
echT PressScience
Computer Modeling in
Engineering & Sciences

DOI: 10.32604/cmes.2022.017533

ARTICLE

Range-Only UWB SLAM for Indoor Robot Localization Employing
Multi-Interval EFIR Rauch-Tung-Striebel Smoother

Yanli Gao1, Wanfeng Ma2, Jing Cao2, Jianling Qu1 and Yuan Xu2,3,*

1Qingdao Branch of Naval Aviation University, Qingdao, 266000, China
2School of Electrical Engineering, University of Jinan, Jinan, 250022, China
3Shandong Beiming Medical Technology Co., Ltd., Jinan, 250022, China
*Corresponding Author: Yuan Xu. Email: xy abric@126.com

Received: 18 May 2021 Accepted: 11 August 2021

ABSTRACT

For improving the localization accuracy, a multi-interval extended finite impulse response (EFIR)-based Rauch-
Tung-Striebel (R-T-S) smoother is proposed for the range-only ultra wide band (UWB) simultaneous localization
and mapping (SLAM) for robot localization. In this mode, the EFIR R-T-S (ERTS) smoother employs EFIR filter
as the forward filter and the R-T-S smoothing method to smooth the EFIR filter’s output. When the east or the
north position is considered as stance, the ERTS is used to smooth the position directly. Moreover, the estimation
of the UWB Reference Nodes’ (RNs’) position is smoothed by the R-T-S smooth method in parallel. The test
illustrates that the proposedmulti-interval ERTS smoothing for range-only UWB SLAM is able to provide accurate
estimation. Compared with the EFIR filter, the proposed method improves the localization accuracy by about
25.35% and 40.66% in east and north directions, respectively.
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1 Introduction

In recent years, the mobile robots have been widely used in the medical field [1,2]. Especially
affected by the COVID-19 more and more jobs in hospitals require mobile robots to replace
doctors, which provides the demand for indoor localization of mobile robots in indoor envi-
ronment. However, there are challenges in the research of mobile robot localization for indoor
environment [3,4].

To the mobile robot localization, the global navigation satellite system (GNSS) has been
proposed and widely used [5,6]. For instance, in [7], the global positioning system (GPS)-based
approach has been widely used in the small mobile robot. the GPS has been used to assist the
simultaneous localization and mapping (SLAM) for mobile robot [8]. In [9], the GPS/BeiDou
integrated navigation satellite system (BDS) has been proposed. It should be emphasized that
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although localization method based on the GNSS can provide the position information, this
method still have shortcomings:

• The localization accuracy is meter-lever, which is not suitable for indoor localization.
• In the indoor environment, the GNSS signal may be outage.

In order to overcome these shortcomings, there are many attempts. For instance, some existing
research proposes to use radio frequency identification based scheme (RFID) which has been
investigated for indoor robot localization [10,11]. Moreover, the RFID is also been used in moving
object localization [12]. A new method of RFID system has been developed for localizing mobile
robot employing configures reader (antenna) [13]. In [14], the WiFi has been used in mobile robot
positioning. Noted that both the RFID and the WiFi are able to provide the position information
in indoor environment, the localization accuracy of the RFID and the WiFi is not suitable for the
high precision indoor mobile robot localization [15]. In order to provide more accurate localization
information, the localization scheme employing ultra wide band (UWB) has been proposed [16].
For example, in [17] and [16], the UWB is used to measure the mobile robot’s position. It should
be emphasized that the localization scheme using UWB improves the positioning accuracy.

Based on the localization method, the data fusion method is investigated. For example, the
Kalman filter (KF) is used to fuse the data of the laser range finder (LRF) sensor for the mobile
robot [18,19]. In order to face the nonlinear system, the extended KF (EKF) filter is proposed for
the indoor localization of a mini unmanned air vehicle (UAV) based on low-cost inertial measure-
ment unit (IMU)/UWB/Vision [20]. The improved cubature Kalman filter for GNSS/INS using
transformation of posterior sigma-points error is investigated [21]. In [22], the vehicular INS/GPS-
integration system based on the unscented KF UKF is derived. The cubature KF is designed
for GNSS/INS under GNSS-challenged environment in [23]. One can infer that the Kalman filter
is sensitive to the noise initial value and noise statistics, which is hard to obtain in real-time
localization [18]. In order to improve the robustness of the localization, the unbiased finite impulse
response (UFIR) filter is proposed [24]. For example, in [25], an adaptive-horizon iterative UFIR
filter is derived. the FIR filter is employed for the RFID localization [26]. Moreover, in order
to improve the localization accuracy, the Rauch-Tung-Striebel (R-T-S) smoother is proposed. for
example, in [27], the ensemble Kalman smoother is designed for indoor mobile robot.

For improving the localization accuracy, this work proposes a multi-interval extended finite
impulse response (EFIR) R-T-S smoother for the indoor robot’s range-only ultra wide band
(UWB) simultaneous localization and mapping (SLAM), which employs EFIR filter as the for-
ward filter and the R-T-S smoothing method to smooth the EFIR filter’s estimation of the east
position, north position, and the UWB Reference Node (RN)’s position, respectively.

The contribution of this work resides in the following:

• A range-only UWB SLAM scheme is designed for indoor robot.
• A new ERTS smoothing algorithm employs the EFIR filter as the forward filtering and the

R-T-S smoothing as the backward smoothing method is proposed.
• A new smoothing scheme is proposed for the estimation of the east position, north position,

and the UWB RN’s position, respectively.

2 The Data Fusion Model for Range-Only UWB SLAM for Robot Localization

In this section, the robot localization scheme for fusing the range-only UWB measurements
will be designed firstly. Then, the data fusion model based on the range-only UWB SLAM scheme
will be investigated.
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2.1 The Scheme for Fusing the Range-Only UWB Measurements
Fig. 1 displays the structure of the scheme for fusing the range-only UWB measurements. In

this work, the UWB localization system includes 4 reference nodes (RNs) and one blind node
(BN). The RNs are pre-positioned on static coordinates, and the BN is fixed on the robot. When
the UWB localization system works, BN is used to collect the ranges dUi , i ∈ [1, 4] from ith RN

to BN. Then, the ranges dUi , i ∈ [1, 4] are input to the multi-interval EFIR Rauch-Tung-Striebel
(ERTS) smoother, which used as the data fusion filter in this work. Finally, the multi-interval
ERTSS provides the mobile robot’s position P̂o.

Figure 1: Range-only UWB measurements fusion structure

2.2 The Localization Model for the Data Fusion Filter
In this subsection, the localization model for the data fusion filter for the model mentioned

in Section 2.1 will be investigated. The state equation can be written as Eq. (1).
⎡
⎢⎣
X̂
R
l|l−1

P̂o
RN
l|l−1

⎤
⎥⎦

︸ ︷︷ ︸
X̂l|l−1

=
⎡
⎣AR

4×404×8
08×4 I8×8

⎤
⎦

︸ ︷︷ ︸
A

X̂l−1+wl−1 , (1)

where the time index is expressed in l, wl∼N(0,Q) means the noise in system, the vector of the
UWB RNs’ position is shown as the follows:

PoRNl = [x1,y1,x2,y2, . . . ,x4,y4]
T , (2)
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where (xi,yi), i ∈ [1, 4] denotes the ith UWB RN’s position, the vector of the mobile robot is shown
as the follows:

X̂
R
l =

⎡
⎢⎢⎢⎢⎣

xl
yl
Vxl
Vyl

⎤
⎥⎥⎥⎥⎦ , (3)

where the items xl, yl,Vxl,Vyl is the robot’s position in east directions, the robot’s position in
north, the robot’s velocity in east and the robot’s velocity in north directions at the index l for
time, the AR

4×4 in Eq. (1) is listed in Eq. (4).

AR
4×4 =

⎡
⎢⎢⎣
1 0 �l 0
0 1 0 �l
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ , (4)

where the �l is the sampling interval.

The measurement equation for the data fusion filter is listed in Eq. (5).

⎡
⎢⎢⎢⎢⎢⎣

dU1,l
dU2,l
dU3,l
dU4,l

⎤
⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Yl

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

√
(xl −x1)2+ (yl − y1)2√
(xl −x2)2+ (yl − y2)2√
(xl −x3)2+ (yl − y3)2√
(xl −x4)2+ (yl − y4)2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
h(X̂l|l−1)

+vl , (5)

where the dUi,l , i ∈ [1, 4] is range from the ith UWB RN to the mobile robot at the time index l,

vl∼N(0,R) is the measurement noise.

3 The Multi-Interval EFIR Rauch-Tung-Striebel Smoother

In this section, the multi-interval ERTS smoother will be designed based on the models (1)
and (5). The multi-interval ERTS smoother consists of forward filtering and backward smoothing,
consequently, we will design the UFIR filter and the R-T-S smoother based on the models (1)
and (5), secondly, the online multi-interval R-T-S smoothing scheme will be investigated.

3.1 EFIR Filter Algorithm
In the multi-interval ERTS smoother, the EFIR filter is employed as the forward filtering

algorithm of the EFIR R-T-S smoother. The EFIR filter algorithm for the models (1) and (5) is
sketched in Algorithm 1. We can infer that the performance of the EFIR filter depends on the
size ME of the X̂l and the filtering window size NE . From the models (1) and (5), we can get
that the ME = 4+8=12, and thus, the performance of the EFIR filter for the models (1) and (5)
depends on the NE , which should be set optimally. Moreover, we employ the extend Kalman filter
(EKF) (lines 4–8) as the data fusion filter when the EFIR filter does not work in dead zone.
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Algorithm 1: EFIR filter algorithm for the models (1) and (5)

Data: Yl, ME , NE , Q, R
1 Return: X̂l, P̂l
2 for l= 1:L do
3 If l< NE then
4 X̂l|l−1 =AX̂l−1;
5 P̂l|l−1 =AP̂l−1AT +Q;
6 Kl =Pl|l−1HT

l (HlPl|l−1Hl
T +R)−1;

7 X̂l = X̂l|l−1+Kl(Yl − h(X̂l|l−1));
8 P̂l = (I−KlHl)P̂l|l−1;
9 else
10 m = l− NE + 1, t=m+ M E − 1;
11 X̃t = X̂t;
12 P̃t = P̂t;
13 Gt = I;
14 for p=m+ ME :l do
15 X̃p|p−1 =AX̃p−1
16 P̃p|p−1 =AP̃p−1AT +Q;
17 Gp = [Hp

THp+ (AGp−1AT)
−1

]−1;
18 Kp=GpHp

T ;
19 X̃p= X̃p|p−1+Kp(Yp− h(X̃p|p−1));
20 P̃p= (I−KpHp)P̃p(I−KpHp)

T +KpRKp
T ;

21 end for
22 X̂l = X̃p;
23 P̂l = P̃p;
24 end if
25 X̂l = X̂l;
26 P̂l = P̂l;
27 end for
28 return: X̂l, P̂l
29 † ME : the size of X̂l
30 † NE : the filtering window size
31 †L: the total time index number
32 †Hl = ∂h(Xl)

∂Xl

3.2 R-T-S Smoothing Algorithm

When the forward EFIR filter works, the X̂l and P̂l, l ∈ [1,L] should be stored. Here, the L
means the last time index of the forward filtering. The R-T-S smoothing algorithm can smooth the
outputs of the EFIR filter from the time index L to the time index Lb in reverse order, here, the
‘b’ means the last time index for the smoothing algorithm. Employing the X̂l and P̂l, l ∈ [Lb,L],
the pseudo code of the R-T-S smoothing algorithm based on the models (1) and (5) can be listed
in Algorithm 2.
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In the R-T-S smoothing algorithm, we set the X̂
S
l = X̂l, l ∈ [Lb,L] and P̂

S
l = P̂l, l ∈ [Lb,L], the

PSl−1|l can be computed as the Eq. (6).

PSl−1|l =APSl A
T +Q , (6)

where superscript ‘S’ means the smoother. The smoothing gain Kl can be computed as the Eq. (7).

KS
l−1 =PSl−1A

T(PSl−1|l)
−1 , (7)

Then, Eqs. (8) and (9) calculate X̂
S
l (smoothed state estimation) and P̂

S
l (smoothed error cov.).

X̂
S
l−1 = X̂

S
l−1+KS

l−1(X̂
S
l −AX̂

S
l−1), (8)

P̂
S
l−1 =PSl−1+KS

l−1(P̂
S
l −PSl−1|l)(K

S
l−1)

T , (9)

Algorithm 2: Eqs. (1) and (5) R-T-S smoothing

Data: X̂
S
l , l ∈ [Lb,L], P̂

S
l , l ∈ [Lb,L], Q, R

1 Return:X̂
S
l , P̂

S
l

2 for l=L:Lb do
3 P̂

S
l−1|l =AP̂Sl A

T +Q;

4 KS
l−1 = P̂

S
l−1A

T(P̂
S
l−1|l)−1;

5 X̂
S
l−1 = X̂

S
l−1+KS

l−1(X̂
S
l −AX̂l−1);

6 P̂
S
l−1 = P̂

S
l−1+KS

l−1(P̂
S
l − P̂

S
l−1|l)(KS

l−1)
T ;

7 end for
8 return:X̂

S
l , P̂

S
l

9 † ‘S’ means the smoother

3.3 Multi-Interval Smoothing Scheme

From the Algorithm 2, it can be seen easily that the R-T-S smoothing using the X̂l and
P̂l, l ∈ [1,L] is an off-line mode. In this work, to improve accuracy of filtering and the real-time
performance, a multi-interval smoothing scheme is proposed for the east position, north position,
and the RN’s position respectively. The structure of the multi-interval R-T-S smoothing algorithm
is shown in Fig. 2. Based on the models (1) and (5), the east position xl, north position yl, and
the RN’s position (xi, yi), the smoothing schemes are listed in the follows:

• To the east and the north position (xl, yl), we firstly set one threshold door for the position
change rate in the east direction (�xl = xl − xl−1) and north (�yl = yl − yl−1) direction.

• When the �xl ≤ door, the east position of the robot is considered as the stance, and we set
Lx = l. If it is the first time that �xl−1 ≥door change to �xl ≤ door, we set Lbx = l. The R-T-S

smoothing algorithm will be work for smoothing the EFIR filter outputs X̂l and P̂l from the time
index Lx to the time index Lbx. Since the robot’s east position is stance, we can compute the xl
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using the Eq. (10). When the �x > door, the EFIR filter’s output xl is selected as the output
without smoothing.

xl =mean(X̂
S
lx(1, 1), . . . , X̂

S
l (1, 1)) , (10)

Figure 2: Multi-interval R-T-S smoothing algorithm structure

• When the �yl ≤ door, similar to the previous step, the robot’s north position is considered
as the stance, we set Ly = l. If it is the first time that �yl−1 > door change to �yl ≤ door,
we set Lby = l. The R-T-S smoothing algorithm will be work for smoothing the EFIR filter

outputs X̂l and P̂l from the time index Ly to the time index Lby. Finally, the yl can be
computed by the Eq. (11). When the �y> door, the yl is output without smoothing.

yl =mean(X̂
S
ly(2, 1), . . . , X̂

S
l (2, 1)) , (11)

• To the UWB RN’s position (xi,yi), i ∈ [1, 4], since the UWB RNs are always stance, thus, we
can smooth the EFIR’s outputs using the R-T-S smoothing method from the time index l to
time index 1 directly, Then, the (xi,yi), i ∈ [1, 4] can be computed by the Eqs. (12) and (13).

xi =mean(X̂
S
1 (j, 1), . . . , X̂

S
l (j, 1))

i= 1, 2, 3, 4, j= 5, 7, 9, 11 , (12)

yi =mean(X̂
S
1 (j, 1), . . . , X̂

S
l (j, 1))

i= 1, 2, 3, 4, j= 6, 8, 10, 12 , (13)

The multi-interval EFIR R-T-S smoothing for the Eqs. (1) and (5) can be listed in Algorithm 3.
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Algorithm 3: The multi-interval EFIR R-T-S smoothing algorithm for the models (1) and (5)

Data: Yl, ME , NE , Q, R, door
Result: X̂l
1 begin
2 for l= 1:L do
3 Compute the X̂l and P̂l using Algorithm 1;
4 Smooth the EFIR’s outputs using Algorithm 2;
5 Compute the (xi,yi), i ∈ [1, 4] by the Eqs. (12) and (13);
6 if l> 1 then
7 if �xl ≤ door then
8 Lx = l;
9 if �xl−1 > door then
10 Lbx = l;
11 end if
12 Smooth the X̂l and P̂l from the time index Lx to the time index Lbx using
Algorithm 2;
13 Compute the xl by the Eq. (10);
14 end if
15 if �yl ≤ door then
16 Ly = l;
17 if �yl−1 > door then
18 Lby = l;
19 end if
20 Smooth the X̂l and P̂l from the time index Ly to the time index Lby using
Algorithm 2;
21 Compute the yl by the Eq. (11);
22 end if
23 end if
24 end for
25 end

4 Experimental Verification

The following part describes experiments for performance verification of the method using
real-world data. First, the experiment configurations are introduced. Second, the results are
investigated and performance is analyzed.
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4.1 The Setting of the Test
In this subsection, the experiment configurations are introduced. The real test is done inside

the 7th building of University of Jinan, which can be seen in Fig. 3. This work employs the
UWB localization system, mobile robot, and the computer to test. The UWB localization system
employs the DW−1000 based localization system, which includes one UWB BN (fixed on the
mobile robot) and four UWB RNs (fixed on the selected positions so that the positions of RNs
are stance), The BN can measure the ranges dUi , i ∈ [1, 4] from the UWB RNs to the UWB BN

fixed on the mobile robot. Then, the dUi , i ∈ [1, 4] can be sent to the computer via RS232. The
mobile robot with the UWB BN is shown in Fig. 4. We set �l =0.5 s in this work. It should be
emphasized that the positioning accuracy of the DW−1000 based localization system used in this
work under weak occlusion is about 0.20 m, thus, we set the door=0.20/5= 0.04 in Algorithm 3,
which means that when the estimated displacement of the mobile robot’s position in a period is
less than 0.04 m, we consider that the robot is stance in this direction. The X0, P0, Q, and R can
be set as the follows:

P0 = I12×12, Q= I12×12, R= I4×4 , (14)

X0 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0, 0, 0, 0,
−0.85, 7.21+ 0.15,
4.8+ 0.1, 7.21,
−0.85+ 0.15,−2.04− 0.05,
4.8− 0.15,−2.04

⎤
⎥⎥⎥⎥⎥⎥⎦

T

, (15)

where ‘+’ and ‘-’ mean the errors of the UWB RN’s position. For example, ‘7.21+ 0.15’ means
the the errors of the UWB RN’s position is 0.15 m.

Figure 3: The test environment in the 7th building
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Figure 4: The mobile robot with the UWB BN

From the models (1) and (5) (through EFIR filter), we can get that the ME = 12. And the
optimal NE can be found by the follows:

NE
opt = argmin

NE
{tr(Pl(NE))} , (16)

where

Pl =E
{
(Xl − X̂l)(Xl− X̂l)

T}
, (17)

The effect of NEN on the localization error using a set of independent data with 200 sampling
points is sketched in Fig. 5. From the figure, one can see that the NE

opt= 13, thus we set NE = 13
in this work.

4.2 The Performance of the Multi-Interval ERTS Smoother for the Trajectory Estimation
In this section, the performances of the UWB, EFIR, and the multi-interval ERTS smoother

will be investigated. Fig. 6 shows the trajectories measured by the UWB, EFIR, and the multi-
interval ERTS smoother. Fig. 7 shows errors in the east and north position and as we can see,
both the EFIR filter and the multi-interval ERTS smoother can reduce the localization errors
when being compared to the UWB. Also, the proposed multi-interval ERTS smoother’s path is
much closer to the ground truth path. Table 1 shows the root mean square errors (RMSEs)
given by UWB, EFIR, and multi-interval ERTS smoother. We can see that the proposed multi-
interval ERTS smoother has the lowest position error. East- and north-direction positioning errors
of the multi-interval ERTS smoother are 0.1175 and 0.0932 m, which improved by 25.36% and
36.92% respectively compared with the EFIR filter. It should be pointed out that the EFIR
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filter is unsuitable for the estimation of the north position due to the uncertain beacons. Fig. 8
shows the displacements in directions east (�xl) and north (�yl). Fig. 8 also shows the east- and
north-directioned judgment for stance.
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Figure 5: The effect of NEN on the localization error
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Figure 6: The trajectories measured by the UWB, EFIR, multi-interval ERTS smoother, and the
planned path
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Figure 7: The localization error. Directions: (a) East (b) North

Table 1: RMSEs comparison of different methods

Algorithm RMSE (m)

E N

UWB 0.2168 0.1318
EFIR 0.1633 0.1509
Multi-interval ERTS smoother 0.1219 0.0900

4.3 The Performance of the Multi-Interval ERTS Smoother for the Estimation of the UWB RNs’
Position
In this section, the performances of the EFIR and the multi-interval ERTS smoother for

the estimation of the UWB RNs’ position will be investigated. Fig. 9 shows the estimation of
the UWB RNs’ position using the EFIR and the multi-interval ERTS smoother. The RMSEs
produced by the EFIR and the multi-interval ERTS smoother for UWB RN #1, #2, #3, and
#4 are sketched in the Tables 2–5. From the figure and the tables, we can see obviously that the
multi-interval ERTS smoother is effectively to estimate the UWB RN’s position. Compared with
the EFIR filter, the proposed multi-interval ERTS smoother improved by the 83.51%, 81.61%,
57.44%, 37.73%, 23.92%, 75.36%, 53.75%, and 62.37%.
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Figure 9: The estimation of the UWB RN’s position using the FIR and multi-interval ERTS
smoother

Table 2: EFIR and the multi-interval ERTS smoother RMSEs of the 1st UWB RN

Algorithm RMSE (m)

E Improvement N Improvement

EFIR 0.1285 – 0.2819 –
Multi-interval
ERTS smoother 0.0212 83.51% 0.0518 81.61%

Table 3: EFIR and the multi-interval ERTS smoother RMSEs of the 2nd UWB RN

Algorithm RMSE (m)

E Improvement N Improvement

EFIR 0.1351 – 0.1213 –
Multi-interval
ERTS smoother 0.0574 57.44% 0.0755 37.73%
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Table 4: EFIR and the multi-interval ERTS smoother RMSEs of the 3rd UWB RN

Algorithm RMSE (m)

E Improvement N Improvement

EFIR 0.2104 – 0.1738 –
Multi-interval
ERTS smoother 0.1601 23.92% 0.0428 75.36%

Table 5: RMSEs produced by the EFIR and the multi-interval ERTS smoother for UWB RN #4

Method RMSE (m)

E Improvement N Improvement

EFIR 0.2058 – 0.1149 –
Multi-interval
ERTS smoother 0.0952 53.75% 0.0433 62.37%

5 Conclusion

Range-only UWB SLAM for robot localization employing multi-interval EFIR R-T-S
smoother has been proposed in this work. The contribution of this work resides in the
following:

• An indoor robot’s localization scheme is designed for fusing the range-only UWB measure-
ment.

• A new EFIR R-T-S smoothing algorithm using the EFIR filter and the R-T-S smoothing
for forward filtering and the backward smoothing method is designed.

• A new smoothing scheme is proposed for the estimation of the east position, north position,
and the UWB RN’s position, respectively.

• An experiment using real-world data is conducted and verifies that the proposed multi-
interval EFIR R-T-S smoothing algorithm improves the performance.
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