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ABSTRACT

Optimizing the performance of composite structures is a real-world application with significant benefits. In this
paper, a high-fidelity finite element method (FEM) is combined with the iterative improvement capability of
metaheuristic optimization algorithms to obtain optimized composite plates. The FEMmodule comprises of nine-
node isoparametric plate bending element in conjunction with the first-order shear deformation theory (FSDT).
A recently proposed memetic version of particle swarm optimization called RPSOLC is modified in the current
research to carry out multi-objective Pareto optimization. The performance of the MO-RPSOLC is found to be
comparable with the NSGA-III. This work successfully highlights the use of FEM-MO-RPSOLC in obtaining high-
fidelity Pareto solutions considering simultaneous maximization of the fundamental frequency and frequency
separation in laminated composites by optimizing the stacking sequence.
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1 Introduction

Composite structures, owing to their superior properties like excellent strength to weight ratios
and superb stiffness to weight ratios are steadily replacing steel and other metallic structures
in structural engineering. As such, these composite structures often operate in various static
and dynamic loading conditions [1]. Often these composite structures carry vibrating machin-
ery/equipment on them. To avoid resonance, it becomes necessary that these structures are
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designed in such a way that the vibrating equipment operates well outside the first few prominent
natural frequencies of the structure.

Simulating the static or dynamic behaviour of laminated composites using numerical methods
like finite element analysis (FEA) has achieved a lot of attention. Such high-fidelity numerical
methods can be coupled with optimization methods to predict the optimal parameter combina-
tions. For a given design or a specific application, often the geometric parameters of composite
plates are unalterable. In such cases, altering the stacking sequence of laminated plates to optimize
its performance is the most convenient approach. However, owing to the wide design space, i.e.,
ply angle range of ±90◦ for each lamina, it is physically impossible to experimentally obtain the
optimal combination of ply angles, especially when the number of plies is high. For example, for
a symmetric laminated composite plate having 4 layers, i.e., 2 design variables, the total number of
possible ply angle combinations is 1812 (considering discrete ply angles with 1◦ increment). Thus,
it is clear that the complexity of the search space and its dimension will increase substantially
if the number of layers in the composite plate is increased. Adali et al. [2] used a mathematical
programming approach to predict the optimal fundamental frequencies in symmetric laminates.
Narita [3] used a Ritz-based layerwise optimization approach, which was able to achieve appre-
ciable results with low computational costs. However, as pointed out by Apalak et al. [4], such
mathematical methods are often sensitive to gradients and sometimes may get trapped in local
optima. Diaconu et al. [5] in a study on thick laminated plates obtained the optimal lamination
parameters and corresponding ply angles without encountering any multi-modality.

To address the shortcomings of gradient-based optimizers, many researchers have relied
on metaheuristic optimization techniques. Le Riche and Haftka were among the pioneering
researchers to use a genetic algorithm (GA) in laminate optimization. They carried out buckling
load maximization [6], thickness minimization [7], stacking optimization [8], etc. Apalak et al. [4]
carried out stacking sequence optimization to maximize fundamental frequency using an artificial
bee colony (ABC) and GA. Hemmatian et al. [9] used an imperialist competitive algorithm (ICA)
along with GA and ant colony optimization (ACO) to simultaneously optimize the weight and
cost of a rectangular composite plate. They reported that ICA outperformed GA and ACO. Kalita
et al. [10] used GA, PSO (particle swarm optimization) and Cuckoo search to simultaneously
optimize fundamental frequency and separation between the first two frequencies. However, both
Hemmatian et al. [9] and Kalita et al. [10] used a weighted-sum approach to multi-objective opti-
mization. Correia et al. [11] considered stacking sequence as the design variables while maximizing
frequency parameters and minimizing strain energy in composite plates with piezoelectric layers.
Vo-Duy et al. [12] used non-dominated sorting genetic algorithm II (NSGA-II) in conjunction
with a finite element analysis to minimize weight and maximize the frequency of composite plates.
Ghasemi et al. [13] used a similar NSGA-II based strategy to minimize the cost of composite
shells while increasing their buckling strength. An et al. [14] studied multi-objective optimal
designs of hybrid laminates using genetic algorithms. Serhat et al. [15] carried out fundamental
frequency, buckling load and effective stiffness maximization using lamination parameters. Serhat
et al. [16] also carried out multi-objective optimization of stiffened composite fuselages.

The literature search reveals that though a lot of work on metaheuristic and FEA-based
high-fidelity single-objective optimization has been carried out, similar high-fidelity optimization
in a multi-objective perspective is rare. A novel particle swarm optimization called RPSOLC
(repulsive particle swarm optimization with local search and chaotic perturbation), demonstrated
by the author(s) as an effective single optimization tool in their previous works [10,17,18] has
been further enhanced to carry out multi-objective Pareto optimization. By comparing with a
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powerful and recent multi-objective algorithm called the NSGA-III (non-dominated sorting genetic
algorithm-III), the efficacy and utility of MO-RPSOSLC in designing laminated composites are
demonstrated.

2 Methodology

The methodology used in the current research work is shown in Fig. 1. Laminated composite
plate design considering multiple natural frequency criteria is considered as the design problem.
The design problem is introduced in detail in Section 2.1. The ply orientations of the individual
lamina are selected as the design variables. A finite element module is developed in Fortran
language that can accurately determine the natural frequencies of the laminated plate. The finite
element formulation is discussed in detail in Section 2.2. Next, two independent multi-objective
optimization modules (NSGA-III and MO-RPSOLC) for carrying out Pareto optimization are
developed in Fortran. These are discussed in detail in Sections 2.3 and 2.4, respectively. The FEM
module is incorporated as the objective function in the NSGA-III and MO-RPPSOLC modules.
Over several generations, the Pareto solutions are iteratively improved by the optimization tech-
niques. The Pareto fronts by the NSGA-III and MO-RPSOLC are compared and the superior
one is selected. Further, suitable compromise solutions relating to various test cases are selected
by using a multi-criteria decision-making method called TOPSIS. The details of the TOPSIS are
discussed in Section 2.5.

Figure 1: The methodology used in the current research work
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2.1 Problem Statement
In this paper, laminated composite plates of the configuration as shown in Fig. 2 is used. An

eight-ply square
(
b
a
= 1
)

symmetric Graphite-epoxy [19] composite laminate having a thickness

(h= 0.01) and material properties as follows is considered:

E1 = 138 GPa, E2 = 8.96 GPa, G12 = 7.1 GPa, υ12 = 0.3.

The boundary condition at the edges of the plates may be clamped (C), simply supported
(S) or free (F). Based on these conditions, 18 different boundary condition combinations are
considered for the laminated plates.

Figure 2: Typical laminated plate considered in the study

The fundamental frequency (λ1) and the difference between the first two natural modes (λ21)

are to be maximized simultaneously. The stacking sequence (i.e., the ply angles denoted by θ)
of the laminated composites are considered as the design variables to achieve this multi-objective
optimization. Optimizing the stacking sequence of laminated composite plates to optimize its
performance is a combinatorial optimization problem, which may be stated as,

Find θi = (θ1, θ2, θ3 and θ4)

which maximizes λ1 = f (θi) and λ21 = f (θi) (1)

subject to− 90◦ ≤ θi ≤ 90

As such two powerful metaheuristic optimization algorithms—NSGA-III and MO-RPSOLC
are used. Both these algorithms independently generate a set of non-dominated solution known as
the Pareto front. Each solution within the Pareto front is a compromise multi-objective solution.
Since the frequency parameters are quite sensitive to the stacking sequence, a high-fidelity finite
element analysis is carried out which runs in conjunction with the optimization algorithms.

2.2 Finite Element Method Formulation
In this work, high-fidelity structural analysis of the laminated composite plates is carried out

using a highly accurate finite element analysis (FEA) module. In past, this FEA module has been
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used by Kalita et al. [1] to accurately compute the Eigen frequencies in taper plates, laminated
plates [20] and isotropic plate with holes [21].

The FEA module is based on a nine-node isoparametric plate bending element. The element
contains four corner nodes, four mid-edge nodes and one centre node. The effect of shear
deformation is an important consideration for laminated composites since they are weak in shear.
This is included in the current FEA module by assuming the considerations of FSDT (First-order
Shear Deformation Theory) which states that the normal to the midplane would remain straight
after deformation but may or may not remain normal.

{
φx

φy

}
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

θx− ∂w
∂x

θy− ∂w
∂y

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2)

where φx and φy represent the average shear rotation over the entire plate thickness and θx, while
θy are denote total rotations in bending. u, v are the in-plane displacements whereas w is the
transverse displacement.

u=
9∑
r=1

Nrur

v=
9∑
r=1

Nrvr

w=
9∑
r=1

Nrwr (3)

θx =
9∑
r=1

Nrθxr

θy =
9∑
r=1

Nrθyr

The nine-node isoparametric plate bending element maps the laminated plate by using the
following equations:

x=
9∑
r=1

Nrxr

y=
9∑
r=1

Nryr (4)

where (x, y) is the location of any given point within the element, the rth nodal point’s location
within the element is given by (xr, yr) and the assumed Lagrangian interpolation function is
denoted as Nr.
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For any composite laminate, the stress-strain relation can be expressed as,

{σ } = [D] {ε} (5)

{σ} is the generalized stress vector.

{σ }T = [NxNyNxyMxMyMxyQxQy
]

(6)

where the in-plane force resultants are represented as Nx, Ny, Nxy; bending moments in the x and
y directions are indicated as Mx,My; the twisting moment resultant is indicated as Mxy. Qx, Qy
are the transverse shear force resultants.

In terms of displacement fields, the strain vector is,

{ε}T =
[

∂u
∂x

dv
dy

∂u
∂y

+ ∂v
∂x

−∂θx

∂x
−∂θy

∂y
−∂θx

∂y
− ∂θy

∂x
∂w
∂x

− θx
∂w
∂y

− θy

]
(7)

[D]=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A11 A12 A16 B11 B12 B16 0 0

A12 A22 A26 B12 B22 B26 0 0

A16 A26 A66 B16 B26 B66 0 0

B11 B12 B16 D11 D12 D16 0 0

B12 B22 B26 D12 D22 D26 0 0

B16 B26 B66 D16 D26 D66 0 0

0 0 0 0 0 0 kc.A55 kc.A54

0 0 0 0 0 0 kc.A45 kc.A44

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(8)

where, Aij =
n∑

k=1

(
Qij
)
k

(
Zk+1−Zk

)
(9)

Bij = 1
2

n∑
k=1

(
Qij
)
k

(
Z2
k+1−Z2

k

)
(10)

Dij = 1
3

n∑
k=1

(
Qij
)
k

(
Z3
k+1−Z3

k

)
(11)

Aij,Bij and Dij represent the extensional stiffness, extensional-bending stiffness and bending
stiffness coefficients respectively. The number of individual laminas forming the composite plate
is indicated as n. The material coefficients of the kth layer are denoted as

(
Qij
)
k.

Qk
11 =

E1

1−μ12μ21
; Qk

22 =
E2

1−μ12μ21
; Qk

12 =Qk
21 =

μ12E2

1−μ12μ21

Qk
44 =G23; Qk

55 =G13; Qk
66 =G12 (12)

μ21E1 =μ12E2 (13)

where E1 and E2 are the longitudinal and transverse Young’s modulus, respectively. μ12 and
G12, G13, G23 are the in-plane Poisson’s ratio and shear moduli, respectively.
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The strain vector can be summarized as,

{ε} =
9∑
r=1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂Nr

∂x
0 0 0 0

0
∂Nr

∂y
0 0 0

∂Nr

∂y
∂Nr

∂x
0 0 0

0 0 0 −∂Nr

∂x
0

0 0 0 0 −∂Nr

∂y

0 0 0 −∂Nr

∂y
−∂Nr

∂x

0 0
∂Nr

∂x
−Nr 0

0 0
∂Nr

∂y
0 −Nr

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ur
vr
wr
θxr

θyr

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(14)

i.e., {ε} =
9∑
r=1

[B]r {δr}e (15)

or {ε} = [B] {δ} (16)

[K]e =
∫ +1

−1

∫ +1

−1
[B]T [D] [B] |J|dξdη (17)

where [B] is the strain matrix, {δ} is the nodal displacement vector and [K] is the stiffness matrix.
|J| is the Jacobian matrix.

The lumped mass matrix is computed as,

[M]= ρh
∫ +1

−1

∫ +1

−1

[
[Nu]T [Nu]+ [Nv]T [Nv]+ [Nw]T [Nw]+ h2

12

[
Nθx

]T [Nθx

]+ h2

12

[
Nθy

]T [Nθy

]]

× |J|dξdη (18)

where,

[Nu]= [[Nr] [N0] [N0] [N0] [N0]]

[Nv]= [[N0] [Nr] [N0] [N0] [N0]]

[Nw]= [[N0] [N0] [Nr] [N0] [N0]][
Nθx

]= [[N0] [N0] [N0] [Nr] [N0]]
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[
Nθy

]= [[N0] [N0] [N0] [N0] [Nr]]

where [N0] is a null matrix of the order 1× 9.

[Nu]T [Nu] and [Nv]T [Nv] are responsible for the in-plane movements of mass. [Nw]T [Nw] is

related to inertia is the transverse movement of mass.
h2

12

[
Nθx

]T [Nθx

]
and

h2

12

[
Nθy

]T [Nθy

]
are

responsible for rotary inertia.

[K0] and [M0] are the overall stiffness matrix and mass matrix respectively. The plates’
equation of motion is,

[K0]=ω2[M0] (19)

where ω is the frequency of the plate, calculated by solving Eq. (19) using the simultaneous
iterative technique. In this article, all the frequency parameters are expressed in non-dimensional
form as,

λ=ωa2
√

ρh/D0, where, D0 = E2h3

12 (1−υ12υ21)
(20)

Kalita et al. [1,21] in their previous works has shown that the current FEM formulation
can determine the natural frequencies with less than 1% error as compared to higher-order shear
deformation theory and analytical solutions for thin and moderately thick plates. A mesh size of
18 × 18 was found to be satisfactory in those studies. However, in the current work, to keep
the computational time manageable, a reduced mesh of 4 × 4 is used as shown in a previous
optimization study [18] by the author(s).

2.3 Optimization with NSGA-III
In this work, the non-dominated sorting genetic algorithm III (NSGA-III) [22,23] is used for

carrying out Pareto optimization. The multi-objective optimization problem is stated in Eq. (1).
The NSGA-III is based on Darwin’s theory of natural evolution. The algorithm starts by assum-
ing a set (called population) of possible solutions (called individuals). Each individual has certain
properties (called chromosomes) which can be combined with others, mutated and thus, improved.
These improvements in the fitness of the individuals go on until a termination criterion is met.
The FEA-NSGA-III used in the current research is realized by using the pseudo-code given in
Algorithm 1.

Algorithm 1: FEA-NSGA-III
BEGIN
Objective function, λ= f (x) , x= (θ1, . . . , θd)
Initiate generation, t= 0
Initiate a random population Pt of size npop by encoding

Calculate fitness of Pt using FEM
DO
{
Create a new population Ct from Pt by crossover
Modify the population Ct by mutation
Calculate the fitness of Ct using FEM

(Continued)
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Algorithm 1. (continued)
Set Rt =Pt ∪Ct
Apply non-dominated sorting on Rt and find F1, F2,. . .
St = { }, i= 1;
FOR |St| ≤ npop

DO
{

St = St ∪Fi
i= i+ 1

}
IF |St| = npop

DO
Pt+1 = St; BREAK

ELSE
{
Pt+1 =∪l−1

j=1Fj
Normalize St using min and intercept points of each objective
Associate each member of St to a reference point
Choose npop− |Pt+1| members from Fl by niche preserving operator
}

t= t+ 1
}
UNTIL (t= tmax)

report the Pareto front
END

2.4 Optimization with MO-RPSOLC
In this article, a novel memetic version of PSO (Particle Swarm Optimization) called RPSOLC

(Repulsive Particle Swarm Optimization with Local Search and Chaotic Perturbation) is used for
multi-objective optimization of laminated composites. In past, single-objective RPSOLC has been
used by Kalita et al. [17] for optimizing the laminated composites. Kalita et al. [10] has also used
RPSOLC to conduct weighted sum multi-objective optimization. However, this the first instance
of its usage in the Pareto optimization scenario. The architecture used for selecting the Pareto
optimal solutions in the current MO-RPSOLC (multi-objective RPSOLC) is similar to that used
by Coello et al. [24]. The working of the RPSOLC algorithm is explained below:

Any typical PSO algorithm [25] starts by generating a set of random solutions (called parti-
cles) in the design space. In PSO terminology, this set of solutions is collectively called the swarm.
Each particle within the swarm is aware of its personal best position called the pBest. The particles
in the swarm are also aware of the overall best position (or solution) found so far called the
gBest. All particles try to move towards the gBest position by using the following two rules to
update their velocity and position.

vt+1 =ω.vt+ c1.r1. (pBest−xt)+ c2.r2.(gBest−xt) (21)

xt+1 = xt+ vt+1 (22)
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where vt and vt+1 are the velocity in the current and the next generation, respectively. Similarly,
xt and xt+1 are the positions of the particle in the current and the next generation, respectively.
r1 and r2 are two random number between 0 to 1. c1 and c2 are called the cognitive and social
parameters. The effect of the velocity of the previous generation on the velocity of the current
generation is controlled by the inertia weight ω.

Due to the traditional PSO’s tendency to get stuck in local optima, Urfalioglu [26] proposed
the RPSO in which the particles update their velocity using the relation below:

vt+1 =ω.vt+α.r1. (pBest−xt)+ω.β.r2.
(
pBest−xt

)+ω.γ .r3.vt
r (23)

where α,β,γ are constants. The term α.r1. (pBest−xt) leads any particle towards its self-best
position. The term ω.β.r2.

(
pBest−xt

)
leads the particle away from a randomly chosen particle

from the swarm. The term ω.γ .r3.vtr is responsible for the exploration of new search regions.

The traditional RPSO was further upgraded by incorporating the memetic attributes suggested
by Santos et al. [27,28]. Each particle is endowed with the ability to conduct a local search by
visiting its surroundings. The visit is independent of the gradient in any directions and thus, free
from bias. If any particle is seen to be trapped in one position even after a pre-defined number of
generations, a small random disturbance in its velocity (called the chaotic perturbation) is inserted.

xt+1 = xt+ vt+1.(1+ rchaos) (24)

where rchaos is the chaotic perturbation. This helps the RPSOLC algorithm to avoid getting
trapped in local optima pits. The pseudocode of the current FEA-MO-RPSOLC approach is
shown in Algorithm 2.

Algorithm 2: FEA-MO-RPSOLC
BEGIN
Objective function, λ= f (x) , x= (θ1, . . . , θd)
Initiate generation, t= 0
Initiate a random swarm SWt of npop particles
Calculate the fitness of SWt using FEM

Record non-dominated particles in an external repository
Update pBest
Update gBest
DO
{

FOR each particle i
DO
{

Update velocity of particles using Eq. (23)
Update position of particles using Eq. (24)
Update pBest

}
Update gBest
Update external repository
t= t+ 1

}
(Continued)
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Algorithm 2. (continued)
UNTIL (t= tmax)

report the Pareto front
END

2.5 Multi-Criteria Decision Making with TOPSIS
For an MCDM problem consisting of m alternatives and n criteria, let D= xij be a decision

matrix, where xij ∈R. The Pareto fronts obtained from NSGA-III and MO-RPSOLC are used as
the decision matrix in this paper.

D=

⎡
⎢⎢⎢⎢⎢⎣

x11 x12 · · · x1n

x21 x22 · · · x2n
...

...
. . .

...

xm1 xm2 · · · xmn

⎤
⎥⎥⎥⎥⎥⎦ (25)

There are different objective and subjective weight allocation methods. In this paper, the
standard deviation approach described in the preceding section is used. The weight vector may be
expressed as,

wj =
[
w1 . . . wn

]
, where,

n∑
j=1

(
w1 . . . wn

)= 1. (26)

A normalized decision matrix nij of each criterion is created using Eq. (27),

nij =
xij√∑m
i=1 x

2
ij

(27)

Next, the weighted normalized matrix is created using Eq. (28),

Nij =wj ∗ nij for i ∈ [1,m] and j ∈ [1,n] (28)

The ideal positive (best) and ideal negative (worst) solutions are then estimated using Eqs. (29)
and (30), respectively.

A+
j =

{
max .Nij | j ∈B

min .Nij | j ∈C
(29)

A+
j =

{
min .Nij | j ∈B

max .Nij | j ∈C
(30)

where B is a vector of benefit function and C is the vector of the cost function, for i ∈ �1,m� and
j ∈ �1,n�.
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The separation measurement and relative closeness coefficient are then determined. In TOP-
SIS, the difference of each response from the ideal positive (best) solution is given by Eq. (31).

S+i =
√√√√ n∑

j=1

(Nij −A+
j )2 (31)

for i ∈ [1,m] and j ∈ [1,n]

Figure 3: Pareto front by NSGA III and MO-RPSOLC for (a) CCCC (b) CCCF (c) CCCS (d)
CCFF
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Similarly, the difference between each response from the ideal negative (worst) solution is given
by Eq. (32).

S−i =
√√√√ n∑

j=1

(Nij −A−
j )2 (32)

for i ∈ [1,m] and j ∈ [1,n]

Figure 4: Pareto front by NSGA III and MO-RPSOLC for (a) CFCF (b) CFFF (c) CSCF (d)
SCCF
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The corresponding closeness coefficient (CCi) of the ith alternative is calculated using Eq. (33).

CCi =
S−i

S+i +S−i
(33)

where 0≤CCi ≤ 1, i ∈ [1,m]

The final step is to rank the alternatives in decreasing order of closeness coefficient value.

Figure 5: Pareto front by NSGA III and MO-RPSOLC for (a) SCFF (b) SCSC (c) SCSF (d)
SFCF

3 Results and Discussion

Figs. 3–7 show the high-fidelity Pareto fronts generated by the NSGA-III and MO-RPSOLC
algorithms for 18 different boundary conditions. It is seen that despite the geometric configuration
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and the material of the laminated composites being the same, in these 18 cases, the boundary
condition plays a significant role in the shape of the Pareto fronts. For instance, in cases like
CCCC, CCSS, SSSS, etc. the Pareto fronts are discontinuous whereas, in the case of boundary
condition combinations like CCCF, CSCF, SCSC the Pareto fronts are smooth and continuous.
The discontinuity in Pareto fronts has perhaps arisen due to the algorithm encountering the
concave portion of the objectives. This has led to the presence of regions of the objective
functions where they are dominated. The severe discontinuity in Pareto fronts in CCCC SSCC,
SSFF and SSSS boundary conditions indicates that the presence of several distinct feasible regions
with gaps where the solutions are dominated.

Figure 6: Pareto front by NSGA III and MO-RPSOLC for (a) SSCC (b) SSCF (c) SSFF (d) SSSC
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Figure 7: Pareto front by NSGA III and MO-RPSOLC for (a) SSSF (b) SSSS

The optimal stacking sequences corresponding to the limits of the Pareto fronts for different
boundary condition cases are reported in Tab. 1. It is seen that in general, the limits of the Pareto
fronts for both NSGA-III and MO-RPSOLC show negligible variation. However, it is interesting
to observe that the optimal ply angles reported by NSGA-III and MO-RPSOLC mostly vary by
either (approx.) 5◦ or in the orientation direction (±) of the fibre.

The performance of the NSGA-III and MO-RPSOLC in terms of the spread of the Pareto
fronts for all the 18 combinations of boundary conditions is shown in Fig. 8. It is seen that in
general, the NSGA-III has better uniformity in the Pareto solution spread as compared to the
MO-RPSOLC. In most cases, the MO-RPSOLC solutions spread is seen to be skewed. This in
contrast to the NSGA-III’s uniformity in the spread, indicates that perhaps the MO-RPSOLC
has not explored the design space sufficiently. However, in all the cases the extremum points
of the Pareto fronts for both the NSGA-III and MO-RPSOLC seems to be similar. It is also
evident from Figs. 8a, 8c and 8e that as the constraints increase the average (of the Pareto
front range) fundamental frequency increases. This is because the increase in constraints (i.e.,
restrictions on the degree of freedoms) causes an increase in the stiffness of the structure which,
in turn, is responsible for the increased fundamental frequency. As seen from Figs. 8b, 8d and 8f,
baring a few exceptions like CCCC, SSCC boundary condition combinations, as the constraints
increase, the range of the frequency separation between the first two natural frequencies also
increase. It is worth pointing out here that the average time taken for MO-RPSOLC simulations
is approximately 2/3rd of the time taken by NSGA-III. On average, it took 265 min to carry
out each NSGA-III simulation on a Dell Inspiron 15-3567 series windows system with Intel(R)
CoreTM i7-7500U CPU @ 2.70 GHz, Clock Speed 2.9 Ghz, L2 Cache Size 512 and 8 GB ram.

TOPSIS is used to select the best solutions from the Pareto fronts based on three different
test cases. In test case 1, only the ranked 1 solution by TOPSIS is considered; in test case 2,
the top 3 ranked solutions are considered. Similarly, for test case 3, the top 10 ranked TOPSIS
solutions from the combined Pareto fronts are considered. Additionally, to draw unbiased and
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comprehensive conclusions based on the TOPSIS analyses, the criteria weight w1 is varied from
0.01 to 0.99 with 0.01 increments for all the boundary conditions. Based on the considered test
cases, the optimum predictions for each w1 is recorded.

Table 1: Optimal stacking sequences corresponding to the limits of the Pareto fronts

Boundary
condition

NSGA-III MO-RPSOLC

[θ1, θ2, θ3, θ4]s λ1 λ21 [θ1, θ2, θ3, θ4]s λ1 λ21

SSSS [−45, 45, 45, 50]s 57.08 90.21 [45, −45, −45, −45]s 57.10 90.20
[−75, 5, 10, 10]s 46.59 93.12 [75, −5, −10, −10]s 46.60 93.10

SSSC [65, −60, −60, −65]s 68.27 56.81 [65, −60, −60, −60]s 68.30 57.00
[0, −90, 5, −75]s 54.13 112.82 [−10, 80, 20, 60]s 55.90 111.00

SSSF [0, 0, 0, 5]s 40.37 11.93 [0, 5, 0, 0]s 40.30 12.20
[−60, 55, 55, 40]s 25.17 57.69 [60, −55, −50, −65]s 25.20 57.60

SCSC [−90, −90, −90, −90]s 96.52 18.35 [−90, −90, −90, −90]s 96.50 18.30
[15, −30, −90, −10]s 64.27 117.36 [−10, 30,−80, −60]s 63.50 118.00

SCSF [0, −5, 0, 10]s 40.77 16.27 [0, 0, 0, −5]s 40.80 15.90
[55, −50, −40, −60]s 31.04 68.68 [−55, 50, 45, 35]s 31.00 68.80

SSCC [40, −45, −50, −55]s 73.62 111.19 [45, −45, −45, −45]s 73.70 114.00
[−75, 5, 5, 10]s 68.60 124.22 [−15, 85, −90, 85]s 68.50 124.00

SSCF [−5, −5, 0, −5]s 63.45 9.77 [−5, −5, 0, −10]s 63.40 9.80
[65, −65, −60, −65]s 28.05 55.79 [65, −60, −70, −65]s 28.50 55.70

SCCF [−10, 0, −5, −20]s 63.49 14.16 [−5, 0, −5, −5]s 63.90 12.80
[−65, 60, 50, 65]s 33.59 71.43 [65, −55, −80, 65]s 33.30 71.20

SFCF [0, 0, 0, −10]s 62.36 3.36 [0, 0, 5, 0]s 62.30 3.38
[−50, 50, 50, −65]s 28.21 25.77 [50, −50, −50, −55]s 28.30 25.90

SSFF [−45, 45, −45, 40]s 11.27 34.48 [−45, 45, −45, 45]s 11.30 34.50
[−75, 10, 15, 10]s 6.27 40.84 [−20, 70, 90, 65]s 7.31 39.90

SCFF [65, −45, 70, −40]s 16.39 25.78 [65, −45, 70, −55]s 16.40 25.70
[0, −90, −5, −15]s 10.36 45.90 [0, 90, −10, −5]s 10.40 45.90

CSCF [0, 0, −5, 25]s 93.94 6.74 [0, 0, 0, 0]s 94.20 6.43
[−70, 65, 65, −75]s 34.31 52.18 [−70, 65, 70, 60]s 34.10 52.20

CCCS [0, −5, 0, 0]s 97.55 27.86 [0, 0, 0, 0]s 97.60 27.50
[−90, 5, −90, 0]s 80.09 150.99 [90, 0, −90, 0]s 80.20 153.00

CCCC [−90, 0, 0, −90]s 99.51 163.31 [0, 90, 90, 0]s 99.50 163.00
[15, −85, −85, −85]s 98.33 168.50 [75, −5, −5, −10]s 98.30 168.00

CCCF [0, 0, 0, 5]s 94.41 8.73 [0, 0, 0, 0]s 94.40 8.72
[−75, 70, 70, 75]s 34.97 71.39 [−85, 75, −75, −75]s 32.20 71.70

CFCF [0,5, −5,10]s 93.28 2.38 [0,0,0,0]s 93.60 2.29
[55, −60, −55, −50]s 37.20 20.57 [55, −55, −55, −55]s 38.50 20.90

CCFF [45, −45, 25, −65]s 19.04 38.94 [45, −45, 45, −40]s 19.10 38.30
[−80, 5, 5, 10]s 15.73 52.36 [−10, 85, 85, 85]s 15.70 52.40

CFFF [−5, 5, 0, 10]s 13.70 5.29 [0, −5, 5, 5]s 13.80 5.04
[45, −45, −50, −30]s 7.17 18.31 [50, −50, −50, −50]s 6.31 18.50
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(a) (b)

(c) (d)

(e) (f)

Figure 8: Spread of the Pareto fronts for all 18 boundary conditions
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Figure 9: The percentage share of NSGA-III and MO-RPSOLC in TOPSIS selected best solutions
considering (a) test case 1: ranked 1 solution (b) test case 2: ranked 1–3 solutions (c) test case 3:
ranked 1–10 solutions
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The percentage share of the NSGA-III and MO-RPSOLC solutions in the TOPSIS selected
optimal solutions (99 in total, 1 solution for each w1 considering test case 1 is calculated and
shown in Fig. 9a. It is seen that, in general, MO-RPSOLC solutions have a higher share in
the TOPSIS selected optimal solutions. However, in the instances of SSCC, SSSC, SSCF, SSSF,
SCCF and SCFF boundary conditions NSGA-III solutions find better representation. Similarly,
in Fig. 9b, the TOPSIS selected the top 3 optimal solutions for each w1 is recorded. The share
of NSGA-III solutions in the TOPSIS selected optimal solutions is seen to have significantly
improved as compared to test case 1. Similar improvement for NSGA-III is seen in Fig. 9c for
test case 3 considering TOPSIS selected top 10 optimal solutions.

4 Conclusion

In this research, two popular nature-inspired multi-objective optimization algorithms are eval-
uated based on their performance in a high-fidelity application. A combinatorial optimization
problem of maximizing the first frequency and the difference between the first two natural fre-
quency by optimizing the stacking sequence is chosen. The optimization problem is carried out for
18 different boundary condition combinations. The performance of the algorithms is compared
based on the spread of their Pareto solutions as well as by using a novel TOPSIS-based analysis.
The comprehensive analysis carried out on the 18 different test cases indicates the MO-RPSOLC
to be on par with the reliable and widely used NSGA-III. It is worth mentioning that this is
the first instance of using a high-fidelity finite element analysis in conjunction with NSGA-III or
MO-RPSOLC to design an optimized structure. Based on the encouraging results of the article
it can be concluded that this methodology can be effectively used to predict highly accurate and
optimized structural designs which would lead to significant savings in terms of prototype testing.
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