
echT PressScience
Computer Modeling in
Engineering & Sciences

DOI: 10.32604/cmes.2022.017663

ARTICLE

Time Synchronized Velocity Error for Trajectory Compression

Haibao Jiang1, Dezhi Han1,*, Han Liu1, Jiuzhang Han1 andWenjing Nie2

1College of Information Engineering, Shanghai Maritime University, Shanghai, 201306, China
2College of Foreign Language, Shanghai Maritime University, Shanghai, 201306, China
*Corresponding Author: Dezhi Han. Email: dezhihan88@sina.com

Received: 28 May 2021 Accepted: 20 August 2021

ABSTRACT

Nowadays, distance is usually used to evaluate the error of trajectory compression. These methods can effectively
indicate the level of geometric similarity between the compressed and the raw trajectory, but it ignores the velocity
error in the compression. To fill the gap of these methods, assuming the velocity changes linearly, a mathematical
model called SVE (Time Synchronized Velocity Error) for evaluating compression error is designed, which can
evaluate the velocity error effectively, conveniently and accurately. Based on this model, an innovative algorithm
called SW-MSVE (Minimum Time Synchronized Velocity Error Based on Sliding Window) is proposed, which
can minimize the velocity error in trajectory compression under the premise of local optimization. Two elaborate
experiments are designed to demonstrate the advancements of the SVE and the SW-MSVE respectively. In the
first experiment, we use the PED, the SED and the SVE to evaluate the error under four compression algorithms,
one of which is the SW-MSVE algorithm. The results show that the SVE is less influenced by noise with stronger
performance and more applicability. In the second experiment, by marking the raw trajectory, we compare the
SW-MSVE algorithm with three others algorithms at information retention. The results show that the SW-MSVE
algorithm can take into account both velocity and geometric structure constraints and retains more information
of the raw trajectory at the same compression ratio.
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1 Introduction

Positioning technology is developing rapidly while the equipment is in and portable. The
equipment obtains a large scale of trajectory data on various moving objects such as vehicles,
humanities, animals, etc. That information, affluent and worthy, is contained in trajectory data
and has applied widely to the fields such as behavioral analysis [1–3], regional analysis [4,5], and
urban functions and computing [6–9]. The huge amount of data usually contains much redundant
information, which brings enormous challenges to data storage, query and analysis, as well as
transmission. To solve the above-mentioned problems, researchers have proposed outstanding and
numerous algorithms of trajectory compression in the past decades [10–30]. These algorithms
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acquire the time and the rate of compression by losing the accuracy within the allowable error
range and thus to meet the requirements in special situations.

When we compress the trajectory, the methods usually use distance to evaluate the error.
Douglas et al. [11,13] used the Perpendicular Euclidean Distance (PED) as the criterion of
the split points in compression, then it became one of the most common methods to evaluate the
error of the compression. This method can accurately describe the geometric error between the
compressed and the raw trajectory. Meratnia et al. [14] provided a mathematical model, Time-
Ratio Distance metric (TRD), by calculating the distance between the raw and the projected
position, which was calculated by the temporal scale of the compressed trajectory, as the error.
Potamias et al. [17] proposed to use Time Synchronized Euclidean Distance (SED) as the criterion
of error aim at maintaining the time information on the compressed trajectory. While predicts
the position it differs from TRD by considering the velocity vector, rather than just the temporal
scale. They both assumed that the object moved uniformly in the compressed trajectory, so the
results are similar. Liu et al. [18] proposed a continuous method, namely Enclosed Area (EA),
which calculated the area between the raw and the compressed trajectory segment as the error
and was more accurate than predecessors’ method which was discrete, but for its low calculation
efficiency it was seldom applied.

However, the velocity is ignored in the above-mentioned methods. In fact, the velocity is the
foremost in trajectory compression as it contains more valuable information. Trajectory points
with similar velocities usually represent the same type of motion along the direction, while the
points with obvious velocity variation may imply changes in motion conditions [19]. Changes in
geometric structure are usually reflected in velocity, but changes in velocity may not be showed
in the structure. For example, a shift in means of transport is often embodied in the velocity but
not the structure. Therefore, it is of great significance to evaluate the velocity error.

To fill the above gap, this paper proposes a mathematical model for evaluating velocity error in
the trajectory compression, Time Synchronized Velocity Error (SVE). The main difference between
the SVE and the state-of-the-art methods is the constraints of compression, as the former uses
time synchronization velocity instead of distance that can improve quality. The model, found
on the hypothesis of linear velocity variation (see Section 2.2 of this paper for details) can
evaluate the error effectively, conveniently and accurately. On this basis, we come up with an
innovative algorithm of trajectory compression, i.e., Minimum Time Synchronized Velocity Error
Based on Sliding Window (SW-MSVE). Based on the Sliding Window, this algorithm preserves
the minimum velocity error in the compression with low time complexity. The reliability of the
SVE model and the SW-MSVE algorithm is experimentally verified in the Geolife [31–33].

The main contributions in this paper can be summarized as follows:

(1) We propose the new concept of time synchronized velocity. Based on the assumption
of velocity changes linearly, the velocity of the compressed point in both latitude and longitude
directions can be accurately calculated, which in turn can be used to evaluate the velocity errors
generated during the trajectory compression.

(2) A novel mathematical model for evaluating compression error is designed, namely SVE.
This model uses the time synchronized velocity as constraint instead of distance which can
evaluate the compression error more effectively, conveniently, and accurately.

(3) An innovative algorithm of the trajectory compression is proposed, namely SW-
MSVE, which can minimize the velocity error under the premise at local optimization. This
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algorithm preserves more information of the raw trajectory in the compression with the low time
complexity and can be applied to both offline and online.

(4) Two elaborate experiments are designed to demonstrate the advancements of the SVE and
the SW-MSVE respectively. In the first experiment, we use the PED, the SED and the SVE to
evaluate the error under four compression algorithms, one of which is the SW-MSVE algorithm.
The results show that the SVE is less influenced by noise with stronger performance and more
applicability. In the second experiment, we compare the SW-MSVE algorithm with three others
algorithms at information retention. The results show that the SW-MSVE algorithm can take into
account both velocity and geometric structure constraints and retains more information of the
raw trajectory at the same compression ratio.

The remainder of the article is organized as follows. A background of the theories will be
presented scientifically in Section 2. The process of building the SVE mathematical model and the
working principle of the SW-MSVE algorithm will be introduced in Section 3. Section 4 contains
the fully experimental procedures and processing operations, followed by the discussion of test
results in Section 5. Finally, conclusions will be offered in Section 6.

2 Background

This chapter systematically introduces the theories used in this paper. We introduce the
concept of trajectory compression firstly. Secondly, we illustrate the principle of three classical
compression algorithms with examples. The algorithms are Douglas-Peucker (DP) [11], Top-Down
Time-Ratio (TD-TR) [12], and Sliding Window (SW) [14] respectively. Finally, we introduce the
computing methods of PED and SED.

2.1 Concepts and Methods of Trajectory Compression
In the allowable error range, trajectory compression is eliminating the raw trajectory point

which take along the redundant information. Then we can obtain a compressed trajectory with
smaller scale, lower redundancy which is similar to the raw one. Fig. 1 illustrates the concept of
trajectory compression. The raw trajectory is shown in Fig. 1a and has 12 points. As shown in
Fig. 1b, they are compressed to 4 points, which are the starting point P1, the intermediate points
P4 and P8, and the ending point P12 (the starting point and the ending point should be retained
in the trajectory compression). The compressed trajectory only occupies one third of the space in
the raw trajectory but basically retains the information of original movement.

Figure 1: Trajectory compression concept (a) Raw trajectory (b) Compressed trajectory

Researchers have proposed outstanding and numerous methods stand on the requirements
of the trajectory compression. These methods are technically divided into three categories, line
simplification compression methods [11–22], Map-matching based compression methods [23–27],
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and semantic compression methods [28–30]. The methods used in this paper belong to the first
category and their working principles are separately described as below.

The Douglas-Peucker (DP) algorithm can preserve the spatial geometry of the raw trajectory
in the compression and the key is to use several baselines and replace the trajectory. Firstly, the
starting and ending points of the trajectory are connected as an approximate segment. Secondly,
the PED is calculated for the intermediate points in turn (see Section 2.2 of this paper for details)
and the algorithm selects the point that has the largest PED. If the PED of this point is above
the specified threshold of the algorithm, then it will be added to the compressed trajectory and
be selected as the split point which divides the trajectory into two sub-trajectories. the above
operations should be repeated until all the points are unavailable to be the split point. The steps
will be illustrated in Example 1 below:

Example 1: The trajectory T contains {P1,P2,P3,P4,P5,P6,P7,P8,P9,P10,P11,P12} 12 points,
in which P1 is the starting point while P12 is the ending point. According to the principle of the
DP algorithm, as shown in Fig. 2a, the first step is to connect P1 and P12 as a baseline and calcu-
late the PED of the remaining points, respectively. We find the point P9 with the maximum PED,
i.e., dmax. Obviously, the PED of P9 is above the threshold, i.e., dmax > d, the point is selected
as the split point (reserved point) so the T is divided into T1{P1,P2,P3,P4,P5,P6,P7,P8,P9} and
T2{P9,P10,P11,P12}. In the second step, as shown in Fig. 2b, we find the point P4 in T1 with the
maximum PED and dmax > d, so the next step continues to compress T1 with P4 as the second
split point. The PED of all points in T2 is smaller than the threshold, thus the points P10 and
P11 will be compressed and then the compression of the T2 part is finished.

Figure 2: DP algorithm (a) Step 1 (b) Step 2

The DP algorithm has widely is applied in various fields for its simple ideas and better
performance in both compression ratio and accuracy However, it has two disadvantages. Firstly,
the time complexity of the algorithm is as high as O (nlogn). Secondly, the algorithm just considers
the spatial factor without the time and velocity factor in the compression, so the compressed
trajectory only resembles the raw trajectory in geometry.

Based on the idea of the DP, the Top-Down Time-Ratio (TD-TR) algorithm uses a new
distance function, namely SED (see Section 2.2 of this paper for details). Firstly, it finds the
corresponding position of the original points on the baseline according to the velocity proportion
and then calculates the Euclidean distance between the compressed and the original point. During
this process, it selects the point that has the largest SED. If the SED of the point is greater
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than the specified threshold of the algorithm, then it will be added to the compressed trajectory
and is selected as the split point which divides the trajectory into two sub-trajectories. the above
operations should be repeated until all the points are unavailable to be the split point. The steps
will be illustrated in Example 2 below:

Example 2: As shown in Fig. 3, the trajectory T contains {P1,P2,P3,P4,P5,P6,P7,P8,P9,P10,
P11,P12} 12 points, in which P1 is the starting point while P12 is the ending point. According to
the principle of TD-TR algorithm, as shown in Fig. 3a, the first step is to connect P1 and P12 as
a baseline and calculates the SED of the remaining points, respectively. We find the point P4 with
the maximum SED, i.e., dmax. Obviously, the SED of P4 is above the threshold, i.e., dmax > d,
the point is selected as the split point (reserved point) so the T is divided into T1{P1,P2,P3,P4}
and T2{P4,P5,P6,P7,P8,P9,P10,P11,P12}. In the second step, as shown in Fig. 3b, the SED of
all points in T1 is smaller than the threshold, so the compression of T1 part is finished. We find
the point P9 in T2 with the maximum SED and dmax > d, so the next step continues to compress
T2 with P9 as the second split point.

Figure 3: TD-TR algorithm (a) Step 1 (b) Step 2

The TD-TR algorithm has all the advantages of the DP and more accurate error because the
SED considers both time and spatial factors. But it still has disadvantages including the following
two points. Firstly, the time complexity of the algorithm is O (nlogn). Secondly, the velocity factor
of the points is not sufficiently considered in the compression.

The Sliding Window (SW) algorithm is one of the online compression techniques, which can
compress trajectories with the premise at local optimum. The elemental idea is to eliminate the
noise point by a window. The first step is to connect the starting point and the ending point in
the window as the approximate segment and calculate the PED between the intermediate point
and the segment. If it is smaller than the specified threshold of the algorithm, the window moves
forward one bit and adds a new intermediate point. Otherwise, the intermediate point is used as
a new starting point of the window and the calculation continues until the window moves to the
last bit. The steps will be illustrated in Example 3 below:

Example 3: The trajectory T contains {P1,P2,P3,P4,P5,P6} 6 trajectory points, in which P1
is the starting point while P6 is the ending point. According to the principle of the SW algorithm,
as shown in Fig. 4a, the first step is to connect P1 and P3 as a baseline and calculates the PED
between P2 and the baseline. Obviously, d2 < d, P2 can be compressed and the window moves
forward one bit. The second step is as shown in Fig. 4b. Similarly, d3 > d, P3 is set as the reserved
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point and become the starting point of the window, then it moves forward one bit. The case of
the third and fourth steps is the same as the first step. When the sliding window moves to P6, it
means the algorithm is executed to the last step.

Figure 4: SW algorithm (a) Step 1 (b) Step 2 (c) Step 3 (d) Step 4

The SW algorithm has high execution efficiency with time complexity only O (n) and can
compress the raw trajectory at local optimum, which ensures the compression ratio and accuracy.
But it still cannot avoid the following two main disadvantages. Firstly, it cannot achieve the global
optimum. Secondly, it only considers the space factor but ignores the time and velocity factor.

2.2 Error Evaluation Methods for Trajectory Compression: PED and SED
The PED is the point-to-line distance from the trajectory point to the baseline, while the SED

is essentially the point-to-point distance. The PED and the SED represent the distance from Pi
to Pi′ in Figs. 5a and 5b, respectively. In Fig. 5a, the PED of point P2 is the distance from P2
to the baseline P1P7. In Fig. 5b, assuming that the object moves uniformly in baseline P1P7, The
points (P2

′,P3
′,P4

′,P5
′,P6

′) are added equidistantly on P1P7 and the SED of point P2 represents
the distance from point P2 to P2

′.

Figure 5: Trajectory compression error evaluation methods: (a) PED; (b) SED

These methods provide an accurate measure of the error in the distance between the com-
pressed and the raw trajectory. During the trajectory compression, the PED or the SED value is
larger, the compressed trajectory is less geometrically similar to the raw one. On the contrary, the
compressed trajectory is similar to the raw trajectory while the value of the PED or the SED is
smaller.
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3 SVE Mathematical Model and SW-MSVE Algorithm

We build a mathematical model to describe the velocity error during the trajectory compres-
sion and two assumptions are proposed for the trajectory sequence:

A1: The velocities of the moving object are both 0 m/s in the directions of longitude and
latitude at the start and end positions.

A2: The velocity of the moving object varies linearly between two adjacent points of the
trajectory, such as uniform acceleration, uniform velocity, uniform deceleration, etc.

3.1 Time Synchronization Velocity
Based on the assumption A2, we propose a new concept to quantify the velocity during the

trajectory compression, i.e., the Time Synchronization Velocity. The calculation principle is shown
in Fig. 6 and the formula is shown in formula (1):

v
′
m = vS+ tm− ts

te− ts
(ve− vs) , (1)

where s, m and e denote the serial number of starting point, intermediate point and ending point
of the sub-trajectory segment, respectively. v

′
m denotes the calculated time synchronization velocity,

vS and ve denote the velocity of starting point and the ending point of the sub-trajectory segment,
respectively, ts, tm, te denote the time of starting point, intermediate point and ending point of the
sub-trajectory segment, respectively.

Figure 6: Schematic diagram of the time synchronization velocity error calculation method

3.2 Velocity of Trajectory Points
According to the raw trajectory, we calculate the distance between the adjacent points in the

directions of longitude and latitude firstly. Since the earth is an ellipsoid, the distance cannot be
obtained only by subtracting the position and the actual situation must be fully considered. We
should hold the following formula while calculating the velocity of a point in the directions of
longitude and latitude:

Ldi+1 =Lpi+1−Lpi , (2)

where Ldi denote the difference in latitude or longitude of the ith and i+ 1th trajectory points,
which can be expressed as xdi and ydi , respectively. Lpi refers to the current latitude and longitude
coordinates, which can be expressed as xpi and ypi , respectively.

Xdi =
xdiπ
180

R, (3)
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r=Rcosxpi , (4)

Ydi =
ydiπ
180

r, (5)

According to the above formulas (2)–(5), we can deduce that:

Xdi =
(xpi+1−xpi)π

180
R, (6)

Ydi =
(ypi+1−ypi)π

180
Rcosxpi , (7)

where Xdi ,Ydi denote the actual distance in latitude and longitude of the ith and i+1th trajectory
points, respectively. R denotes the distance of the current trajectory point from the earth’s center.
r denotes the radius of the current latitudinal section circle, and π , the ratio of circumference to
diameter.

Based on the assumption A1 and A2, we calculate the velocity of each trajectory point by
formulas (6) and (7).

vxp i+i+1
2 = Xdi

ti+1−ti
, (8)

vyp i+i+1
2 = Ydi

ti+1−ti
, (9)

vxpi+1 = vxpi+ 2
(
vxp i+i+1

2
− vxpi

)
, (10)

vypi+1
= vypi+ 2

(
vyp i+i+1

2
− vypi

)
, (11)

where vxp i+i+1
2

and vyp i+i+1
2

denote average velocity of the ith and i + 1th trajectory points in

the directions of longitude and latitude, respectively. vxpi and vypi denote the velocity in the

directions of latitude or longitude of the ith and i+ 1th trajectory points, respectively. ti denotes
the acquisition time of the ith trajectory point.

According to the above formulas (6), (7), (10) and (11), we can deduce that:

vxpi+1 = 2
(xpi+1−xpi)π
(ti+1− ti)180

R− vxpi, (12)

vypi+1
= 2

(ypi+1−ypi)π
(ti+1 − ti)180

Rcosxpi − vypi. (13)

3.3 SVEMathematical Model
Fig. 6 shows the calculative principle of the time synchronized velocity error and we can

calculate the error dm as follows:

dm = |vm− v
′
m|, (14)

where vm denotes the velocity of the trajectory point with serial number m, dm denotes the
absolute value of the difference between the actual measured and the time synchronous velocity.
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If the velocity varies linearly, the velocity error at this moment is 0 m/s based on the formula (14)
of the time synchronous velocity.

We define the raw trajectory sequence as T , T = {P1,P2,P3, . . . ,Pn}, in which Pi denotes the
ith (i= 1, 2, 3, . . . ,n) trajectory point of the T and each point is denoted as Pi(xpi ,ypi , tpi). Define
the compressed trajectory as T ′, T ′ = {P1, . . . ,Pi, . . . ,Pn}. Then the mathematical model of velocity
error in the trajectory compression is shown as follows.

Firstly, the original latitude and longitude velocity lists are calculated from assumption A1
and formulas (12) and (13).

vxT = {vxp1, vxp2, vxp3, . . . , vxpn}, (15)

vyT = {vyp1, vyp2, vyp3, . . . , vypn}, (16)

where vxT denotes the raw trajectory latitude velocity sequence and vyT denotes the raw trajectory
longitude velocity sequence.

Then we respectively calculate the latitude and longitude velocity list of the compressed
trajectory by the time synchronized velocity formula. The transformation is that the velocities of
the points in the T ′ are kept as the same as the original points. The time synchronized velocity
of the compressed points is calculated and added to the corresponding velocity list according to
formula (1).

vxT ′ = {vxp1, v
′
xp2 , v

′
xp3 , . . .vxps . . . , vxpn}, (17)

vyT ′ = {vyp1, v
′
yp2, v

′
yp3 , . . .vyps . . . , vypn}, (18)

where vxT ′ , vyT ′ denote the velocity list of the compressed trajectory in latitude and longitude,

respectively. v
′
xpi , v

′
ypi denote the time synchronized velocity of the ith trajectory point after the

calculation of formula (1), respectively.

Finally, we calculate the velocity error between the raw and the compressed trajectory accord-
ing to formula (14) and average the error to obtain the SVE. The method of calculation is shown
in formulas (19) and (20).

vxerror=
∑n

i=1 dxi
n

, (19)

vyerror=
∑n

i=1 dyi
n

, (20)

where vxerror denotes the average SVE in the latitude direction (LAT) and vyerror denotes the
average SVE in the longitude direction (LON).

The average SVE during the whole trajectory compression is:

verror=
∑n

i=1 dxi +dyi
n

. (21)
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3.4 SVE Evaluation Process
Fig. 7 shows the flow chart of the SVE to evaluate the error of trajectory compression.

Firstly, input the raw trajectory and calculate the velocities in both directions of latitude and
longitude respectively. Secondly, compress the raw trajectories by various algorithms and obtain
the compressed trajectories. Then, based on the assumption of the velocity varying linearly,
calculate the error between the time synchronous velocity and the actual velocity of each point
and get the SVE of the compressed trajectory on average.

Figure 7: Flowchart of the SVE mathematical model to evaluate the trajectory compression error

3.5 SW-MSVE Algorithm
The principle of the SW-MSVE algorithm is shown in Alogrithm1. Based on the assumption

of the velocity varying linearly, the SW-MSVE uses the sum of time synchronized velocity error
in the directions of latitude and longitude as the distance function in the sliding window and can
minimize the velocity error in the compression. However, this value is only the minimum velocity
error under the premise at local optimization.

Before executing the algorithm, input the raw trajectory T and the threshold �, where the
� is used to determine whether the trajectory points satisfy the compression condition by the
current sliding window. Firstly, calculate the velocity list of latitude vxT and longitude vyT by
formulas (12) and (13). Secondly, calculate the SVE and compare it with the threshold � for all
intermediate points. Then move the intermediate points and ending point in the window forward
one bit regardless of the result. If dxi +dyi ≥�, it means that the variation in velocity is large and
cannot be compressed. Conversely, the point has little variation in velocity and can be compressed,
whereupon the serial number of the point is added to the compressible list. Finally, delete the
point in the compressible list in the raw trajectory T . Obtain the compressed trajectory T ′ and
output it which can end the algorithm.
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Algorithm 1: Minimum Time Synchronized Velocity Distance based on sliding window
Input: T ,�
Output: T ′
1. Calculating vxT , vyT // formulas (12)∼(13)
2. start = 1,end = 3,mid = 2#Sliding Window
3. for i = 2 to n − 1 do
4. if dxi + dyi ≥� // formulas (1), (12)∼(14)
5. start = mid + 1
6. else
7. cplist.add(mid)
8. mid = mid + 1
9. end = end + 1
10. drop Cplist from T //T ′
11. Return T ′

The time complexity of Step 1 in the algorithm is O (2n), Steps 2–9 are O (n), Step 10 is
O (n) , and Step 11 is O (1). Therefore, the total time complexity is O (n). The elements of each
position are visited in the algorithm and the complexity is not greater than the time complexity
O (n), so the space complexity is also O (n).

The SW-MSVE inherits all the advantages of the SW algorithm, such as low time complexity
and high execution efficiency. The algorithm uses the SVE as the error and considers both
time and velocity dimensions, thus it can guarantee the geometric similarity of the compressed
and the raw trajectory. Another advantage of the algorithm will be verified through subsequent
experiments in this paper.

4 Experiment and Results

To demonstrate the performances of the SVE and the SW-MSVE, we perform an experiment
on the Geolife [31–33] dataset. We compare and analyze the variations of the PED, the SED
and the SVE with compression ratio for the DP, TD-TR, SW and SW-MSVE algorithms. The
experimentation is shown in Fig. 8. Firstly, input the raw trajectory data and filter out the noise
points. Secondly, use four algorithms to compress the data. The experiment compares and analyzes
the evaluation effects of the PED and the SVE under the DP algorithm, the SED and the
SVE under TD-TR algorithm, the PED, the SED and the SVE under the SW and SW-MSVE
algorithms. Finally, verify the advantage of the SW-MSVE in information retention by labeling
the raw trajectory points.

4.1 Experimental Data and Environment
The original data of this experiment is collected from user 000 in the Geolife project

(Microsoft Research Asia). The dataset includes 17,621 trajectories with a total distance of
1,292,951 km and a total duration of 50,176 h. Table 1 shows the format of the dataset. Each
raw trajectory is saved in a PLT file, of which the first 6 rows are useless information that can
be ignored and the data are organized starting from row 7. This experiment only extracts four
attributes of data: Latitude, Longitude, Data, and Time.
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Figure 8: Experimental process

Table 1: Geolife data set

Field name Latitude Longitude Field Altitude Days Data Time

Describe Retained to
six decimal
places

Retained to
six decimal
places

0 −777 is
illegal

Days from
1899/12/3,
decimal

yyyy-mm-dd hh:mm:ss

Example 1 39.906631 116.38556 0 492 40097.5864 2009-10-11 14:04:30
Example 2 39.906554 116.385625 0 492 40097.5865 2009-10-11 14:04:35

The detailed experimental environment for this paper is shown below:

CPU: Intel(R) Core (TM) i5-6500 CPU@3.20 GHz, 3.192 Mhz.

RAM: 8G.

Operating system: Windows 10 Professional.

Compiler environment: Anaconda 2020.07; Jupyter notebook 6.0.3; Python 3.8.3;

Data package: Pandas, Matplotlib, Numpy, etc.

4.2 Trajectory Filtering
During the trajectory sequences collecting, there are often some disturbing factors that make

a few points, which we call noise points, to appear in unreasonable positions. These points are
small in scale but will affect the quality in trajectory compression. Filtering is important in those
situations where the trajectory data is particularly noisy, or when one wants to derive other
quantities from it, like speed or direction [34]. Therefore, the trajectory must be filtered before
conducting the compression experiment. The common processing methods are Median filtering,
Mean filtering, Kalman filtering, and Particle filtering. We compare the applicability of the four
methods to the trajectory data and the need of the subsequent experiments, the Kalman filter was
chosen to process the experimental data.

Kalman Filtering [34] is an algorithm that uses the state equation of a linear system to
optimally estimate the system state from input and output observations. The specific steps and
parameters are shown below:

Ẑ
′
k =AẐk−1, (22)

P
′
k =APk−1A

T +Q′, (23)
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Kk =
P

′
kH

T

HP
′
kH

T +R′ , (24)

Ẑk = Ẑ
′
k+Kk(Zk−HẐ

′
k), (25)

Pk = (I −KkH)P
′
k, (26)

At the kth point of the trajectory sequence, Ẑ
′
k denotes the priori estimated position of

the current trajectory point. Ẑk denotes the posteriori estimated position of the current point.
Zk denotes the actual measurement position of the current point. P

′
k denotes the a priori error

covariance of the current point. Kk denotes the Kalman gain of the current point. Pk denotes
the error covariance of the current point. A denotes the state transfer matrix. Q′ denotes the
process noise. R′ denotes the measurement noise. H denotes the measurement matrix. and I
denotes the unit matrix. Using the formulas (22)–(26), the trajectory sequence is filtered to avoid
the interference of noisy points to the subsequent calculation. The values of each parameter are
taken as shown below, where, tk denotes the kth and k-1th trajectory point time interval. xp0, yp0
denote the latitudinal and longitudinal velocity sequences at the start of the trajectory sequence,
respectively. The values of P0, Q and R′ can be adjusted appropriately.

P0 =

⎡
⎢⎢⎣
0.0001

0
0
0

0
0.0001

0
0

0
0

0.0009
0

0
0
0

0.0009

⎤
⎥⎥⎦ , (27)

Q′ =

⎡
⎢⎢⎣
0.0001

0
0
0

0
0.0001

0
0

0
0

0.0004
0

0
0
0

0.0004

⎤
⎥⎥⎦ , (28)

A=

⎡
⎢⎢⎣
1
0
0
0

0
1
0
0

tk
0
1
0

0
tk
0
1

⎤
⎥⎥⎦ , (29)

I =

⎡
⎢⎢⎣
1
0
0
0

0
1
0
0

0
0
1
0

0
0
0
1

⎤
⎥⎥⎦ , (30)

R′ =
[
0.1
0

0
0.1

]
, (31)

H =
[
1
0

0
1

0
0

0
0

]
, (32)

ẑ0 =

⎡
⎢⎢⎣
xp0
yp0
0
0

⎤
⎥⎥⎦ , (33)
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The filter’s threshold �′ is set 0.001 (the threshold can be set to other values) and determines
whether the error between the posteriori estimated position Ẑk and the measured position Zk is
less than the given threshold.

|Ẑk−Zk| ≥�′, (34)

|Ẑk−Zk|< �′, (35)

When the error satisfies formula (34), it means that the measured value of the kth point is far
from the estimated value and the point is determined to be a noise point. Otherwise, it satisfies
formula (35) and will be considered as a normal point.

By repeatedly executing formulas (22)–(26) and comparing the results obtained in each step
according to formulas (34) and (35), the noise points that do not satisfy the conditions are finally
removed. The Kalman filter has been used to filter out all noise points before the subsequent
experiments.

4.3 Trajectory Compression
The Kalman filtered trajectory data are compressed with the DP, TD-TR, SW and SW-MSVE

algorithms. In order to compare and analyze the effect of the algorithms under the PED, the SED
and the SVE, 100 different and non-uniform thresholds are selected for each algorithm to ensure
the reciprocal of the compression ratio which was approximated every value between 0.01 and 1.00
in our experiment (it only calculated to two decimal places). Then the experiment compares the
variation of the PED and the SVE with compression ratio under the DP algorithm, the variations
of the SED and the SVE with compression ratio under the TD-TR algorithm, the variations of
the PED, the SED and the SVE with compression ratio under the SW and SW-MSVE algorithms.
The compression ratio is calculated as:

c= T
T ′ , (36)

In order to show the trend of the compression ratio more clearly in the figures, subsequent
figures are plotted using the reciprocal of the compression ratio. The formula for calculating the
reciprocal of the compression ratio is:

c−1 = T ′

T
, (37)

Fig. 9 shows the relationship between the threshold and the compression ratio under the DP
algorithm. The abscissa is the threshold taken from 0.01 to 100 to ensure that the reciprocal of the
compression ratio approximates each value between 0.01 and 1.00. The ordinate is the compression
ratio, which is taken between 0 and 1. Q1, Q2, Q3, Q4, and Q5 are taken from different scale of
the raw trajectory from user 000. Q1 is taken from the maximum scale, Q5 from the minimum
scale, Q3 from the median scale, and Q2 and Q4 from the three quartile and a quartile scale,
respectively. When the threshold is 0.01, the lowest c is 1.02 and the highest c is 1.13. When the
threshold is 100, the lowest c is 30.3 and the highest c is 125. Overall, the compression ratio of
the Q4 is the lowest and the Q1 is the highest under the same threshold. The Q5 curve presents
a different trend from others trajectory. By observing the raw trajectory, we found that the scale
of Q5 is too small to compress. In order to avoid the impact on the subsequent experiments, we
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remove 21 trajectories of the smallest scale and keep 150 trajectories. Two rules can be seen in
the figure.

R1: The compression ratio of trajectories gradually increases as the threshold increases.

R2: At the same threshold, the compression ratio of the large-scale trajectory is slightly lower
than the small-scale one.

Since others algorithms have the same processing as the DP algorithm in the selection of the
threshold and the properties are basically similar, they will not be repeated in the following.

Figure 9: The relationship between threshold value and compression ratio under the DP algorithm

4.4 Performances Comparison
4.4.1 Performances of PED and SVE under DP Algorithm

The DP algorithm uses PED as the criterion for split points, thus it retains PED information
greatly in trajectory compression. To demonstrate the well performance of the SVE under the DP
algorithm, the variation rules of the PED and the SVE are analyzed experimentally with com-
pression ratio of 150 trajectory segments. Fig. 10 shows the trend of the SVE with compression
ratio from the Q1 to Q4. The abscissa indicates the reciprocal of the compression ratio while the
ordinate indicates the error. In Fig. 10a, when c takes the maximum value of 100, the average
PED of each point reaches 26.23 m. In this case, the average SVE error in latitude, i.e., LAT,
is 1.95 m/s and the average SVE error in longitude, i.e., LON, is 2.14 m/s. When c takes the
minimum value of 1.13, the average PED of each point is only 0.0005 m while the average LAT
and LON is respectively 0.054 and 0.039 m/s. Similarly, Figs. 10b–10d have the same variation
trends. Comparing the four figures, we can summarize three rules.

R3: The error of the trajectory points gradually increases as the compression ratio increases.

R4: The SVE fluctuates less than the PED under the DP algorithm.

R5: The average LAT and LON have similar growth trends and the gap gradually decreases
as the data scale increases.
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Figure 10: Trends of the SVE and the PED with compression rate from Q1 to Q4 under the DP
algorithm. (a) Q1; (b) Q2; (c) Q3; (d) Q4

Fig. 11a shows the trends of the SVE and the PED with compression rate for 150 segment
trajectories under the DP algorithm. The abscissa is the reciprocal of the compression ratio while
the ordinate shows the average error between the compression and the raw trajectory. c−1 takes
an arithmetic progression between 0.04 and 0.21 with interval of 0.01. As shown in Fig. 11a, the
trajectory error in each interval is averaged and plotted between 0.045 and 0.205. When c−1 takes
the value of 0.045, the average PED for each point is 10 m. In this case, the average SVE in
latitude and longitude is 2.5 and 2.1 m/s, respectively. When c−1 takes the value of 0.205, the
average PED for each point is 1.2 m. The average SVE in latitude and longitude are 1.3 and 1.0
m/s, respectively. To avoid the influence of the values on the growth trend, we scale the values in
Fig. 11a by calculating the formula (38):

Ei′ = Ei
E0.405

, (38)

where Ei denotes the error value corresponding to the current compression ratio i and Ei′ denotes
the error value after unitization.

As shown in Fig. 11b, the maximum error takes 1 when c−1 is 0.045 and the subsequent
error is divided by the maximum error in turn. As shown in the figure, we can obviously find the
following two rules:

R6: Under the DP algorithm, using the PED as the error criterion, the plot is parabolic as
the compression ratio is gradually increased;

R7: Under the DP algorithm, the SVE has more linear characteristics compared to the PED.

In the subsequent experiments, we follow the operational procedure of the DP algorithm, so
the repeated operations will not be described below.
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Figure 11: Trends of the SVE and the PED with compression rate for 150 segment trajectories
under the DP algorithm. (a) Original error comparison; (b) Error comparison after standardiza-
tion

4.4.2 Performances of SED and SVE under TD-TR Algorithm
The TD-TR algorithm uses the SED as the criterion for split points, thus it retains SED

information greatly in the trajectory compression. To verify the well performance of the SVE
under the TD-TR algorithm, the variation rules of the SED and the SVE are analyzed experimen-
tally with compression ratio of 150 trajectory segments. Fig. 12 shows the trend of the SVE with
compression ratio from the Q1 to Q4. The abscissa indicates the reciprocal of the compression
ratio while the ordinate indicates the resulting error. In the Fig. 12a, when c takes the maximum
value of 111, the average PED of each point reaches 60.96 m. In this case, the average LAT and
LON for each point is respectively 1.48 and 1.58 m/s. By observing Fig. 12, we can find that
the experimental results under the TD-TR algorithm still conform to the rules R3 and R5. In
addition, we find the rule R8.

R8: The SVE in the TD-TR algorithm has a smaller variation of error compared to the SED.

Fig. 13a shows the trends of the SVE and the SED with compression rate for 150 segment
trajectories under the TD-TR algorithm. When c−1 takes the value of 0.045, the average SED for
each point reaches 34.16 m while the average SVE in latitude and longitude is 2.12 and 2.5 m/s,
respectively. When c−1 takes the value of 0.205, the average SED is only 3.43 m while the average
SVE in latitude and longitude is 1.08 and 1.29 m/s, respectively. In Fig. 13b, we find the rules R9
and R10.

R9: Under the TD-TR algorithm, using the SED as the error criterion, the plot is parabolic
as the compression ratio is gradually increased.

R10: Under the TD-TR algorithm, the SVE evaluation criterion has more linear characteris-
tics compared to the SED.

4.4.3 Performances of PED, SED and SVE under SW Algorithm
To demonstrate the performances of the PED, the SED and the SVE under the SW algorithm,

the variation rules of each evaluation method are analyzed experimentally with compression ratio
of 150 trajectory segments. Fig. 14 shows the trends of the SED, the PED, and the SVE with
compression ratio from the Q1 to Q4. The abscissa indicates the reciprocal of the compression
ratio while the ordinate indicates the error. In Fig. 14a, the PED and the SED show a massive
increase when the compression ratio is small. At a compression ratio of 111.11, the average PED
for each point is up to 132 m and the SED is up to 422 m, which is seriously unsuitable as
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an evaluation criterion. It performs similarly in Figs. 14b–14d. In contrast, the SVE performs
well, with the average LAT and LON of 3.63 and 2.80 m/s respectively, which has no large-scale
variations.

Figure 12: Trends of the SED and the SVE with compression rate from Q1 to Q4 under the
TD-TR algorithm. (a) Q1; (b) Q2; (c) Q3; (d) Q4

Figure 13: Trends of the SVE and the SED with compression rate for 150 segment trajecto-
ries under the TD-TR algorithm. (a) Original error comparison; (b) Error comparison after
standardization

In the SW algorithm, when c takes the maximum value of 90.9, the average SED of each
point reaches 80.75 m and the average PED is 23.57 m. In this case, the average SVE in latitude
and longitude is 2.14 and 1.81 m/s, respectively. As shown in Fig. 15b, we can find the rules R11
and R12.
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R11: Under the SW algorithm, the SED and the PED vary greatly as the compression ratio
increases.

R12: Under the SW algorithm, the SVE has more linear characteristics compared to the PED
and the SED.

Figure 14: Trends of the SVE, the PED and the SED with compression rate from Q1 to Q4 under
the SW algorithm. (a) Q1; (b) Q2; (c) Q3; (d) Q4

Figure 15: Trends of the SVE, the SED and the SED with compression rate for 150 segment
trajectories under the SW algorithm. (a) Original error comparison; (b) Error comparison after
standardization

4.4.4 Performances of PED, SED and SVE under SW-MSVE Algorithm
To demonstrate the performances of the PED, the SED and the SVE under the SW-

MSVE algorithm, the variation rules of each evaluation method are analyzed experimentally with
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compression ratio of 150 trajectory segments. Fig. 16 shows the trends of the SED, the PED and
the SVE with compression ratio from the Q1 to Q4 trajectory. The abscissa indicates the reciprocal
of the compression ratio while the ordinate indicates the error. In the Fig. 16a, the PED and
the SED show a massive growth when the compression ratio is small. At a compression ratio of
142.85, the average PED for each point is up to 418.67 m and the SED is up to 693.70 m, which is
seriously unsuitable as an evaluation criterion. It performs similarly in Figs. 16b–16d. In contrast,
the SVE performs well, with the average LAT and LON of 4.19 and 5.87 m/s respectively, which
has no large-scale variations.

Figure 16: Trends of the SVE, the PED and the SED with compression rate from Q1 to Q4 under
the SW-MSVE algorithm. (a) Q1; (b) Q2; (c) Q3; (d) Q4

In the SW-MSVE algorithm, when c takes the maximum value of 90.9, the average SED of
each point reaches 168.95 m and the average PED is 74.16 m. In this case, the average SVE in
latitude and longitude is 3.01 and 2.03 m/s, respectively. As shown in Fig. 17b, we can find the
rules R13 and R14.

R13: Under the SW-MSVE algorithm, the SED and the PED vary greatly as the compression
ratio increases.

R14: Under the SW-MSVE algorithm, the SVE has more linear characteristics compared to
the PED and the SED.

4.4.5 Information Retention Rate of the Four Algorithms
Fig. 18 shows the raw trajectory map of the Q1 under the user 000. The activity range of the

movable object is 39.900 to 40.075 N and 116.25 to 116.60 E (Beijing city) and a total of 14184
trajectory sequence points are recorded. In order to verify that the SW-MSVE algorithm retains
more information in the trajectory compression, the experiment marks the points carrying larger
PED, SED, and SVE information in the raw trajectory. The trajectories are compressed using the
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above four algorithms to test the information rate of their retaining. The experiments mark 3000
(about 25%) trajectory points in Q1. When c is 29.4, the retained PED, SED and SVE information
by each algorithm is shown in Figs. 19–21, respectively. In general, the above algorithms can keep
the geometric structure of the trajectory well. The definition of The Retention Rate is given below:

Retention Rate= NP
MP

× 100%, (39)

where MP denotes the number of marked points, NP denotes the number of the intersection of
compressed points and marked points.

Figure 17: Trends of the SVE, the SED and the SED with compression rate for 150 segment
trajectories under the SW-MSVE algorithm. (a) Original error comparison; (b) Error comparison
after standardization

Figure 18: A section of the raw trajectory of user 000

The retained PED information of each trajectory compression algorithm is shown in Fig. 19.
The red trajectory points are the PED marked points and the blue points are the non-PED
marked points. According to the retention amount of PED information, the algorithm is sorted
and the order from high to low is DP, SW, SW-MSVE and TD-TR. The DP and SW algorithms
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use the PED as the distance criterion of compression, thus to preserve more PED information in
the compression. The PED information retention rate of the SW-MSVE algorithm is higher than
that of the TD-TR algorithm, indicating that the SW-MSVE algorithm takes better account of
the spatial geometric structure of the raw trajectory than the TD-TR algorithm.

The retained SED information of each trajectory compression algorithm is shown in Fig. 20.
The red trajectory points are the SED marked points and the blue points are the non-SED marked
points. According to the retention amount of SED information, the algorithm is sorted and the
order from high to low is TD-TR, SW, SW-MSVE and DP algorithm. The TD-TR algorithm uses
SED as the distance criterion, thus to preserve more SED information in the compression. The
SED information retention ratio of the SW and SW-MSVE algorithms are very similar, indicating
that the SW and SW-MSVE algorithms have similar ability to constrain the raw trajectories in
both spatial and temporal dimensions. The DP has the weakest constraint ability.

Figure 19: The PED information retention rate of the Q1 under the above four compression
algorithms

The retained SVE information of each trajectory compression algorithm is shown in Fig. 21.
The red trajectory points are the SVE marked points and the blue trajectory points are the non-
SVE marked points. According to the retention amount of SVE information, the algorithm is
sorted and the order from high to low is SW-MSVE, SW, TD-TR and DP algorithm. The SW-
MSVE algorithm uses SVE as the distance criterion, thus to preserve more SVE information in
the compression. The SW algorithm retains more SVE information than that of the TD-TR and
DP algorithms, indicating that the SW algorithm takes better account of the velocity.

In order to further verify the above rules, four large-scale trajectories R1, R2, R3 and R4
are selected for the experiments. The experimental results are shown in Table 2. The experiments
marked 3000 (about 25%) maximum PED, SED, and SVE points in R1 and 1250 (about 25%)
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maximum PED, SED, and SVE points in R2, R3 and R4, respectively. In the case of c = 29.4,
it is recorded that the percentage of marked points in the compressed trajectory.

Figure 20: The SED information retention rate of the Q1 under the above four compression
algorithms

Table 2 shows that the DP algorithm has poor performance in SVE that the information
retention rate of is less than 60%, while the PED information retention rate under the SW-
MSVE algorithm is higher than the DP algorithm. The TD-TR algorithm has higher information
retention rate than the DP algorithm in the SVE, but it is far lower than the SED information
retention rate in the SW-MSVE algorithm. The PED information retention rate under the SW
algorithm is higher than the SW-MSVE algorithm and their SED information retention rate
are almost the same and the SVE information retention rate is kept at only 70%. The overall
information retention rate of the SW algorithm is slightly lower than that of the SW-MSVE
algorithm. In general, the SW-MSVE algorithm has highest information retention rate than the
other algorithms.

5 Discussion

During the above experiments, we analyze the four algorithms of trajectory compression using
the SVE, the PED, and the SED, respectively. The experimental results are shown in Table 3.
At the same algorithm, the SVE varies less than the PED and the SED when the compression
ratio gradually increases. This situation indicates that the SVE has better adaptability than the
PED and the SED. When we use the PED and the SED to evaluate the error of trajectory
with high compression rate, there will be many abnormal values. The SVE will not have such a
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situation. When using the PED and the SED to evaluate the Sliding Window algorithm, the error
greatly fluctuates and the quality of trajectory compression cannot be accurately evaluated, so the
performance is weaker. Similarly, the rest of the performance is recorded in the table. When we
use the SVE to measure the error of four algorithms, the experiments show that they are less
influenced by noise and the overall variation has linear characteristics with stronger performance
and more applicability.

Figure 21: The PED information retention rate of the Q1 under the above four compression
algorithms

For the SW-MSVE algorithm, the quality in the trajectory compression is experimentally
demonstrated. In this process, the SW-MSVE always retains higher information rate compared
to the DP and TD-TR algorithms. For example, while retaining 100% of the SVE information
points, the algorithm retains up to 80.8% PED information points. The SW-MSVE algorithm has
low time complexity and is applicable to both offline and online compression methods.

Table 2: Comparison of information retention rate of four compression algorithm

Algorithm Index PED SED SVE (%)

DP R1
R2
R3
R4

100% \ 54.2
100% \ 42.0
100% \ 50.9
100% \ 59.4

(Continued)
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Table 2 (Continued)

Algorithm Index PED SED SVE (%)

TD-TR R1
R2
R3
R4

\ 100% 58.6
\ 100% 62.0
\ 100% 59.7
\ 100% 51.9

SW R1
R2
R3
R4

77.0% 81.5% 71.8
63.1% 72.6% 68.7
81.9% 79.5% 64.3
77.1% 75.4% 70.7

SW-MSVE R1
R2
R3
R4

58.5% 73.3% 100
50% 80.8% 100
60.9% 80.5% 100
60 77.1% 100

Table 3: Performance comparison of trajectory compression evaluation metrics

Evaluation criteria DP TD-TR SW SW-MSVE

PED Strong \ Weak Weak
SED \ Strong Weak Weak
SVE Strong Strong Strong Strong

6 Conclusions

In this paper, a new evaluation model (SVE) of trajectory compression error is proposed
and its feasibility is verified experimentally, which fills the gap on evaluation of velocity error
for trajectory compression in industry. This model is less influenced by noise and has linear
characteristics in the overall variation with strong performance, so that it can be applied to
more algorithms. Base on this model, an innovative trajectory compression algorithm (SW-MSVE)
is proposed in this paper. The SW-MSVE algorithm uses the time synchronous velocity error
as the distance function, which retains more valuable information of the raw trajectory in the
compression. This algorithm provides a new idea for the trajectory compression method because
the lower time complexity and wider applicability. In the future research, we believe that there will
be more and more researches based on the SVE which will be widely applied in fields gradually.
But there are still some shortcomings in the algorithms and models. For example, there are some
bumpy shapes to appear in figure when we use the SVE to evaluate some trajectory segments
in the experiment. These shortcomings may be caused by the lack of accurate filtering before
trajectory compression. In future experiments, the constraints on trajectory filtering should be
strengthened to avoid the influence of noise points. Besides, the current SW-MSVE algorithm
can only guarantee the minimized overall velocity error with local optimization therefore in the
future work we should design more reliable algorithms can minimize the global velocity error. The
SVE model and the SW-MSVE algorithm are mainly constrained for velocity and thus are more
suitable for which applications with high constraints on velocity.
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