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ABSTRACT

Given thatmany cities in Saudi Arabia have been observing rapid urbanization since the 1990s, scarce studies on the
spatial pattern of urban expansion in Saudi Arabia have been conducted. Therefore, the present study investigates
the evidence of land use and land cover (LULC) dynamics and urban sprawl in Abha City of Saudi Arabia, which
has been experiencing rapid urbanization, from the past to the future using novel and sophisticated methods. The
SVM classifier was used in this study to classify the LULC maps for 1990, 2000, and 2018. The LULC dynamics
between 1990–2000, 2000–2018, and 1990–2018 have been analyzed using delta (�) change and the Markovian
transitional probability matrix. Urban sprawl or urban expansion was modeled using two approaches, such as
landscape fragmentation and presence frequency for the first time. The future LULC map for 2028 was predicted
using the artificial neural network-cellular automatamodel (ANN-CA). Future LULCwas analyzed using landscape
fragmentation and frequency approaches. The results of LULCmaps showed that urban areas increased by 334.4%
between 1990 and 2018. The Delta change rate showed that 16.34% in urban areas has increased since 1990.While,
the transitional probability matrix between 1990 and 2018 reported that the built-up area is the largest stable
LULC, having an 83.6% transitional probability value. While 17.9%, 21.8%, 12.4%, and 10.5% of agricultural land,
scrubland, exposed rocks, and water bodies were transformed into built-up areas. Urban sprawl models showed
that 139 km2 of new urban areas had been set up in 2018, 49 and 69 km2 in 1990 and 2000. Furthermore, in 2018,
more than 200% of urban areas were stabilized or became core urban areas. The future LULC map (2028) showed
that the built-up area would be 343.72 km2, followed by scrubland (342.98 km2) and sparse vegetation (89.96 km2).
The new urban area in 2028 would be 169 km2. The authorities and planners should focus more on the sustainable
development of urban areas; otherwise, it would harm the natural and urban environment.
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1 Introduction

The cities of the world are growing rapidly both in terms of population as well as geograph-
ical area [1]. Population growth and economic development are the main drivers of urbanization,
especially in developing countries [2,3]. The urban population of the world has already reached 55
percent of the total global population, which is expected to reach about 68 percent by 2050 [4].
Between 1970 and 2000, global urban areas grew fourfold, and by the end of the third decade
of the twenty-first century, they are expected to be a third of their original size [5,6]. In Saudi
Arabia, the urban population has increased rapidly since 1950. In 1950, the share of the urban
population to the total population of the country was about 21 percent, which increased to 58
percent in 1975 and 84 percent in 2018 and is expected to reach about 90 percent by 2050 [7,8].
This rapid growth of the urban population, coupled with industrialization and economic growth,
has led to the expansion of urban areas and has created several challenges, such as unplanned
growth and congestion [8,9].

The land use land cover change (LULC) due to population growth and urban expansion
has increased significantly during the last few decades and is expected to be continuous during
the next few decades [10,11]. This unplanned and unprecedented growth of urban areas creates
several challenges for planners and policy makers and has negative impacts on the people and
the environment [12–14]. Furthermore, rapid urbanization and population growth pose numerous
serious threats to urban dwellers and ecosystems, including the formation of urban heat islands
(UHI), the formation of micro-climatic zones, biodiversity loss, groundwater depletion, and the
degradation of water and air quality [15–18]. One of the major problems originating due to
population agglomeration and unplanned growth of cities is urban sprawl [13,19,20]. Urban
sprawl refers to the unplanned or less planned expansion of urban areas over less developed or
vacant lands on the fringes of urban areas [21,22]. It is a common phenomenon in the cities
of developing countries, especially in Asian and African countries [1,23]. Population growth has
been identified as the main driving factor of urban sprawl [24]. Further, the factors of urban
sprawl have been categorized into two types; direct and potential factors [25]. The direct factors
include the expansion of built-up areas, industrial and infrastructural development, whereas the
potential factors include natural factors, population and economic growth, government policies
and technology [26].

The mapping and monitoring of urban sprawl is important as it leads to the deterioration
of the environment and resources, climate change, as well as an increased risk of natural hazards
[27–30]. By the application of geospatial techniques, the mapping and monitoring of urban growth
and sprawl has become possible [20,31–33]. Attempts have been made to map and monitor urban
sprawl and urban spatial growth patterns using landscape matrix [31,34], sprawl matrix [32],
Shannon’s entropy model, GIS based buffer models etc. Further, studies have been done to
model and quantify urban sprawl and LULC changes using the landscape matrix to track the
ecological impacts of LULC changes [35–37]. The landscape matrix approach is commonly used
to analyze and quantify the structure and pattern of LULC changes and to understand the
ecological health of the landscape in the process of urbanization [38–40]. It reduces bias and
improves understanding of spatial and temporal changes in landscape patterns [41]. The landscape
matrix provides numerical information about urban sprawl. Therefore, it is very difficult to get an
idea about which regions have been experiencing new urban areas. However, no studies on the
identification and mapping of stages of urban expansion and development have been carried out
yet. On the other hand, the landscape fragmentation approach provides different stages of forest
and wetland fragmentation [42,43]. It also provides different stages of fragmentation, through
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which new formations and developed formations can be identified. To overcome the research gap
in urban sprawl mapping, we have applied this technique in the present study area to identify new
urban areas and stages of urban expansion. The frequency approach [44], on the other hand, has
been used in the hydrology field to identify new wetland formation areas based on the frequency
of appearance of water pixels in the specific area. Therefore, this method can also be used to
identify new urban areas and already developed urban areas.

Numerous studies have been carried out to predict the LULC and urban areas using sev-
eral methods, such as the Markov chain (MC) [45,46], cellular automata (CA) [47,48], artificial
neural network [49], decision trees [50,51], and the Sleuth model [52,53]. The CA model has
been frequently utilised for land use change analysis among the many spatio-temporal dynamic
modelling methodologies. The CA model has an open structure and may be used in conjunction
with other models to anticipate and simulate land use trends. The model has seen considerable
use in recent years due to its simplicity, flexibility, and intuitiveness in integrating the spatio-
temporal elements of processes. The CA model, on the other hand, has certain quantitative
limitations, such as the inability to incorporate driving forces into the simulation process [46],
which can be mitigated by combining it with other quantitative models [54]. When the stochastic
MC methodology is used with the stochastic CA model, multi-directional LULC change analysis
may be simply simulated [55–57]. Many software programmes are available to model the future
LULC pattern based on the previous year’s information, including Land Change Modeler, CA-
MC, DINAMICA, CLUE-S, and MOLUSCE (Modules of Land Use Change Evaluation) [58,59].
The MOLUSCE-plugin is a QGIS-based tool that was recently released to study and forecast
future LULC situations. This plugin can generate a transition probability matrix using the CA-MC
method and run simulations using various models such as weights of evidence, logistic regression,
artificial neural networks (ANN), multi-criteria evaluation (MCE) [60–62], RF-CA [63], and Fuzzy
based integrated model [64,65]. The CA model was utilised to forecast future LULC estimates in
the final simulation step [60]. They provided very satisfactory findings. The CA-ANN model is a
reliable method for projecting future LULC and plays an important role in land use planning and
management. In the present study, we have integrated the ANN model with CA, because the ANN
model predicts LULC transitional probability with very high accuracy based on several LULC
changing parameters. Based on a highly accurate transitional probability model, CA can easily
handle and predict future LULC. For this reason, in the present study, the integrated ANN-CA
model has been utilized to predict urban growth.

Previous studies have only concentrated on the LULC mapping and its dynamics analysis
using supervised image classification and simple growth rate. But very rare studies have been
conducted on the application of machine learning algorithms for mapping LULC and its dynamics
analysis using delta (�) change and Markovian transitional probability matrix. To the best of the
authors’ knowledge, there are no particular techniques for mapping and quantifying urban sprawl
and expansion. Many researchers have used Shannon’s entropy model, numerical landscape matrix,
GIS based buffer analysis, and comparisons between two classified LULC maps for mapping
and quantifying urban expansion. But the identification of new urban areas or urban expansion
and different stages of urban expansion and stabilization have not been generated from their
studies. On the other hand, future prediction of LULC using neural network based cellular
automata is not very uncommon, but no studies have been carried out on the modelling of future
urban sprawl. Therefore, these research gaps should be addressed to propose proper and very
accurate urban development plans. The present study area, Abha, Saudi Arabia, has observed
rapid urbanization and conversion of resources providing LULC types to urban areas since 1990.
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Consequently, there is an urgent requirement to conduct research on urban sprawl modelling and
its future situation to monitor and minimize the problems related to urban sprawl. Therefore,
to tackle the problems and solve the research gaps, we set five objectives for the present study:
First, the LULC mapping for 1990, 2000, and 2018 using the SVM classifier; second, LULC
dynamics analysis using delta change rate and transitional probability matrix; third, the urban
sprawl and expansion mapping and quantification using novel geospatial approaches, such as
landscape fragmentation and frequency approach; fourth, the future LULC for 2028 prediction
using the ANN-CA model; and last, future urban sprawl mapping using the mentioned two novel
approaches. The present work is the first comprehensive attempt to provide LULC mapping,
urban sprawl mapping, and future LULC and urban sprawl prediction. The main novelties can
be summarized as follows:

• General: The work contributes to the robustness of knowledge by applying sophisticated
models to an unstudied area of LULC mapping, urban sprawl mapping, LULC future
prediction, and future urban sprawl mapping.

• Regional: Increased knowledge of LULC mapping and urban sprawl mapping for the past
to the future of Abha City, Saudi Arabia. This is the first attempt in the study area to map
LULC and urban sprawl from the past to the future. The outcome of this work would be
a valuable basis for urban planners, government authorities, and stakeholders to improve
sustainable urban development and management.

• Methodical: Employed SVM and transitional probability matrix for urban mapping and
dynamics analysis. Developed novel ways, such as landscape fragmentation and frequency
approach, to map urban sprawl and expansion from the past to the future. The ANN-CA
model was used to forecast LULC in 2028.

2 Materials and Methods

2.1 Study Area
The region selected for this research is the Abha-Khamis Mushayet Twin Cities (Fig. 1) in

the South-Western Saudi Arabia. The urban hills are a crucial tourist region with the richest
biodiversity of flora and fauna in Asir and KSA [66]. The Twin Cities occupy an area of
1291 km2. It lies between 18◦9′33.126′′N to 18◦30′56.566′′N latitude and 42◦23′52.477′′ E′ to
42◦51′42.832′′ E longitude. The study area’s topography is undulating, and its elevation varies from
1564 to 2736 m, with a mean of 2102 m at mean sea level. The study area has a heterogeneous
terrain and a complex landscape. It is located in an important Afromontane region, where cold
and semi-arid climates characterize the city environment [67]. The area of study covers one of the
Asir Mountains’ richest and most diverse floristic regions. Jabal Al-Sooda, one of the region’s most
famous mountains, is located in the north-western part of the study area, and also has a rich flora.
In the study area (Asir Province), the variability in climate and topography has led to the creation
of diverse plant species [68]. It has a widespread land loss problem due to anthropogenic activities,
high slopes, fragile geology, and rainfall and thus causes ecological imbalances. The twin cities
within and surrounding are vulnerable to high-intensity rainfall, and several rural areas undergo
flash flooding during the winter season [69,70]. Abha City is the capital city of the Asir region.
According to the General Statistics Authority’s 2012 census, the region’s population is 289,975,
with native Saudis constituting 78 percent of the total population. The twin cities in the Asia
region are expecting significant urban transformation and growth, so it is necessary to address a
sustainable understanding of urban sprawl and development, which will improve living standards
for tourists and residents.
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Figure 1: Abha-Khamis Mushyet twin cities selected for this study

2.2 Materials
The Landsat 4-5 TM and 8 OLI data (path/row: 167/047 and spatial resolution: 30 m)

for the years 1990, 2000, and 2018 were downloaded from the USGS Earth Explorer website
(https://earthexplorer.usgs.gov). ALOS PALSAR radiometrically terrain corrected (RTC) Digital
Elevation Model (DEM) [71] with 12.5 m spatial resolution was acquired from Earth Science Data
Systems NASA to extract the topography parameters.

2.3 Methods for LULC Classification
The SVM is a non-parametric machine learning algorithm that classifies the data according

to its statistical learning theory [72]. It follows the concept of structural risk minimization (SRM),
which separates and maximizes the hyper-plane and data points nearest to the spectral angle
mapper (SAM) of the hyper-plane. Further, it divides the data points into several classes using
a hyper-spectral plane. In this process, the vectors ensure that the width of the margin will be
maximized [73]. The SVM supports multiple continuous and categorical variables and supports
linear and non-linear samples in different classes. The training samples that demarcate the margin
or hyper-plane of SVM are known as support vectors [74].

https://earthexplorer.usgs.gov
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In this study, the radial basis function (RBF) kernel SVM algorithm was applied to the
LU/LC classification using ENVI 5.3 software. “The SVM was performed using parameters; the
kernel width gamma (γ ) of 0.143, the penalty parameter (C) of 100, as well as the classification
probability threshold value of 0.3”. The classification threshold probability is an important part
of the SVM because it unclassifies all rules with probabilities less than the threshold [75]. A value
of 0.3 was placed as the threshold to classify all the pixels into a single category. Further, for the
pyramid parameter, a value of zero was assigned, which led to the processing of the image at full
resolution. The inverse of the number of bands is set by default for the value of gamma. In the
present study, eight LULC classes were classified using SVM, such as built up areas, water bodies,
dense vegetation, sparse vegetation, agricultural land, scrubland, bare soil, and exposed rock.

2.4 Dynamics of LULC
In the present study, to explore the LULC dynamics, the post-classification or delta change

(cross tabulation) has been employed using the MOLUSCE plug-in in QGIS software [76]. This
method is usually been used to quantify and monitor urban sprawl [77]. These post-classification
change detection methods are based on pixel to pixel analysis, which calculates the quantity and
spatial allocation of LULC changes. Gains and losses of different LULC types can be calculated
using delta change and percentage delta change rate.

2.5 Transitional Probability Matrix
To project the LULC change from t to t+1, the Markov model has been employed. It displays

the expected number of pixels converted from one LULC type to another over the specified
number of time units. The representation of the probabilities is presented in the following matrix
p (Eq. (1)):

p= pij=
⎛
⎝p11 p12 p1m
p21 p22 p2m
p31 p32 p3m

⎞
⎠ (1)

where p represents the state of probability of transition from i to j.

2.6 Quantification of Urban Sprawl
Several methods have been used for urban sprawl modelling, such as comparisons between

two classified images [78], urban sprawl index [32,79], numerical landscape matrices [34], Shan-
non’s entropy [80], GIS based buffer analysis [81]. But these models do not provide the actual
quantity of new urban areas and expanded areas. Even so landscape matrices provide numerical
information about urban sprawl. Therefore, to model urban sprawl with quantification and good
visuals, two approaches have been employed in the study area. These models were borrowed from
hydrological, forest, and wetland studies. These are:

2.6.1 Landscape Fragmentation Approach
Landscape fragmentation (LF) is a process by which large habitat areas are mutilated into

smaller and much more isolated habitats [82]. LF is related to the extensive conversion of natural
landscapes for human use [83] and has negative effects on biodiversity and ecosystem services
also [84]. This process has accelerated in recent years as a result of urbanization and the spread
of linear infrastructure such as roads, railways, agricultural land, and so on [85,86]. New discrete
urban areas have been formed outside of the main urban areas. Therefore, based on the con-
centration of urban areas in a particular area, the landscape fragmentation approach has been
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employed. Six landscape fragmentation indices were prepared, such as patch, edge, perforated,
small core, medium core, and large core based on the concentration of urban areas (for details,
see Tab. 1) [87]. The higher the concentration of urban areas indicates, the higher the chance of
being a core area or stable urban area. The large core indicates a highly concentrated built up
area of more than 500 acres, while the medium core has a continuous urban area of 250–500
acres and the small core has a continuous urban area of less than 250 acres. The patch area, on
the other hand, denotes a discrete urban region with relatively uniform environmental conditions
apart from the core region. The edge is the most dynamic part of the landscape, which can be
converted to other land uses easily. The perforated is the core area’s surrounding landscape, which
could be converted to a small core area in the future. Therefore, patch and edge can be considered
as indicators of urban sprawl, while core urban areas have been considered as stable urban areas,
which cannot be converted into other land use types. Furthermore, because these landscapes will
be stable urban areas in the future, perforated can be a significant indicator of urban area growth.

Table 1: Definition of reference landscape units

Landscape Definition

Patch Patches represent relatively discrete areas (spatial
domain) or periods (temporal domain) of relatively
homogeneous environmental conditions.

Edge An edge in this case is an area where the measured value
changes abruptly (high local variance or rate of change).

Perforated A perforated section is the edge habitat created by a
small area of non-forest or urban habitat completely
surrounded by core habitat.

Small core The interior area of any landscape having an area
coverage of <250 areas is called the small core.

Medium core The interior area of any landscape has an area coverage
of 250–500 acres.

Large core The core area refers to the interior area of patches after
a user-specified edge buffer is eliminated.

The Centre for Land Use Education and Research (CLEAR) of the University of Con-
necticut [88] has launched a GIS tool (Landscape Fragmentation Tool) to demonstrate the
fragmentation status of the forest. In the present study, to the best of the author’s knowledge, it
is the first study to apply the landscape fragmentation approach to identifying urban sprawl.

2.6.2 Urban Presence Frequency
The urban presence frequency was developed in the present study to analyze and map urban

sprawl. This model was calculated by following the water presence frequency [44]. This technique
has been applied for delineating wetland boundaries and wetland classification [89–91]. The water
presence frequency model suggests the average condition of the surface water body of a wetland
based on time series data. The model has been generated by averaging the frequency of appear-
ance of water pixels in particular places during the time frame. The higher the frequency of the
model indicates, the number of water pixels in those particular places is higher. Those pixels are
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called stable water pixels, while the lower frequency suggests unstable and new water pixels in
those pixels during the time frame. Based on this line of thinking, we have constructed an urban
presence frequency. For this, built up areas for different years were extracted from LULC maps.
By using Eq. (2), all built-up area maps were combined to create the urban presence frequency
map.

BPFp=
∑i

n=1Xj
N

(2)

where, BPFp is the calculated built up presence frequency for p pixels, Xj is the frequency of jth
pixel in image X having an urban appearance, and N is the number of years taken.

2.7 Prediction of Urban Sprawl Using Neural Network Based Cellular Automata
ANN is a machine learning technique that is competent at capturing and representing complex

relationships between inputs and outputs. ANN is an interconnected node group inspired by sim-
plifying the brain’s neurons. It contains multiple neurons or nodes, which function simultaneously
to transform the data input into output categories. An ANN typically has three layers, namely
input, hidden layers, and output. Each layer has several neurons, depending on the particular
application in a network. Each neuron is linked by direct links to other neurons in the next
consecutive layer. These links reflect the intensity of the output signal [92]. There are many types
of networks for an ANN application and the selection of the proper type depends on the nature
of the problem and data availability. According to Zhang et al. [93], the multi-layer perception
(MLP) is perhaps the most popular network used in hydrological modelling. In MLP, the arti-
ficial neurons, or processing units, are arranged in a layered design containing an input layer, a
processing (“hidden”) layer (in complex topologies, two hidden layers are used) and an output
layer. In the present study, ANN-MLP was used to predict the transitional probability model by
integrating land use change conditioning factors. Land use transitional probability conditioning
parameters, such as elevation, slope, proximity to urban areas, agricultural land, sparse vegetation,
scrubland, and water bodies, were extracted for the 2000 and 2018 LULC maps. The Euclidean
distance tool in ArcGIS software 10.5 was then used to construct proximity parameters from the
retrieved data. Then, the ANN model was applied to integrate the conditioning parameters for
predicting the LULC transitional probability map.

The mathematical explanation of the CA-ANN model has been described below:

Transition rules, restrictions, neighbourhood, and stochastic perturbation are three approaches
for obtaining components of restricted CA conceptually. These are incorporated by:

Pijt = Sij×Cij×�ij
t×RA (3)

where Pijt stands for probability and Sij stands for variable suitability (also known as transition
rules). Cij is the land use restriction, �ij

t is the neighbourhood condition, and RA is the random
perturbation that duplicates the weight of unconsidered variables.

The transition rules procedure, which is based on linear regression, is the most important in
urban CA modelling (LR). The LR model uses a statistical technique to determine each suitable
pixel, in which numerous indications are linearly combined with varying weights. Eqs. (4) and (5)
combined show those equations.

z= b0+ b1x1 + b2x2+ . . .+ bnxn (4)
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Sij = 1
1+ exp (−z) (5)

where Sij denotes the suitability, x1,x2, . . .xn represent independent factors of urban growth, and
b0,b1, . . .bn are variable coefficients (b0 denotes the constant).

Furthermore, in our work, the constraint of CA estimation only applies to the urban and
non-urban areas (Cij).

CA is estimated using 10 * 10 De Moore’s neighbourhood, which is defined as:

�ij
t =

∑
m2 con

(
Lij = urban

)
m×m− 1

(6)

where m is the amount of pixels and con () is a function that illuminates the urban area Unless
the formal of the cell (i, j) is grown in the neighbourhood, subsequently transform to 1.

The probability Pijt, which is completed in the next two phases, describes the evolution of
the urban area throughout each sequence iteration. The first step is to sort the current urban
expansion pixels in descending order of Pijt: Second, pixels with greater development probability
will be changed specifically to urban. The number of converted pixels is then approximated using
a linear distribution strategy for each iteration to ensure that the simulated urban area matches
the observed area, as shown in:

Per= D
K

(7)

where Per is the number of changed pixels at each iteration, D is the total number of urban area
conversions for the full simulation phase, which is split into two picture phases, and K is the total
number of iterations. The stochastic perturbation RA may be represented as follows:

RA= 1+ (− ln (λ))α (8)

where λ is a random number between 0 and 1, and α is a control parameter for the degree of
stochasticity. The stochastic component has been closely linked with urban morphology and a
high value of α related to landscape which is more dispersed.

All input variable files should have geographical scales that are the same (i.e., geometry,
pixel size, and projection). Within CA modelling, an ANN for transition potential modelling
was included. ANNs are a type of machine learning model that is linked to geographical neural
networks. This type of integrated CA model is commonly used to compute or approximate
nonlinear regression with a large number of input variables [93]. Liu et al. [92] found that the
integrated CA-ANN model is particularly well suited to land use change modelling. The benefit
of ANNs is that they can link complicated links between input and output data and perform well
when modelling with a huge quantity of data. The values of probable transitions for each pixel
between the two recorded times were used to create simulations. To correlate to the likelihood
of occurrence of estimates for each land variable, the model employed two defined predictors
(height and distance from highways). The kappa statistic, which certifies agreement between two
categorical datasets, compensated for the predicted differences [94].

In the present study, the whole process has been completed in QGIS software. The QGIS
MOLUSCE plug-in has an inbuilt system for collecting training datasets and testing datasets.
Based on the training datasets, the ANN model was implemented to generate a land use transi-
tional probability model. During training of the ANN model, several model parameters have to
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be optimized to get better results. To optimize the ANN model parameters, we have optimized
the parameters through a trial and error process. The optimized parameters are: Iteration rate:
1000, Learning rate: 0.001, Momemtum: 0.02, Neighbourhood: 10px, Hidden layer: 10.

After obtaining the transitional probability model by ANN, the prediction of LULC has been
conducted by employing CA simulation. It comprises regular spatial lattices of cells. Each cell
could have only one of a finite number of states, replying to the states of neighboring cells. It
acts on the structure of correlated pixels around one cell. The CA simulation usually comprises
multiple iterations to determine whether or not the pixel or cell should be transformed. A preset
threshold value has to be set to control the changing rate in order for LULC transformations to
occur step by step. If the highest transitional probability of any LULC type is smaller than the
threshold value, which is 0.8 in the study based on the trial and error processes, then the pixel
or cell stays unconverted. The threshold value ranges from 0 to 1, and 0.8 has been set to keep
the LULC conversions stable in each iteration, thus getting fine patterns of simulation. Then, we
optimized the CA model. We first set the model to 1 iteration (10 years), indicating the prediction
of the upcoming 10 years.

2.8 Methods for Validation
In order to validate the LULC maps and simulated LULC maps, three statistical methods

were utilized in the present study area. The statistical techniques are:

2.8.1 Kappa Coefficient
The validation of LULC maps is necessary to understand the accuracy level of classified,

which was extracted from Landsat satellite imageries [94]. The Kappa coefficient (K) is used to
validate the wetland map. K is calculated using Eq. (9).

K = N
∑r

i=1 xii−
∑r

i=1 (xi+ × x+i)
N2−∑r

i=1 (xi+ × x+i)
(9)

where, N = total number of pixels; r = number of rows in the matrix; Xii = number of obser-
vations in row i and column i; xi+ and x+i are the marginal totals for row i and column i,
respectively.

2.8.2 Root Mean Square Error
RMSE denotes the square root of the mean squared difference between predicted values

through the model and the observed values. RMSE can be employed to quantify the variation
of errors in a prediction model and is very effective when massive errors are unwanted [95] The
RMSE is cleared by the following formula:

RMSE =
√√√√(∑n

i=1
(
Yo−Yp

)2
n

)
(10)

where, Yo indicates the observed value; Yp indicates the predicted value and the number of data
points is indicated by the n.

2.8.3 Correlation Coefficient
Pearson correlation refers to the assessment of the direction and strength of linear association

between two variables, narrating the degree and direction about the most linearly related variable
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that is associated with one another [96]. It is expressed through this equation:

r=
∑n

i=1
(
Ai,m−A′

i,m
)× (Ai,e−A′

i,e
)

√∑n
i=1
(
Ai,m−A′

i,m
)2×√∑n

i=1
(
Ai,e−A′

i,e
)2 (11)

Here, Ai,m, Ai,e and n, respectively, indicate the observed ith meteorological drought, predicted

ith meteorological drought, and total observations. A′
i,m, A

′
i,e denote the average observed and

predicted meteorological drought. Larger r values represent more validity of the models.

3 Results

3.1 Overview of LULC
LULC maps for 1990, 2000, and 2018 were prepared using the SVM classification technique.

The LULC maps were shown in Figs. 2a–2c. The LULC map in the present study area was
classified into eight LULC classes, such as built up areas, water bodies, dense vegetation, sparse
vegetation, agricultural land, scrubland, bare soil, and exposed rock. Through the visual inter-
pretation of Fig. 2, it can be stated that built up areas have increased significantly during the
1990–2018 periods. Scrubland, on the other hand, has decreased significantly over the last 28 years.

Figure 2: LULC maps for (a) 1990, (b) 2000, and (c) 2018
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3.2 LULC Dynamics
The area under LULC maps since 1990–2018 was computed and presented in Tab. 1. The built

up area showed the largest change in over 28 years. In other words, it was increased noteworthy.
The built up area in 2018 was 271.45 km2 in Abha city, compared with 62.46 km2 (1990) and
105.2 km2 (2018) (Tab. 2). In addition, the delta (�) change in built up area between 1990 and
2000 was 42.75 km2 (3.34%), which increased to 166.24 km2 (13%) (2000–2018) and 208.99 km2

(16.34%) (1990–2018). The growth rate of built up areas was 334.6% since 1990–2018, signifying
noteworthy urban expansion over 28 years. However, the sharp growth has been noticed since 2000
(13% of delta change). This is caused due to rapid and continuous urbanization in the process of
development. Scrubland is one of the eight LULC types that has seen a significant decline over
28 years.

Table 2: Statistics related to LULC and its dynamicity since 1990–2018

Land use
types

1990 area
(km2)

2000 area
(km2)

2018 area
(km2)

� change
(1990–
2000)

� change
(%)
(1990–
2000)

� change
(2000–
2018)

� change
(%)
(2000–
2018)

� change
(1990–
2018)

� change
(%)
(1990–
2018)

Built up 62.46 105.2 271.45 42.75 3.34 166.24 13 208.99 16.34
Water bodies 1.36 1.13 0.52 −0.23 −0.02 −0.61 −0.05 −0.84 −0.07
Dense vegetation 1.28 2.67 9.44 1.39 0.11 6.77 0.53 8.16 0.64
Sparse vegetation 85.3 53.12 75.47 −32.18 −2.52 22.35 1.75 −9.83 −0.77
Agricultural land 28.21 22.45 17.75 −5.76 −0.45 −4.7 −0.37 −10.46 −0.82
Scrubland 477.3 361.36 332.03 −115.94 −9.07 −29.32 −2.29 −145.27 −11.36
Bare soil 172.17 203.02 113.94 30.86 2.41 −89.08 −6.97 −58.23 −4.55
Exposed rockes 450.61 529.73 458.08 79.13 6.19 −71.65 −5.6 7.47 0.58

Scrubland covered 477.3 km2 in 1990, but it has shrunk to 332.02 km2 in 2018. The growth
rate was −30.38% during the period of 1990–2018. Fig. 2 shows that the built-up area has
absorbed the majority of the scrubland. Bare soil also observed some minor loss of about −4%
delta change over 28 years, which was converted to urban areas (Tab. 2). On the other hand,
other land use types, such as dense vegetation and exposed rocks, observed almost no changes
during this period. Although the water body and sparse vegetation experienced minor losses of
approximately −0.07% and 0.77% delta change, respectively (Tab. 2). In fact, it can be stated that
the scrubland of the study area has observed a very sharp conversion to other land use, especially
built up areas, since 2000. One of the main reasons for this land use type’s higher conversion
rate was its proximity to the main city, as well as its lower elevation (2000 m) and slope (10◦)
compared to other land use types’ geographical locations.

3.3 Validation of LULC Maps
The validation of LULC is a major task, which can not be avoided. Otherwise, the LULC

maps’ dependability will be nil. Therefore, in the present study, LULC maps for 1990, 2000,
and 2018 were validated with ground truth. The information from the field survey was used to
validate the LULC map of 2018, whereas a field survey and a Google Earth image were not
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available to validate the LUCL maps of 1990 and 2000. As a result, we had to rely on sceondary
source. The testing samples were obtained from the blue, shortwave infrared, and near infrared
bands of Landsat 4–5tm for the years 1990 and 2000. Based on the collected samples, the kappa
coefficient and RMSE were employed to validate the LULC maps statistically. Tab. 3 shows the
kappa coefficient and RMSE error for all LULC images. The LULC map of 2018 had a kappa
coefficient of 0.871, indicating a very good agreement between ground truth and the LULC map.
While the RMSE for the 2018 LULC map was very small. Therefore, it can be concluded that the
performance of the LULC classifier for preparing the LULC map for 2018 is highly satisfactory.
In addition, the kappa coefficient for LULC maps of 1990 and 2000 was more than 0.8, which
suggests good performance. Therefore, the statistical validation analysis suggested that all LULC
maps are valid and can be utilized for further research.

Table 3: Validation of LULC maps of 1990, 2000, and 2018

Year Kappa coefficient RMSE

1990 0.82 0.54
2000 0.862 0.41
2018 0.871 0.39

3.4 Analysis of LULC Transitional Probability
The trend of LULC change can easily be explored by employing a transitional probability

matrix. It indicates the probability of each cell of land use type being converted into other land
use types. In the present study, the transitional probability matrix was prepared between the
periods of 1990–2000, 2000–2018, and 1990–2018 using the MOLUSE plugin of QGIS following
the Markovian approach. Tab. 4 shows the transitional probability matrix between 1990 and 2000.
The diagonal bold values showed the probabilities of being unchanged during the period. A zero
value indicates that the land has not been converted to other land use types. Exposed rock,
bare soil, built-up areas, and water bodies had the highest probability of remaining stable or
unchanged, accounting for 86%, 81%, 75%, and 67% of their original areas, respectively (Tab. 4).

Table 4: Transitional probability matrix for LULC maps from 1990 to 2000

Land use types BT WB DV SV AGRI SCR BS EXR

Builtup 0.7467 0.0004 0.0008 0.0053 0.0052 0.0976 0.0360 0.1080
Water bodies 0.0218 0.6671 0.0033 0.0470 0.0371 0.1853 0.0172 0.0212
Dense vegetation 0.0021 0.0028 0.2076 0.6214 0.0239 0.0457 0.0000 0.0964
Sparse vegetation 0.0456 0.0003 0.0171 0.4114 0.0390 0.3053 0.0040 0.1772
Agricultural land 0.0502 0.0000 0.0091 0.0881 0.2995 0.3709 0.1680 0.0142
Scrubland 0.0481 0.0002 0.0009 0.0223 0.0172 0.5827 0.0857 0.2428
Bare soil 0.0960 0.0000 0.0001 0.0021 0.0088 0.0575 0.8089 0.0265
Exposed rockes 0.0305 0.0002 0.0005 0.0074 0.0011 0.0675 0.0344 0.8585

Notes: Builtup (BT); Water bodies (WB); Dense vegetation (DV); Sparse vegetation (SV); Agricultural land (AGRI); Scrubland (SCR);
Bare soil (BS); Exposed rocks (EXR).
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Dense vegetation had the lowest chance of remaining unchanged, with significant areas trans-
formed into sparse vegetation (62.1%) between 1990 and 2000. Sparse vegetation, on the other
hand, was converted to scrubland and exposed rocks by 30.5% and 17.7%, respectively, during
this period. Similarly, agricultural land was transformed into scrubland and bare soil by 37% and
16.8% respectively. Scrubland was converted to exposed rocks by 24.3%. Therefore, based on the
analysis of the transitional proabability matrix, it can be stated that slight land use changes have
taken place during this period. Land use types, which can provide services, have transformed into
non-resource land use types. This was not a good indicator. Even so, the urbanization process was
insignificant, with only 9% of bare land converted to built-up areas.

Tab. 5 shows the transitional probability matrix between the LULC maps of 2000 and 2018.
Built-up areas, exposed rocks, and sparse vegetation had the highest chances of remaining stable
or unchanged during this time period, with 83.7%, 75.4%, and 59.2%, respectively. While, agricul-
tural land had the lowest probability of being transformed by 20.7%. However, very small areas
of built up were converted to other land use types, such as exposed rocks (03.8%), scrubland
(8.18%), and agricultural land (1.1%). Contrary to this, bare soil, scrubland, agricultural land,
exposed rocks, and water bodies were converted to built-up areas by 19.6%, 18.9%, 14.9%, 12.8%,
and 12.3% respectively. Except for built up areas, the water bodies did not convert to any other
land use types during this period. Similar to built-up areas, scrubland has gained a huge amount
of area from other land use types, such as sparse vegetation (19.1%), agricultural land (33.31%),
and bare soil (32.09%). From this analysis, it can be concluded that the urbanization process
has accelerated to capture other land use types in the process of urbanization and development.
Therefore, this period can be called the period of urbanization in the study area.

Table 5: Transitional probability matrix for LULC maps from 2000 to 2018

Land use types BT WB DV SV AGRI SCR BS EXR

Builtup 0.8371 0.0000 0.0033 0.0126 0.0115 0.0818 0.0151 0.0385
Water bodies 0.1238 0.4377 0.2412 0.0535 0.0048 0.0687 0.0040 0.0663
Dense vegetation 0.0814 0.0044 0.3751 0.3052 0.0952 0.0760 0.0034 0.0594
Sparse vegetation 0.0568 0.0000 0.0835 0.5916 0.0316 0.1910 0.0020 0.0435
Agricultural land 0.1498 0.0000 0.0477 0.1765 0.2068 0.3331 0.0667 0.0195
Scrubland 0.1899 0.0000 0.0039 0.0734 0.0157 0.5367 0.0535 0.1269
Bare soil 0.1963 0.0000 0.0015 0.0064 0.0167 0.3209 0.4312 0.0269
Exposed rockes 0.1287 0.0000 0.0011 0.0190 0.0017 0.0876 0.0073 0.7546

Tab. 6 displays the transitional probability matrix between the LULC maps of 2000 and 2018.
Built up areas in the study area were the most consistent and stable land use types, having the
largest transitional probability of being unchanged by 83.6%. Similarly, exposed rocks are also a
consistent land use type, having a good amount of transitional probability to be unchanged by
75.08%. While, agricultural land was the lowest transitional probability of being unchanged by
15.3% over 28 years. However, built up areas have not changed to other land use types signifi-
cantly. Scrubland and exposed rocks have gained a negligible amount of built-up area over the
last 28 years, increasing by 5.8% and 7%, respectively. In the study area, a fast urbanisation trend
has been noticed. Huge amounts of other land use types, such as sparse vegetation, agricultural
land, scrubland, bare soil, exposed land, and water bodies, were converted into urban areas by
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15.2%, 17.2%, 21.8%, 23.8%, 12.4%, and 19.5%, respectively. Therefore, in the aim of development,
urban areas have captured all resources providing land use types, which is not a good sign for the
environment and the ecosystem.

Table 6: Transitional probability matrix for LULC maps from 2000 to 2018

Land use types BT WB DV SV AGRI SCR BS EXR

Builtup 0.8367 0.0000 0.0022 0.0138 0.0070 0.0583 0.0118 0.0702
Water bodies 0.1052 0.3508 0.2429 0.1681 0.0126 0.1052 0.0000 0.0152
Dense vegetation 0.0289 0.0028 0.5341 0.2963 0.0429 0.0169 0.0000 0.0781
Sparse vegetation 0.1528 0.0002 0.0637 0.4780 0.0397 0.1713 0.0011 0.0933
Agricultural land 0.1719 0.0000 0.0324 0.1572 0.1532 0.3995 0.0697 0.0161
Scrubland 0.2182 0.0000 0.0024 0.0469 0.0139 0.4504 0.0539 0.2143
Bare soil 0.2388 0.0000 0.0005 0.0061 0.0105 0.2878 0.4296 0.0266
Exposed rockes 0.1240 0.0000 0.0016 0.0119 0.0024 0.0839 0.0254 0.7508

3.5 Urban Sprawl Identification Using Landscape Fragmentation
Urbanization and developmental activities have been the key focal point for the conversion of

LULC types for over 28 years in the study area. The landscape dynamics analysis also showed that
all resource providing land use land types have been transformed into urban areas since 1990–2018
(Tabs. 3–5). Therefore, to control the unscientific and unsystematic expansion of urban areas, the
identification of the urban areas in a quantitative and spatial way is an essential task. In the
present study, the urban sprawl of Abha city was modelled and quantified by employing landscape
fragmentation matrices. Fig. 3 shows the urban sprawl using landscape fragmentation for 1990,
2000, and 2018 based on the arrangement of pixels or concentration of urban areas in a particular
area. However, in the present study area, during 1990, the study area had no large core area; while
a very small number of small core (4.82 km2) and medium core (2.68 km2) urban areas were
observed. But the patch and edge areas were covered by 19.16, and 29.98 km2 respectively. In
2000, the medium core, perforated area of 1990 was converted into a large core area (10.46 km2),
while the patch and edge areas increased to 26.03, and 43.88 km2 respectively. Some areas of the
edge were transformed into perforated urban areas (13.66 km2). As a result, it can be stated that
highly stable urban areas (large core) (10 km2), as well as a large number of new urban areas,
were formed between 1990 and 2000, indicating that the urbanization process was carried out
both in the center and in nearby rural areas. The urbanization process, which converted different
types of LULC to a large extent, was mainly observed in 2018. The patch and edge areas were
increased to 40.63, and 98.86 km2. The perforated area was 48 km2. While, the small, medium,
and large core areas were covered by 23.19, 8, and 52.76 km2 areas (Fig. 3).
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Figure 3: Urban sprawl identification using landscape fragmentation for (a) 1990, (b) 2000, and
(c) 2018

Overall, new urban areas (urban sprawl) in the form of patches and edges increased by
111.98% and 229.68% during the last 28 years, which can easily indicate the very fast urbanization
process in the study area. The perforated area increased by 728.28%. The stabilized urban area
grew by more than 400%. These findings imply that small core, perforated, and some edge
areas have been transformed into large cores or stable urban areas. The study area observed
an insignificant number of small and medium core areas. As a result, it is possible to forecast
that in the future, a large number of stable urban areas will be formed by combining existing
perforated, small core, medium core, and some edge areas. According to the trend of horizontal
urban expansion, many natural resource-producing land use types will be converted into urban
areas as a result of rapid and unsystematic urbanization.

On the other hand, urban sprawl was identified and quantified using built up presence
frequency (Fig. 7). Usually, the presence frequency approach is a common approach, which has
been employed in wetland studies [44,54]. For the first time, it was utilized in urban science to
identify urban sprawl. The idea behind the application of presence frequency is that it can provide
information about each pixel, how many times those pixels have appeared in a particular area.
Therefore, lower frequencies indicate new pixels or new areas. Based on this line of thinking, it
was applied in the study area. Low frequencies indicate new urban areas and vice versa. Fig. 7a
shows the urban sprawl modelling using the frequency approach. Over a 28-year period, a 196.35
km2 area was identified as a new urban area. Similarly, the perforated urban area was covered by a
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55.78 km2 area. A 43.73 km2 area was designated as the stable area. Therefore, from this analysis,
it can be stated that the study area observed huge urban sprawl due to rapid urbanization.

3.6 LULC Prediction
After analyzing the LULC dynamics, the present study was designed to forecast the future

LULC of 2028 based on historical LULC maps. Before forecasting future LULC, the important
task is to predict the present or existing LULC maps. If the predicted model provides a satisfac-
tory outcome, then the same model can be applied to predict future LULC maps. Prediction of the
existing LULC map is an essential task because it is impossible to evaluate the performance of the
model for future LULC. As we do not have any idea about the future of LULC, the performance
of the model has to be judged before applying it to predicting the future LULC map. Otherwise,
the future LULC map would be unreliable. However, the performance of the model can be judged
when the model has been applied to predict the existing LULC map. Therefore, in the present
study, the LULC map of 2018 was simulated first and evaluated the performance of the model.
After obtaining good performance of the model, the LULC map of 2028 was predicted. In the
present study, seven LULC change conditioning factors for 2018 and 2028 were identified, such
as elevation, slope, proximity to urban areas, agricultural land, scrubland, sparse vegetation, and
water bodies. Lower elevations and slopes provide favorable conditions for urban expansion. While
regions which are located near urban areas have higher chances of being converted to urban areas.
In contrast, high distances from core forest, water bodies, and agricultural land have been deciding
factors in urban area transformation. Figs. 4 and 5 show the LULC change conditioning factors
for 2018 and 2028. The conditioning factors for predicting 2018 were prepared from the data of
2000, while the conditioning factors for predicting 2028 were generated from the data of 2018.
However, Fig. 4 showed that the eastern and north eastern parts of the study area have lower
elevation and slope, which is a suitable condition for constructing new habitat. While the northern
part of the study area was very far from the existing urban area (6270 m in 2000 and 7068 m in
2018). Therefore, the conversion to an urban area in this region is very difficult, even in the future.
On the other hand, agricultural land, sparse vegetation, and scrubland in the eastern and north
eastern parts of the study area were situated very close to urban areas in 2000. Therefore, these
areas had a higher chance of being converted to urban areas in 2018. Similarly, the closeness of
these areas to urban areas increased significantly in 2018, which indicates the conversion of these
areas to urban areas in 2028 (Fig. 5). Then, the ANN-MLP model was applied to integrate these
parameters to construct a land use suitability model for predicting 2018 and 2028.
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Figure 4: LULC change conditioning factors, such as (a) elevation, (b) slope, (c) proximity to
urban area, (d) proximity to agricultural land, (e) proximity to scrubland, (f) proximity to sparse
vegetation, (g) proximity to water bodies for predicting 2018 LULC
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Figure 5: LULC change conditioning factors, such as (a) elevation, (b) slope, (c) proximity to
urban area, (d) proximity to agricultural land, (e) proximity to scrubland, (f) proximity to sparse
vegetation, (g) proximity to water bodies for predicting 2028 LULC

Based on the ANN model based land suitability model, the CA model was implemented
to construct the LULC maps of 2018 and 2028. After obtaining the LULC map in 2018, it
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was matched with the original LULC map to judge the performance of the ANN-CA model
for prediction. The correction of prediction, correlation coefficient and kappa coefficient for the
LULC map of 2018 were 76.2%, 0.841 and 83%, which indicates satisfactory performance of
the model. After validation of the predicted LULC map of 2018, the LULC map of 2028 was
constructed using the same model. No model parameters were changed during the modelling
procedure of 2028 to avoid different outcomes of the model. Fig. 6 shows a simulated LULC map
of 2018 and a predicted LULC map of 2028.

Figure 6: LULC simulation and prediction for (a) 2018, and (b) 2028

Tab. 7 shows the land use dynamics of LULC from 1990 to 2028. It showed that the built up
area would be 343.72 km2, which will increase by 281.34 km2 (22.14%) and 72.91 km2 (5.74%)
compared to the LULC maps of 1990 and 2018. The area under bare soil has decreased by 14.71
km2 since 2018 and 72.46 km2 since 1990. The exposed rock has decreased by 86.48 km2 since
2018 and 79.22 since 1990. Other land use types in 2028 would remain quite similar to the LULC
of 2018.

Table 7: Statistics related to LULC dynamics between 1990 and 2028

Land use
types

Area
(km2)

Area (%) � change
(2018–
2028)

� change
(%)
(2018–
2028)

� change
(1990–
2028)

� change
(%)
(1990–
2028)

Built up 343.72 27.05 72.91 5.74 281.34 22.14
Water bodies 0.33 0.026 −0.19 −0.01 −1.03 −0.08
Dense vegetation 8.77 0.69 −0.47 −0.04 7.7 0.61
Sparse vegetation 89.96 7.08 15.5 1.22 5.77 0.45
Agricultural land 17.58 1.38 −0.09 −0.007 −10.52 −0.83
Scrubland 342.98 26.99 13.54 1.06 −131.59 −10.36
Bare soil 98.3 7.74 −14.71 −1.16 −72.46 −5.7
Exposed rockes 369 29.04 −86.48 −6.81 −79.22 −6.23
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3.7 Future Urban Sprawl Modelling
Based on the future LULC maps of 2028, it can be seen that urban areas or built up areas will

increase by 26.79% since 2018. Therefore, the new urban areas would obviously be increased. In
the present study, urban sprawl was modeled using both the frequency approach and the landscape
fragmentation approach (Figs. 7b and 7c).

Figure 7: Urban sprawl using frequency approach (a) 1990–2018, (b) 1990–2028, and landscape
fragmentation approach (c) 2028

The new urban area would cover 108.1 km2, while the perforated urban area would cover
172.67 km2. The urban areas that are stable and highly stable would be 52.18 and 43.24 km2,
respectively. If the authorities were notable to control the unsystematic, very fast urbanization, in
the future, many resources providing land use types could be transformed into new urban areas.
Urban sprawl can be identified more clearly using the landscape fragmentation approach. Fig. 7c
showed that new urban areas in the form of patches and edges would be 39.91 km2 and 120.78
km2. While the perforated urban area would be 60.84 km2. In 2028, the stable urban areas of
various sizes, such as small core, medium core, and large core areas, would be 28.19, 20.86, and
73.57 km2 (Fig. 7c). Between 1990 and 2028, the growth rate of new urban areas (patch and edge)
would be 108.26% and 302.79%, respectively. In addition, perforated urban areas would increase
by 949.83%. The stabilized urban area would grow by more than 450%. As a result, it can be
stated that in the future, the urbanization process will be faster and more stable in the center.
It does not imply that horizontal expansion or urban sprawl will be reduced. The expansion of
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new urban areas would be less than that of the stabilized part. Stable urban areas would be
more compact and overpopulated or crowded in 2028. Authorities should focus on this to control
horizontal expansion towards both the outside and inside of the city. Otherwise, in the future, the
natural environment as well as the urban environment would be in danger.

4 Discussion

The current study investigated how to forecast and quantify urban spread in Abha, Saudi
Arabia, between 1990 and 2028. From the following three perspectives, this study contributes to
the existing literature on urban area extension and sprawl modelling utilising geospatial technol-
ogy: First, we used the delta change and transitional probability matrix to map spatiotemporal
LULC maps and investigate land use dynamics; second, urban sprawl from 1990 to 2018 was
identified using new approaches such as landscape fragmentation and frequency approach; and
third, future land use for 2028 was predicted using the ANN-CA model and future urban sprawl
was explored using the two new approaches. Three significant findings have emerged from our
research. First, significant LULC dynamics have been found in Abha between 1990 and 2018.
However, there was no notable change in LULC in the city between 1990 and 2000. Following the
year 2000, the study area underwent a transformation as a result of the development activities.
As a result, between 2000 and 2018, significant LULC dynamics were detected. Due to the fast
urbanisation and modernisation of the study area, a large amount of horizontal urban growth was
seen during this time. Agricultural land, scrubland, and topographically suitable unoccupied places
have all been used to create new urban areas. Several Saudi Arabian cities, including AlRiyadh
city (increased by 545 km2 between 1987 and 2017), Riyadh (increased by 185% between 1990 and
2014), Al-Khobar City (increased by 110% between 1990 and 2001), Jeddah (increased by 109.76
km2 between 1972 and 2014), and Al Hassa oasis (increased by 254.52 km2 between 1972 and
2014), have observed substantial growth [97–101]. Apart from Saudi Arabia, Dewan et al. [102]
observed that the urban area of Dhaka megacity rose by 190% between 1975 and 2003, which
is similar to our findings. Between 1972 and 2018, the built-up area in Mangalore, India, rose
by 39%, according to Dhanaraj et al. [103]. According to Badlani et al. [104], the urban area
of Gandhinagar, India, has grown by 73 percent in 26 years (1989–2015). According to Sahana
et al. [32], the urban area of the Kolkata urban agglomeration rose by 24.5 percent between
2000 and 2015, with agricultural land being converted (decreased by 66.9 percent between 2000
and 2015). According to Altuwaijri et al., [97], the population of AlRiyadh has expanded by 600
percent in the previous four decades. This pattern has been detected in several researches all across
the world [105–114].

Second, between 1990 and 2028, the creation of new urban areas on agricultural land and
scrubland increased significantly in Abha. Along with urban growth, the study area witnessed the
urban area’s stabilisation process in certain locations. The number of rapidly changing metropoli-
tan regions that will become stable in the near future has also grown dramatically. Many cities
across the world, including Bilwara (Rajsthan, India), Mansoura (Egypt), Hangzhou (China),
Harbin (China), Khoms (Libya), and 417 metropolitan areas (Europe), have had difficulties with
unsystematic urban expansion, similar to our results [115–120]. Another intriguing aspect of this
research is the use of landscape fragmentation and frequency approaches to identify urban sprawl
rather than traditional methods. Urban sprawl identification is a challenging but necessary under-
taking for urban management [121]. To determine urban sprawl in Kolkata’s agglomeration region,
Sahana et al. [32] analysed two LULC maps at two distinct dates. By comparing two LULC maps,
Bhat et al. [78] were able to detect urban sprawl in Dehradun, India. By comparing two classed



CMES, 2021, vol.129, no.2 777

LULC maps, El Garouani et al. [122] detected urban sprawl in Fez, Morocco. In Tshwane, South
Africa, Magidi et al. [34] employed landscape matrices to identify urban sprawl. Mosammam
et al. [80] used Shannon’s entropy model to find urban sprawl in the Iranian city of Qom. In
Beijing, China, Yang et al. [81] employed GIS-based buffer analysis to identify urban growth. To
identify urban sprawl, many studies analysed two LULC maps from different times [32,123,124].
These methodologies are unable to quantify the extent of urban sprawl, particularly how many
additional urban areas exist. The use of a landscape fragmentation and frequency technique not
only provides valuable quantification of the urban region, but also excellent visualisation. As a
result, urban sprawl and even the stages of urbanisation may be detected from a bird’s eye view.
These techniques have a relatively basic modelling method, yet they provide extremely reliable
results. As a result, urban planners, city officials, and scientists may use these methodologies to
mimic urban sprawl when developing urban and environmental management strategies.

Third, we calculated that the urban growth in 2028 will be 343.72 km2, with a delta change
rate of 22.14 percent since 1990. In the current study area, the growth rate since 1990 has been
450.3%. This rate of urbanisation is regarded to be extremely fast. Many cities in the Arab world,
such as Al Riyadh, Tabriz, Iran (raised by 116% in 2035), Nizwa, Al Dakhliyah, and Oman,
Iran (up by 418.5% in 2038), have witnessed the same growth rate for the future [97,125,126].
The cause of this remarkable growth rate is the rapid expansion of infrastructural infrastructure
in the metropolitan region as a result of modernization [126]. Rural migration has thus grown
quite quickly in the hunt for work and other conveniences. Rural migrants began to settle in
the vicinity of metropolitan centres. Many Saudi Arabian towns have thus seen quite exceptional
urban expansion. The current study area has an urban development rate equivalent to that of
India and China, which are highly rapidly developed. Both emerging countries have had very
rapid urban expansion worldwide. The overcrowding in both nations is one of the key reasons.
While overpopulation is not a major issue in Saudi Arabia, the country has experienced increasing
urbanisation as a result of urban-centric growth and possibilities. However, the urbanisation
process will be extremely difficult in the near future due to the conversion of natural resource-
providing land use types and overcrowding. As a result, it would wreak havoc on the natural and
urban environments.

Above all, the identification of urban sprawl using a landscape fragmentation and frequency
method is a significant contribution to the literature on urban sprawl. Even little researche on
future urban sprawl mapping has been conducted. In the current study, the future urban sprawl
was identified using the two methodologies indicated. Because urban sprawl has become a world-
wide issue or worry in recent decades, there is little doubt that the fragmentation methodologies
utilised in this study may be used for the assessment of urban development in other cities and
nations [124,127]. Furthermore, this study offers a thorough examination of spatiotemporal LULC
mapping, as well as analyses of its dynamics using the Markovian transitional probability matrix,
urban sprawl identification using novel approaches, future LULC modelling using the ANN-CA
model, and future urban sprawl identification. As a result, the outcomes of this study will aid
in raising awareness of the alarming severity of urban land growth. Policymakers may use the
data to establish strategies to reduce urban sprawl by restricting rural-urban migration, LULC
conversions, and implementing more compact urban development policies [26,32,121,125,128–130].

5 Conclusions

The goal of this research was to give a complete examination of LULC trends from 1990
to 2018. Since 1990, the built-up area has expanded by 16.34 percent, compared to 3.34 percent
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between 1990 and 2000 and 13 percent between 2000 and 2018. After the year 2000, urbanization
development accelerated. Between 1990 and 2018, the transitional probability matrix analysis
revealed that the most stable LULC type in the study area is urban, with a transitional probability
of 83.6 percent. Agricultural land, scrubland, exposed rocks, and water bodies, on the other hand,
were converted to built-up areas by 17.9%, 21.8%, 12.4, and 10.5, respectively. Agricultural land,
on the other hand, was the most transformed land use. Scrubland, built-up areas, and sparse
vegetation acquired 39.9%, 17.1%, and 15.72% of agricultural land. Over the course of 28 years,
new urban areas in the form of patches and edges rose by 111.9 percent and 229.6 percent,
respectively, according to the current study. In 2018, more than 200 percent of urban areas were
stabilized or converted to core urban areas. The LULC map for 2028 was also projected using the
ANN-CA model. The results of the ANN-CA were satisfactory. According to the LULC of 2028,
the built-up area expanded to 343.72 km2, while bare soil and exposed rocks decreased by 86.48
and 14.71 km2, respectively. In 2028, the area covered by agricultural land decreased significantly.
The data gathered in the study area allows for a thorough examination of urban sprawl and its
dynamics, which might be useful in planning for long-term urban growth.

Of course, the use, of course, resolution satellite images (Landsat) for LULC mapping utilizing
a supervised image classification approach is a key drawback of this study. Due to a lack of
socioeconomic data, which impacts land use changes, the prediction model’s performance may
be low. For forecasting LULC in 2018 and 2028, we employed a lower number of explanatory
factors. High-resolution images, such as SPOT-5, KOMPSAT series, IKONOS, QUICKBIRD, and
others, would be highly beneficial for obtaining very high precision urban growth and sprawl
mapping. The management plans will be highly accurate since they may supply very minute details
of LULC types. Deep learning approaches such as artificial neural networks, and random forests,
on the other hand, can categorize LULC types more accurately than SVM. Similarly, we have just
integrated ANN with CA for the prediction of LULC. Instead of it, Resnet, Xception, and VGG
Net can perform better results for forecasting. Finally, to build high-quality future LULC maps,
the number of variables should be raised. By resolving these issues, the work will be more robust
and thorough, which will aid in the development of thorough and accurate urban and natural
resource management plans.
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