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ABSTRACT

Numerical modeling of seepage-induced consolidation process usually encounters significant uncertainty in the
properties of geotechnical materials. Assessing the effect of uncertain parameters on the performance variability
of the seepage consolidation model is of critical importance to the simulation and tests of this process. To this
end, the uncertainty and sensitivity analyses are performed on a seepage consolidation model in a fractured
porousmedium using the Bayesian sparse polynomial chaos expansion (SPCE) method. Five uncertain parameters
including Young’s modulus, Poisson’s ratio, and the permeability of the porous matrix, the permeability within
the fracture, and Biot’s constant are studied. Bayesian SPCE models for displacement, flow velocity magnitude,
and fluid pressure at several reference points are constructed to represent the input-output relationship of the
numerical model. Based on these SPCE models, the total and first-order Sobol’ indices are computed to quantify
the contribution of each uncertain input parameter to the uncertainty of model responses. The results show that at
different locations of the porous domain, the uncertain parameters show different effects on the output quantities.
At the beginning of the seepage consolidation process, the hydraulic parameters make major contributions to the
uncertainty of the model responses. As the process progresses, the effect of hydraulic parameters decreases and
is gradually surpassed by the mechanical parameters. This work demonstrates the feasibility to apply Bayesian
SPCE approach to the uncertainty and sensitivity analyses of seepage-induced consolidation problems and provides
guidelines to the numerical modelling and experimental testing of such problems.
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1 Introduction

Seepage in porous media is a common phenomenon in civil engineering that provides both
advantages and disadvantages. On one hand, land subsidence resulting from the seepage process
is a critical problem that may induce foundation deformation and differential settlement, and can
even damage the surface buildings [1–3]. On the other hand, soil consolidation induced by seepage
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can improve the compressive strength and bearing capacity of the building foundation [4–6].
During the compaction of a saturated porous medium, the seepage of fluid and the consolidation
of solid happen simultaneously until the pore pressure dissipates and the effective stress of
porous matrix balances with the external load. In this process, the fluid-solid interaction plays
an important role and makes the problem difficult to be analyzed. Moreover, the existence of
fractures and weak intercalations, which brings about the change of local flow distribution and
deformation in the porous medium, makes the problem even more complex [7,8].

For decades, the seepage-induced consolidation of porous media has been extensively stud-
ied [9–13]. The one-dimensional consolidation theory was firstly established by Terzaghi [14],
which has been widely applied to the modeling and simulation of land subsidence. Then Biot [15]
proposed the generalized three-dimensional consolidation theory based on Terzaghi’s work, and
extended the theory to anisotropic and nonlinear porous materials [16,17]. Biot’s constant αB
was introduced as a new physical constant to capture the influence of fluid pressure on the
solid deformation. Other than saturated porous media, a one-dimensional consolidation theory
for unsaturated soil was presented by Fredlund et al. [18]. The expression of αB was given in
a different manner by Zienkiewicz [19], and the basic formulation describing both static and
dynamic behaviors of porous media was obtained. With the development of numerical techniques
and computational methods, numerical modeling has been extensively used to study the seepage
consolidation process and to predict the fluid flow and deformation in porous media during
this process [20–22]. In the simulation, the fluid is usually assumed to flow through the porous
skeleton according to Darcy’s law. The solid deformation is modeled using the mechanical equi-
librium equation with consideration of poroelasticity, which counts for the effect of fluid flow
on solid deformation within a porous medium. Meanwhile, the influence of solid deformation
on the fluid flow is taken into account by including the porosity change in governing equations.
This fluid-solid interaction during seepage consolidation process can be simulated accurately by
solving these governing equations using appropriate numerical methods in the premise that all the
model parameters are predetermined by experiments, which is a difficult task in real geotechnical
applications as the material properties are typically heterogeneous and anisotropic. Therefore,
the numerical simulation of seepage-induced consolidation in porous media exhibits significant
uncertainty resulting from the uncertain physical parameters [23,24].

Sensitivity analysis (SA) is a method that measures how the uncertainty of the model solution
can be apportioned to the uncertainty of model parameters, and determines the most influential
parameters [25]. To understand the impact of uncertain parameters on the fluid flow and solid
deformation in porous media, SA has been increasingly applied to geotechnical models. Morris’
method was used by Jin et al. [24] and Chen et al. [26] to perform SA on the numerical
model based on the Boit’s consolidation theory and the nonlinear rheological theory to study the
influence of model parameters on land subsidence and ground fissures. Guo et al. [27] developed
a three-dimensional hydraulic-thermal model of the Guide Basin, and assessed the uncertainty of
the model output that originates from 9 uncertain physical parameters in this model. The Monte
Carlo method was used by Li et al. [28] to perform uncertainty and sensitivity analyses so as to
analyze the stability of the Bian Jia Gou tailings pond under flooding conditions. Soueid et al. [29]
established a stochastic numerical framework for inverting self-potential data based on the Markov
chains Monte Carlo method to localize seeps in dams and characterize their permeability and
Darcy velocity. Recently, Liu et al. [30] performed a SA on the numerical model of layered
periodic foundations based on the Gauss–Lobatto integration, and showed better convergence of
this method than the Monte Carlo-based methods. Although some studies have been found in the
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literature to apply SA to geotechnical models, to date, there are only few SA studies regarding
the seepage consolidation process in fractured porous media [23,31].

The most commonly used techniques to perform SA on mathematical models include the
Morris’ method, Monte Carlo-based methods, sparse polynomial chaos expansion-based methods.
Polynomial chaos expansion has been demonstrated to be efficient and robust for the analyses
of uncertainty and sensitivity on the computer models in engineering. In this work, we use a
new algorithm proposed by Shao et al. [32] to perform SA and assess uncertainty on the seepage
consolidation model in fractured porous media. This algorithm constructs sparse polynomial chaos
expansion (SPCE), representing the input-output relation based on the Bayesian model averaging.
This approach has been proven to be efficient and accurate in several engineering applications
[33–36]. Once constructing the SPCE of the original numerical model, the Variance-based Sobol’
indices, which measure the impact of input uncertain parameters on the model output, are easy to
be calculated analytically from SPCE. This approach not only quantitatively assesses the impact
of each uncertain input parameter, but also captures its interaction with other parameters on the
model output. The same physical model, as shown in literature [20], is adopted to simulate the
seepage consolidation in fractured porous media, where the mechanical and hydraulic properties
of the porous material are assumed isotropic. The physical parameters characterizing the porous
medium such as the permeability, Young’s modulus, Poisson’s ratio, and Biot’s constant are con-
sidered as uncertain input parameters. The fluid pressure, velocity, and deformation of the porous
matrix are the model responses of interest. Through this study, the critical parameters that have
significant influence on the fluid flow and solid deformation are determined and their effects are
quantified by Sobol’ indices. The results are expected to identify the dominant parameters on
the seepage consolidation process in fractured porous media, and to provide a guideline to the
modeling and experiments in geotechnical engineering applications.

This paper is organized as follows. Section 2 describes the problem formulation of the seep-
age consolidation in fractured porous media. Section 3 briefly introduces the SPCE approach
and Sobol’ indices. Section 4 discusses the SA results for the seepage consolidation model in a
fractured porous medium. Finally, conclusions are given in Section 5.

2 Problem Statement and Mathematical Model

The system under consideration is a two-dimensional domain shown in Fig. 1, which is a
typical example and widely used to study the seepage consolidation [20,37,38]. In this domain,
a quadrangle enclosure of W = 10 m and H = 16 m is filled by a saturated heterogeneous
porous medium. A fracture of L= 8 m locates in the center of the domain with an inclination
of θ = 45◦ and the fracture thickness is 0.05 m. The domain is assumed to be sealed on the
right, left, and bottom boundaries, while the top boundary is allowed to drain freely. A uniformly
distributed mechanical load of 10 kN/m2 is applied to the top of the domain and kept constant
throughout the seepage consolidation process. The bottom boundary of the domain is fixed, that
is, no displacement is allowed on this boundary. On the left and right boundaries, the horizontal
displacement is prescribed to be 0, and the fracture is assumed traction free. The plane strain
condition is considered for the solid mechanics. The properties of the fluid and the porous medium
are assumed to be constant during the consolidation process.

Darcy’s law and the continuity equation are used to describe the fluid flow in the fractured
porous media:

q=−k∇p (1)
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Figure 1: Schematic diagram of the seepage consolidation model in a fractured porous medium
under a mechanical load

∂ (ρφ)

∂t
+∇ · (ρq)= ρQs (2)

where, k is the permeability of the porous medium, p is the fluid pressure, q is the Darcy’s velocity,
ρ is the fluid density, Qs is the source or sink term, and φ is the porosity of the medium. In the
deformable porous media, the porosity φ is a function of the fluid pressure and the deformation
of porous matrix [39]:

φ = φ0+αB∇ · u+Spp (3)

where αB is Biot’s poroelasticity constant, φ0 is the initial porosity of the undeformed porous

media, u is the displacement vector, and Sp = (1−αB)(αB−φ0)
Kd

with Kd = E
3(1−2ν) representing the

effective bulk modulus of the porous media. Herein E and ν denote effective Young’s modulus and
Poisson’s ratio of the porous matrix, respectively. Substituting Eq. (3) into Eq. (2) and eliminating
ρ, the continuity equation takes the form as follows:

αB
∂εv

∂t
+ (

Sp+Sρ
) ∂p
∂t

+∇ · q=Qs (4)

where, εv =∇ ·u is the volumetric strain determined by the displacement vector, and Sρ = φχf with

χf = 1
ρ
∂ρ
∂p representing the fluid compressibility. Combining Darcy’s law, Eq. (4) can be written as:

αB
∂εv

∂t
+S

∂p
∂t

+∇ · (−k∇p)=Qs (5)

where, S= Sp+Sρ is defined as the storage coefficient.

To calculate the deformation and stress of the porous matrix during the seepage consolidation,
the quasi-static mechanical equilibrium equation is used:

∇ ·σ (u,pm)+ f = 0 in Ω (6)

where, f is the body force, and σ (u,pm) is the total stress tensor depending on the displace-
ment vector u and the pore pressure pm arising from the fluid flow in porous media. The
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constitutive relation between the elastic stress and strain in porous media is described by the Biot’s
poroelasticity theory:

σ (u,pm)=Dε−αBpmI (7)

where, D is the stiffness tensor defined by effective Young’s modulus and Poisson’s ratio of the
porous media, ε = (∇u+∇Tu

)
/2 is the strain tensor related to the displacement tensor, and αB

is Biot’s poroelasticity constant defined by αB = (KS−KT) /KS, with KT and KS representing the
bulk modulus of soil sample and solid grains, respectively [19,40].

Eqs. (5) and (6) are to be solved simultaneously over the domain, and the fully coupled
solution of displacement and pressure are calculated in the numerical model at each time step. The
model parameters to be studied, i.e., Young’s modulus (E), Poisson’s ratio (v), the permeability
of the porous matrix (k1), the permeability within the fracture (k2), and Biot’s constant (αB), are
effective properties of the porous matrix and the fracture. Notably, although the porous media is
deformable, we do not consider the effect of porosity variation on the effective properties of the
porous media.

3 Uncertainty and Sensitivity Analyses

Sensitivity analysis is an efficient approach to quantify the contribution of the uncertain input
parameters to the variability of the output results. The Bayesian SPCE approach proposed by
Shao et al. [32] is employed to perform SA on the seepage consolidation in the fractured porous
media. To this end, a polynomial chaos expansion representing the input-output relation of the
physics-based model is constructed as follows:

y=M (x)≡
∑
b∈Nn

abψb (x) , with ψb (x)=ψb1...bn (x)=
n∏
i=1

ψbi (xi) (8)

where, x = (x1,x2, . . . ,xn) is the vector of normalized input parameters, which are assumed
independent on each other and uniformly distributed over the n-dimensional unit hypercube Kn,
the scalar y is the model output of interest, ψb (x) is a multidimensional polynomial given by the
tensor product of univariate standardized shifted-Legendre polynomials, ab’s are the polynomial
chaos coefficients to be determined, b= b1 . . .bn (bi ∈N,1≤ i≤ n) is a n-dimensional index, and bi
represents the degree of the univariate polynomial ψbi (xi). To make the problem computationally
tractable, a truncation is performed to retain a finite number of polynomial terms:

y∼=Md (x)=
∑

b∈Ad,n

abψb (x) (9)

where, d is the truncation order of the polynomial chaos expansion and Ad,n is the subset of Nn

such that Ad,n = {
b ∈Nn: |b| =∑n

i=1 bi ≤ d
}
.

To compute the polynomial chaos coefficients in Eq. (9), the regression-based methods are
usually adopted [41]. However, when a large number of terms exist in the polynomial chaos
expansion, the regression-based methods encounter computational problems such as overfitting
and curse of dimensionality. To avoid such problems, a sparse representation of the polynomial
chaos expansion model is constructed based on the Bayesian model averaging:

y∼=MA (x)=
∑
b∈A

abψb (x) (10)
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where, A is the subset of Ad,n and if the condition card (A)� card
(
Ad,n) is satisfied, the polyno-

mial chaos expansion is considered as sparse. The sparsity of the polynomial chaos representation
is realized by retaining only the terms that make significant contributions to the model response of
interest. The Kashyap information criterion, which considers the compromise between the model
simplicity and fitting goodness, is deployed to conduct the quantitative selection of the SPCEs.

Once we obtain the SPCE model which represents the input-output relation of the physical
model, the variance-based Sobol’ indices of each input parameter can be easily derived. The total
variance of the output variable is calculated from the polynomial chaos coefficients ab as follows:

V =
∑

b∈A\{0}
a2b (11)

The sth-order partial variance of the output due to the cooperation of the uncertain input
parameters

{
xi1 , . . . ,xis

}
can be estimated by:

Vi1...is =
∑

b∈Ii1...is
a2b (12)

where,

Ii1...is =
{
b ∈A:

bk > 0, k ∈ (i1, . . . , is)
bk = 0, k /∈ (i1, . . . , is)

, ∀k= 1, . . . ,n

}
(13)

The sth-order Sobol’ indices are defined by the ratio of partial variance to the total variance
taking the form of Si1...is =Vi1...is/V . Specifically, the first-order and total order Sobol’ indices are
respectively given by:

Si = Vi
V

and STi =
∑

b : bi>0

Sb (14)

where, the first-order Sobol’ indices Si evaluate the variance of model response due to xi alone
and the total order Sobol’ indices STi summarize the overall contribution of the input variable
xi by taking into account its marginal and interactive effects. Noting that all Sobol’ indices are
ranging from 0 to 1. If the Sobol’ index of an input parameter is approaching 0, it indicates
that this parameter has negligible influence on the uncertainty of model output. Otherwise, if the
Sobol’ index of an input parameter is close to 1, this parameter is deemed having an important
contribution to the output uncertainty. Besides, the marginal effect of the input parameter xi is
calculated by:∫
Kn−1

MA (x)dx∼i = a0+
∑
b∈Ii

abψb (xi) (15)

where
∫
Kn−1 dx∼i computes the integral of a function over all variables except xi.
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4 Results and Discussion

4.1 Verification of the Seepage Consolidation Model
To evaluate the influence of uncertain parameters on the seepage-induced consolidation pro-

cess in a fractured porous medium, a numerical model is developed using COMSOL Multiphysics
and verified by comparing the solution against the results in the literature. The problem shown in
Fig. 1 is modelled using the poroelasticity multiphysics module, which couples the fluid flow and
solid mechanics in porous media. The fracture is considered as an extremely narrow zone with
weak mechanical properties (e.g., very small Young’s modulus comparing to the porous matrix)
and a large value of permeability. A mesh containing 4608 triangular elements and 2863 nodes
is used to discretize the pressure and displacement fields simultaneously. The parameters adopted
are listed in Tab. 1, which are the same as in Lamb et al. [20] for the purpose of comparison and
verification. A time-dependent study is performed, and the simulated displacement and pressure
fields from 1 day to 100 days in the fractured porous domain are shown in Fig. 2. To verify
these results, the vertical displacement and pressure values at the reference points A and B (see
Fig. 1), respectively, are extracted at different time steps during the seepage consolidation process.
The evolution of the vertical displacement at point A and the pressure at point B in 100 days
are plotted and compared with the results in Lamb et al. [20], and good agreements are found in
Fig. 2. Notably, the vertical displacement at point A is negative in our study, while it is positive in
Lamb et al. [20], as different coordinate systems are used. Hence, the absolute values of vertical
displacement are compared in Fig. 2b.

Table 1: Material properties for verification of the seepage consolidation model [20]

Parameter Definition Magnitude

E Young’s modulus 40 MPa
v Poisson’s ratio 0.3
φ0 Porosity of porous matrix 0.1
k1 Permeability of porous matrix 1× 10−15 m2

k2 Permeability within fracture 1× 10−10 m2

αB Biot’s constant 1
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Figure 2: Verification of the seepage consolidation model. (a) Displacement field after 100 days
(mm) (b) Surface displacement change during 100 days (c) Pressure field after 100 days (Pa) (d)
Pressure change during 100 days

Subsequently, this verified numerical model is used to generate sample data for the uncertainty
analysis of seepage-induced consolidation in a fractured porous medium. To this end, 5 uncertain
input parameters are analyzed, including Young’s modulus (E), Poisson’s ratio (v), the permeability
of the porous matrix (k1), the permeability within the fracture (k2), and Biot’s constant (αB).
These parameters are assumed to be statistically independent with each other and varying within
the uncertain ranges as listed in the Tab. 2. To evaluate the effect of these uncertain parameters,
several quantities of interest are analyzed using the aforementioned numerical model. The flow
velocity magnitude, the pressure, and the vertical displacement within the domain are considered
to characterize the fluid flow and deformation of the porous media during the seepage consolida-
tion. Noting that in some cases, the seepage consolidation progresses very slowly, and it can be
time-consuming to obtain a steady-state solution using the numerical model. Thus, the seepage
consolidation in a duration of 100 days is of special interest in this study.

Table 2: The range of values for uncertain input parameters

Parameters v E (MPa) k1 (m2) k2 (m2) αB

Min value 0.3 5 1× 10−17 1× 10−14 0.4
Max value 0.45 20 1× 10−15 1× 10−12 0.8

4.2 Training and Validation of the Bayesian SPCEModel
In order to perform uncertainty and sensitivity analyses on the seepage consolidation model,

the Bayesian approach is used to build SPCE models that describe the relationship between the
input parameters and the output responses of the numerical model. For this purpose, several
output quantities are assessed to capture the characteristics of the model performance, including
the vertical displacement (uA) and the flow velocity magnitude (QA) at point A and the pressure
(PB) at point B (Fig. 1). These quantities are typical for the characterization of the seepage
consolidation in the considered porous domain. In this problem, the seepage and consolidation
are induced by a mechanical load applied on the top surface, which is free to flow, and thus, the
vertical displacement and flow velocity on the top surface (point A) is of interest. The pressure
at point A is a constant equal to 0 during the consolidation process, but the pressure at the
bottom boundary (point B) changes significantly, which is thereby selected as the model response
of interest.
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The flow chart of performing uncertainty and sensitivity analyses on the seepage consolidation
model using the Bayesian SPCE approach is shown in Fig. 3. To train the Bayesian SPCE
models, we first randomly generate 210 data for each input parameter (i.e., E, v, k1, k2, and
αB) that is uniformly distributed in the uncertain range (Tab. 2), and thus we obtain a dataset
containing 210× 5 values for input parameters. This input dataset is then used to model the
seepage consolidation process in COMSOL Multiphysics, from which the output metrics including
the vertical displacement, the magnitude of flow velocity, and the pressure at reference points
at 100 days for each calculation are exported (Fig. 3). As a result, a dataset containing 210

× 3 output metrics is obtained corresponding to the 210× 5 uncertain input parameters. This
combined dataset (including the input parameters and output metrics) of sample size 210× 8 is
then randomly split into two datasets, i.e., a training dataset of sample size 29× 8 and a validation
dataset of the same sample size. Using the training dataset, three SPCE models representing the
relationship between the output metrics and the input parameters are constructed respectively

in the Bayesian framework, e.g., uA ∼=Mu
A (E, ν,k1,k2,αB), QA ∼=MQ

A (E, ν,k1,k2,αB), and PB ∼=
MP

A (E, ν,k1,k2,αB). The validation dataset is deployed to check the validity and robustness of
the constructed Bayesian SPCE models.

Figure 3: The flow chart of performing uncertainty and sensitivity analyses on the seepage
consolidation model using Bayesian SPCE approach

Fig. 4 shows the comparison between the Bayesian SPCE-predicted output quantities and
the numerically calculated data from both the training and validation datasets. The calculated
vertical displacement and the magnitude of flow velocity at point A varies from less than −30 to
−5 mm and from 0 to 6.0 × 10−10 m/s, respectively, due to the uncertainty of input parameters.
Similarly, the calculated pressure at point B exhibits a large uncertainty and increases from 0
to approximately 1.0 × 104 Pa with the variation of input parameters. For the displacement,
velocity, and pressure, excellent agreements are found between the numerically calculated results
and the Bayesian SPCE-predicted results on both training and validation datasets. Specifically, the
coefficients of determination (R2), which measure the ability of a statistical model to fit or explain
the observed data, on the training datasets of displacement, velocity, and pressure are larger than
0.99. The values of R2 on the validation datasets (>0.98) are slightly smaller than those on the
training datasets (Fig. 4). For the three output metrics, the Bayesian SPCE model performs the
best on the displacement of point A, exhibiting R2 values of 0.9999 and 0.9998 for training and
validation datasets, respectively. The comparative performances of the constructed Bayesian SPCE
models on both the training and validation datasets show their good ability to well reproduce the
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numerical model responses and indicate their sufficient accuracy to calculate reliable sensitivity
indices for assessing the effect of each uncertain input parameter.

Figure 4: Comparison of model outputs between the Bayesian SPCE-predicted values and model-
calculated data at 100 days, including the training dataset and the validation dataset: (a) the
vertical displacement at point A, (b) the magnitude of flow velocity at point A, and (c) the
pressure at point B

4.3 Uncertainty and Sensitivity Analyses of Model Responses
Based on the above constructed Bayesian SPCE models, the total and first-order Sobol’ indices

of each uncertain input parameter are calculated using Eqs. (11)–(14) and plotted in Fig. 5. These
Sobol’ indices measure how much the uncertainty of each input parameter contributes to the
uncertainty in the vertical displacement and flow velocity at point A and the pressure at point
B after 100 days’ consolidation. It is observed that for each output metric, the influences of the
input parameters are different. For instance, the uncertainty of the vertical displacement at point
A is mainly attributed to the uncertainty in the Young’s modulus of the porous matrix, while
that of the pressure at point B is dominated by the uncertainty in the permeability of the porous
matrix. More detailed discussions for each output metric are as follows.

Figure 5: The total and first-order Sobol’ indices of the uncertain input parameters on the vertical
displacement and flow velocity magnitude at point A and the pressure at point B after 100 days.
(a) Vertical displacement (b) Flow velocity magnitude (c) Pressure

(1) Displacement of the porous domain

The variation of the displacement at point A arises mainly from the uncertainty in Young’s
modulus of the porous matrix, where the total and first-order Sobol’ indices of E are larger than
0.85 (Fig. 5a). The Poisson’s ratio and the permeability of the porous matrix show slight influences
on the vertical displacement at point A after 100 days, with Sobol’ indices smaller than 0.1. The
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effects of the permeability within the fracture and Biot’s constant are negligible. Notably, the
values of total and first-order Sobol’ indices for each parameter have little difference, indicating
that the interaction effect between different input parameters is not significant. Furthermore,
the marginal effect describing the individual influence of each uncertain input parameter on
the vertical displacement at point A is presented (Fig. 6). Note that the Sobol’ indices of the
permeability within the fracture (k2) are 0, resulting in no marginal effect of k2. The absolute
values of the vertical displacement at point A decreases monotonously with the increase of v,
E, and αB, and increases with the increase of k1 (Fig. 6). The increase of Poisson’s ratio means
that the compressibility of the porous medium becomes smaller, leading to smaller displacements
under a compressive load. The increase of Young’s modulus means that the porous medium is
more resistant to deformation under a certain mechanical load, which yields a smaller absolute
value of the vertical displacement. The increase of permeability in the porous matrix means
that the fluid is easier to be discharged out of the domain, resulting in a decrease of pore
pressure within the porous media, which in turn makes the domain easier to deform. Typically, the
permeability only shows effect on the settlement rate, but has no impact on the final deformation
of porous media when the seepage consolidation process reaches steady state. Therefore, the
influence of permeability observed on displacement in Fig. 6 is due to that we consider the vertical
displacement after 100 days and the steady state may not be achieved yet.

Figure 6: Marginal effect of each uncertain input parameter on the vertical displacement of point
A at 100 days. (a) Effect of Poisson’s ratio (b) Effect of Young’s modulus (c) Effect of matrix
permeability (d) Effect of Biot’s constant
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Furthermore, the uncertainty of the vertical displacement in the entire domain is analyzed
using the Bayesian SPCE approach. To this end, the vertical displacement after 100 days on
each node of the domain is considered as an output metric and exported from the COMSOL
Multiphysics. For each output metric, a Bayesian SPCE model is trained, eventually resulting in
2863 Bayesian SPCE models, and based on which the Sobol’ indices are calculated. Figs. 7a–
7c show respectively the spatial distribution of the mean, variance, and standard deviation of
the vertical displacement resulting from the uncertain input parameters. The mean values of the
vertical displacement range between −14 and 0 mm in the porous domain. Due to the fracture, a
discontinuity is observed in the displacement-related distributions, and the absolute values of the
vertical displacement above the fracture are significantly larger than that below the fracture. Also,
the discrepancy of the vertical displacement from the mean value caused by the uncertain input
parameters primarily happens in the upper part above the fracture. Figs. 7d–7h show the spatial
maps of sensitivity of the vertical displacement to each uncertain input parameter, i.e., Poisson’s
ratio, Young’s modulus, the permeability of the porous matrix, the permeability within the frac-
ture, and Biot’s constant, where the total order Sobol’ indices involving the individual effect of
each uncertain input parameter and its interaction effects with the other parameters are shown.
The influence of input parameters on the vertical displacement depends on the location lying in
the domain. For instance, Poisson’s ratio shows negligible influence on the vertical displacement
above the fracture (total order Sobol’ indices of approximately 0), while has significant effect
on that below the fracture (Fig. 7d). Notably, Young’s modulus makes the major contribution
to the uncertainty of the vertical displacement in the zone lying above the fracture, where the
mean value and the standard deviation of the displacement are relatively large (Figs. 7a–7c and
7e). In the zone lying below the fracture, although the complementary effect of Poisson’s ratio,
Young’s modulus, the permeability of the porous matrix, and Biot’s constant on the uncertainty
of vertical displacement seems noticeable, the mean, variance, and standard deviation values of
the vertical displacement are almost zero. Therefore, the effect of all considered parameters on the
vertical displacement below the fracture is negligible. The permeability within the fracture shows
little influence on the vertical displacement distribution in the entire porous domain.

Figure 7: (Continued)
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Figure 7: Spatial distribution of the (a) mean, (b) variance, and (c) standard deviation of the
vertical displacement and spatial distribution of the total Sobol’ indices of (d) the Poisson’s ratio
v, (e) the Young’s modulus E, (f) the permeability in porous matrix k1, (g) the permeability within
fracture k2, and (h) the Biot’s constant αB on the vertical displacement at 100 days

(2) Velocity of fluid flow

Unlike the vertical displacement, the uncertain input parameters show comparable Sobol’
indices on the velocity magnitude of fluid flow at point A (Fig. 5b). Young’s modulus and
Poisson’s ratio are the most important parameters that contribute to the uncertainty in the flow
velocity magnitude at point A, exhibiting Sobol’ indices values of approximately 0.59 and 0.27,
respectively. The permeability of the porous matrix and Biot’s constant also show considerable
effects on the variation of the flow velocity. Notably, the total order Sobol’ indices of Pois-
son’s ratio, Young’s modulus, and permeability of porous matrix are significantly larger than the
corresponding first-order Sobol’ indices, indicating that the coupling effects among them are
important to the uncertainty of the flow velocity magnitude. Specifically, although the first-order
sensitivity index of the permeability k1 is small, the total Sobol’ index shows a non-negligible
effect of k1 on the flow velocity, which majorly originates from the coupling effect between k1 and
other parameters. The marginal effects shown in Fig. 8 illustrate the univariate influence caused
by each uncertain input parameter on the flow velocity magnitude at point A. Poisson’s ratio and
Young’s modulus of the porous matrix show negative influences on the flow velocity magnitude
(Figs. 8a and 8b). As aforementioned, the increase of the Poisson’s ratio and Young’s modulus
means smaller compressibility and stronger resistance to deformation of the porous medium,
respectively, both yielding a smaller deformation of the domain, which then leads to a decrease
of the fluid pressure and the flow velocity magnitude. In contrast to v and E, Biot’s constant
shows an almost linearly positive effect on the flow velocity magnitude (Fig. 8d). A turn point is
observed in the marginal effect of k1 (Fig. 8c). When the permeability of porous matrix is small,
i.e., k1 < 3 × 10−16 m2, the velocity magnitude increases with the increase of k1, while after the
turn point (k1 > 3 × 10−16 m2), the velocity magnitude declines gradually with the increase of k1.
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Figure 8: Marginal effect of each uncertain input parameter on the flow velocity magnitude of
point A at 100 days. (a) Effect of Poisson’s ratio (b) Effect of Young’s modulus (c) Effect of
matrix permeability (d) Effect of Biot’s constant

Furthermore, to analyze uncertainty in the flow velocity at the transient state during the
seepage consolidation process, the total order Sobol’ indices of the uncertain input parameters for
each time step during the 100 days are calculated. The flow velocity magnitude at three reference
points are selected as shown in Fig. 1, including the central point of top boundary (point A) and
the left and right tips of the fracture (points C and D). The evolution of the Sobol’ indices for
the flow velocity at the reference points A, C, and D is shown in Fig. 9. At the beginning of the
consolidation process, the permeability of the porous matrix k1 makes the dominant contribution
to the uncertainty of the flow velocity at the reference points. As the seepage consolidation
progresses, the influence of permeability k1 is gradually surpassed by that of Young’s modulus
and Poisson’s ratio. At the reference point A, which is away from the fracture, the flow velocity is
not affected by the permeability within the fracture k2. Contrarily, at reference points C and D,
the permeability within the fracture shows significant effect on the flow velocity, especially at the
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beginning of the process. As shown in Figs. 9b and 9c, during the first 20 days, the permeability
of the porous matrix and the fracture jointly make the major contribution to the uncertainty in
flow velocities near the fracture. In general, the hydraulic properties (k1 and k2) have dominant
effects on the fluid flow at the beginning, and the mechanical properties (E and v) show more
significant effects in the long run. Additionally, the properties within the fracture show local effect
on the fluid flow near the fracture, but have little influence on the overall performance of the
domain.

Figure 9: The evolution of total order Sobol’ indices for flow velocity magnitude at the reference
points A, C, and D in the transient regime. (a) STi for velocity at A (b) STi for velocity at C (c)
STi for velocity at D

(3) Fluid pressure

The variation of the fluid pressure at point B arises mainly from the uncertainty in the
permeability of the porous matrix, which exhibits the total and first-order Sobol’ indices of
approximately 0.7 (Fig. 5c). Young’s modulus and Poisson’s ratio show moderate influence on
the fluid pressure at point B, while the effect of the Biot’s constant is slight. The differences
between the values of total and first-order Sobol’ indices for v, E, and k1 indicate that the
interaction effect exists between these input parameters. The marginal effect of Poisson’s ratio,
Young’s modulus, and Biot’s constant on the fluid pressure at point B shows a similar tendency as
that on fluid velocity at point A (Figs. 8 and 10). As aforementioned, the increase of the Poisson’s
ratio and Young’s modulus results in a smaller deformation of the porous domain under a certain
mechanical load, which in turn leads to a lower fluid pressure at point B. The permeability of the
porous matrix shows a positive marginal effect on the fluid pressure within a narrow range when
k1 < 5 × 10−17 m2. As the permeability increases, the pressure at point B first encounters a sharp
falling and then followed by a slow declination.
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Figure 10: Marginal effect of each uncertain input parameter on the pressure of point B at 100
days. (a) Effect of Poisson’s ratio (b) Effect of Young’s modulus (c) Effect of matrix permeability
(d) Effect of Biot’s constant

5 Conclusions

The seepage-induced consolidation process in a fractured porous medium is modeled numeri-
cally, and the uncertainty of the model is analyzed using the Bayesian SPCE approach. To perform
the uncertainty and sensitivity analyses, Bayesian SPCE models are constructed to reproduce the
relationship between the input parameters (i.e., Young’s modulus, Poisson’s ratio, the permeability
of the porous matrix, the permeability within the fracture, and Biot’s constant) and the output
metrics (including the vertical displacement, the flow velocity magnitude, and the fluid pressure at
reference points). The comparative performances of the constructed SPCE models on the training
and validation datasets demonstrate their sufficient accuracy in calculating the Sobol’ indices for
uncertain parameters. The uncertainties in the model output metrics are quantitatively attributed
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to the five uncertain input parameters by the Sobol’ indices. As a result, the following conclusions
are drawn:

(1) For the settlement in the seepage consolidation process, Young’s modulus of the porous
matrix E makes the major contribution to the uncertainty in the settlement near the drainage
outlet. While in the region below the fracture, the settlement is extremely small (almost zero), and
thus, the effect of these parameters is negligible.

(2) For the flow velocity magnitude, the hydraulic properties (k1 and k2) have dominant effects
at the beginning of the seepage consolidation process, and the mechanical properties (E and v)
show more significant effects in the long run. The properties within the fracture show only local
effect on the fluid flow near the fracture, but have little influence on the overall performance of
the domain.

(3) For the fluid pressure, both hydraulic and mechanical properties have important contribu-
tions to the uncertainty in model responses, in which the permeability of the porous matrix shows
a major effect on the pressure at the bottom boundary.

This work shows feasibility and effectiveness of the Bayesian SPCE approach for performing
uncertainty and sensitivity analyses on the seepage consolidation problem. The influences of
uncertain input parameters on the model performance are presented and discussed, which provides
guidelines to the numerical modelling and experimental testing of such problems. In this work
the fracture topology is assumed to be certain. More realistic analysis would include the effect of
uncertain fracture topology on model outputs, which would require an efficient numerical model
as the automatic mesh updating is needed to change the fracture topology. This would be an
interesting topic for further studies.
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