level after reaching the
maximum value. The relative displacement between the ice blocks in the ice rubble was small, and
no large movement occurred. The ice block at the lower edge of the indenter tilted slightly but
did not deviate from the pressure range of the indenter. Fmax is the average value of the force at
this stage, which characterizes the overall mechanical properties.

In Stage III, resistance reduction occurred. The indenter continued to penetrate the internal
structure of the ice rubble, and the ice blocks below moved downward; in addition, the ice blocks
at the edge of the indenter bottom also underwent a tangential relative displacement with respect
to the ice beneath the indenter, and the interlocking effect was broken gradually. This stage can
be regarded as the stage of shear failure of the entire structure.

Stage IV is the equilibrium stage after punching through, at which the resistance force of the
indenter was mainly derived from the buoyancy of the residual ice blocks below.

In the process of indenter penetration, the displacement of the ice blocks can be divided into
vertical movement that follows the downward movement of the indenter and horizontal movement
from the center to periphery. The two types of displacement distributions are shown in Fig. 15.
The relative displacement shown in color is dimensionless (calculated as displacement of ice blocks
divided by displacement of indenter) to better represent the movement. As observed, the ice blocks
mainly moved vertically, and the magnitude of lateral movement was small relative to the vertical
movement (Note: the upper limits for the scales in Figs. 15a and 15b differ by a factor of two).
The ice blocks directly beneath the indenter mainly moved vertically, while the peripheral ice near
r= 2 m mainly moved horizontally to the outside.
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Figure 13: Simulation results of punch-through test of unconsolidated ice rubble

Figure 14: Force–displacement curve for the test on unconsolidated ice rubble
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Figure 15: Movement of ice blocks during the punch-through test (a) in lateral direction and
(b) in vertical direction

4.3 Punch-through Test of the Consolidated Ice Rubble
The same initial ice rubble, as described earlier in Section 4.1, was used to apply the cohesion

between the ice elements. The calculation parameters of this simulation are listed in Table 3, and
the other parameters are consistent with those in the above case. In natural ice rubble, since the
frozen face size has a random and inconsistent distribution, it is difficult to make a calibration
while studying ice freezing behavior. Therefore, to simplify the setting, the bonding face area
between the ice elements and bond strength in the simulation were assumed to have constant
values.

Table 3: Parameters of bond model in simulation

Definitions Symbols value

Bond area l×w (m2) 0.2 × 0.2
Normal bond strength ft (kPa) 10.0
Internal cohesion C (kPa) 3 · ft
Poisson’s ratio of bond ν 0.35
Elastic modulus of bond E (GPa) 1.0

Fig. 16a shows the force–displacement curve of the indenter for the punch-through test
performed on consolidated ice rubble, and Fig. 16b shows an enlarged version of Fig. 16a for the
initial range of indenter penetration. According to the characteristics of the force–displacement
curve, the punching process can be divided into three stages, as shown in Fig. 16b. Stage I is the
initial stage of penetration, where the resistance increased rapidly with the downward movement
of the indenter and quickly reached the peak value Fmax. In Stage II, the indenter resistance
decreased rapidly, and the ice rubble entered the overall failure stage. In the micro view, a large
number of bonds in the ice body were broken, and in the macro view, it was the shear failure of



16 CMES, 2022, vol.130, no.1

the entire ice rubble. At this stage, the strength of the ice rubble mainly depended on the freeze
bond between ice blocks, rather than interlocking and tangential friction. In Stage III, most bonds
on the shear plane failed, and dislocations occurred in the ice rubble. The major factors controlling
the stiffness of ice rubble were interlocking and friction. Furthermore, the fluctuations in the curve
corresponded to slip and recompaction between ice blocks. After this stage, the phenomenon was
similar to that of unconsolidated ice rubble. Moreover, it did not affect the overall strength; thus,
details have not been provided.

Figure 16: Force–displacement curve for the test on consolidated ice rubble (a) δ = 0–1000 mm
(b) δ = 0–150 mm

Fig. 17 shows the ice blocks’ vertical displacement (dimensionless) distributions during the
penetration process at each stage. Because the horizontal displacement was not apparent at the
early stage, it is not presented. Accordingly, Fig. 18 shows the number of cohesive bonds broken
and the breaking rates in the three stages. It can be observed that the deformation in the ice
rubble was small in Stage I, and the internal force increased continuously, but there were few
bond fractures. Therefore, the ice rubble was a complete structure with little damage at this stage.
In Stage II, both the number of failed bonds and failure rate were the highest among the three
stages, which indicated that the failure of the internal bonds was very severe at this stage. The
resistance of the indenter also decreased rapidly with the fracture of a large number of bonds,
which verifies that freeze bonding plays a crucial role in the overall strength of the ice rubble.
After the breakage of the majority of the bonds, the ice rubble deformed more significantly than
that in Stage I, and the general failure occurred. In Stage III, ice blocks beneath the indenter
moved down as a whole after compaction. The bond failure rate also decreased, which indicates
that it mainly depended on the interlocking effect and friction to resist the deformation. All the
results corresponded well to the force–displacement curve of the indenter and explained the failure
mechanism of the ice rubble.

The DEM simulation results were compared with the experimental results of Helnonen’s work
on the in-situ punch-through test of an ice ridge [23], as shown in Fig. 19. As shown, significant
uncertainty was observed in the experiment, but the general trend of the curve could explain the
failure process of the ice rubble. The DEM simulation and experimental results agreed well in
Stage I and Stage II; however, the differences between the results in Stage III may be due to the
differences between the initial ice rubble properties, i.e., the porosity, internal friction, geometry,
and size of the ice blocks. Through this comparison, the DEM bond model was also validated.
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Figure 17: Movement of ice during the punch-through test for consolidated ice rubble (a) Stage I
(b) Stage II (c) Stage III

Figure 18: Bond failure process during the punch-through test for the consolidated ice rubble

4.4 Comparison of Results of Unconsolidated and Consolidated Ice Rubble
Comparing the force–displacement curves of unconsolidated and consolidated ice rubble

(Figs. 14 and 16b), it is observed that the consolidated ice rubble exhibited higher strength and
larger stiffness. In addition, comparing the overall failure stages of the curves, it can be observed
that the force drop of the frozen ice rubble was steeper than that of the nonfrozen ice rubble,
and the frozen ice rubble exhibited clearer brittleness characteristics than that of the nonfrozen
ice rubble.

In the first three stages of the unconsolidated ice rubble, the strength and stiffness of the ice
rubble were mainly provided by the interlocking and tangential friction between the ice blocks.
When the indenter was pressed down, the ice blocks moved and adjusted their positions to adapt
to the higher pressure. Therefore, the resistive force did not increase or decrease immediately
as the indenter penetrated; thus, the unconsolidated ice rubble can be considered to have the
characteristics of a relative ductile failure. In the first and second stages of the consolidated ice
rubble, the main structural strength of the consolidated ice rubble was provided by the freeze
bonding between the ice blocks. At the initial stage of pressing the indenter, the ice rubble can be
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regarded as a complete structure, and the ice did not dislocate relatively. Therefore, the indenter
resistance increased rapidly during loading. When the maximum force was reached, the local freeze
bond could not bear the large deformation, and failure occurred. The failure of the local bond
reduced the overall strength of the consolidated ice rubble rapidly. This type of failure is largely
similar to brittle failure.

Figure 19: Dimensionless force–displacement comparison between simulation and in-situ test

According to the deformation and failure process of the ice rubble, the shear plane of the
ice rubble failure was assumed to be a cylindrical surface, which can be defined by the perimeter
of the indenter platen and rubble thickness [23]. Therefore, the effective shear strength of the ice
rubble can be expressed as:

τ = Fmax

πwIh
, (21)

where Fmax is the maximum resistance of the indenter during penetration, and wI and h are the
diameter of the indenter and thickness of the ice rubble, respectively.

To investigate the effect of the friction coefficients μ on the shear strength, punch-through
tests of consolidated and unconsolidated ice rubble under six different friction coefficients were
simulated, and the results are shown in Fig. 20. The results show that for any friction coefficient,
the shear strength of consolidated ice rubble is larger than that of unconsolidated ice rubble. In
addition, the friction coefficient has a significant influence on the shear strength of unconsolidated
ice rubble but has little effect on consolidated ice rubble. As mentioned above, the shear strength
of consolidated ice rubble is mainly related to the strength of the freeze bonding but not to the
friction coefficient. However, for unconsolidated ice rubble, the shear strength is mainly affected
by the interlocking effect and shear friction between the ice blocks. Consequently, as the friction
coefficient increases, the shear strength shows an approximate linear increase.



CMES, 2022, vol.130, no.1 19

Figure 20: Effect of friction coefficient on shear strength of ice rubble

5 Conclusions

In this study, a freeze-bond model based on the dilated polyhedral DEM was developed to
model the freeze bonding in ice rubble. This paper includes the methodology, verification, and
application of the model to simulate the punch-through test of unconsolidated and consolidated
ice rubble. The DEM polyhedral elements could be bonded together by establishing an imaginary
bonding surface and bonding point to transfer the force and moment between the freezing ele-
ments. The failure process of the freeze bonding adopted the mixed fracture criterion considering
the tensile and shear strengths together. The bonding effect between the two freezing elements
and the fragmentation behavior were simulated, and the accuracy and stability of the model were
verified.

The proposed bond model of the DEM polyhedral elements was used to simulate the punch-
ing process of the ice rubble, and the macroscopic mechanical properties of the ice rubble under
nonfreezing and freezing conditions were considered. The resistive force–displacement curve of the
indenter and movement of the individual ice blocks were analyzed. In conclusion, the strength
and stiffness of the ice rubble increase under freezing and the resistance to deformation mainly
depends on the freeze bond effect between ice blocks. Moreover, under nonfreezing conditions, the
overall strength mainly depends on the interlocking and friction between the elements.

Frozen face size indeed has a random and inconsistent distribution in the ice rubble, however,
there are few works on the relationship between freezing degree and bonding area. Besides, the
freezing degree is also dominated by environmental conditions. Further work on the calibration
of bond parameters needs to be organized and the quantitative relationship between the param-
eters of the DEM bond model and the mechanical properties of the frozen bond in specific
environmental conditions should be established by the lab and in situ experiments.
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