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ABSTRACT

During the COVID-19 outbreak, the use of single-use medical supplies increased significantly. It is essential to
select suitable sites for establishing medical waste treatment stations. It is a big challenge to solve the medical
waste treatment station selection problem due to some conflicting factors. This paper proposes a multi-attribute
decision-making (MADM)method based on the partitionedMaclaurin symmetricmean (PMSM) operator. For the
medical waste treatment station selection problem, the factors or attributes (these two terms can be interchanged.)
in the same clusters are closely related, and the attributes in different clusters have no relationships. The partitioned
Maclaurin symmetric mean function (PMSMF) can handle these complex attribute relationships. Hence, we
extend the PMSM operator to process the linguistic q-rung orthopair fuzzy numbers (Lq-ROFNs) and propose
the linguistic q-rung orthopair fuzzy partitioned Maclaurin symmetric mean (Lq-ROFPMSM) operator and its
weighted form (Lq-ROFWPMSM). To reduce the negative impact of unreasonable data on the final output results,
we propose the linguistic q-rung orthopair fuzzy partitioned dual Maclaurin symmetric mean (Lq-ROFPDMSM)
operator and its weighted form (Lq-ROFWPDMSM). We also discuss the characteristics and typical examples of
the above operators. A novel MADM method uses the Lq-ROFWPMSM operator and the Lq-ROFWPDMSM
operator to solve the medical waste treatment station selection problem. Finally, the usability and superiority of the
proposed method are verified by comparing it with previous methods.
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Medical waste treatment station; linguistic q-rung orthopair fuzzy sets; aggregation operators; partitioned dual
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1 Introduction

The current global public health emergency is the spread of COVID-19 and it has become a
serious threat to human health. The rapid increase in the number of infections, coupled with the
lack of initial attention by leaders in many countries, has led to COVID-19 becoming a global
epidemic. As of mid-February 2021, COVID-19 has affected 185 countries. The cumulative num-
ber of confirmed cases of COVID-19 exceeds 100 million and active cases exceed 20 million [1].
The number of active cases in each country is shown in Fig. 1.
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Figure 1: Active cases of COVID-19 in various countries

There are big challenges in controlling and preventing COVID-19 because of its rapid trans-
mission, high infectiousness, and long incubation period. One of the key issues is how to handle
medical waste in a rational manner. The reason for this is that with the rapid rise in the number of
infections, the generation of medical waste has increased dramatically. Proper disposal of massive
medical waste is an important way of preventing secondary transmission of COVID-19 [2].
In addition, most medical wastes are the plastic products, which can also cause environmental
pollution if not handled properly. In order to solve the above problems, medical wastes need
to be recycled and treated. The location of medical waste treatment stations is one of the key
aspects [3,4].

Siting a suitable medical waste treatment station requires multiple considerations of economic,
social, and environmental factors. Determining the best site is a challenge, as each station has its
own advantages and disadvantages. Improper siting of the medical waste treatment stations will
have the long-term negative impacts on environmental development and economic growth. There-
fore, multi-attribute decision-making (MADM) can be used to solve the above siting problem [5,6].
The general process of the MADM method is to analyze the selection attributes and determine
the weights of their importance. Then, an evaluation matrix is generated, and the score of each
alternative is calculated and ranked.

To solve the medical waste station selection problem, this paper proposes a novel MADM
method based on the partitioned Maclaurin symmetric mean (PMSM) operator. Because of
the complexity of the medical waste station selection problem, in this paper, we evaluate the
alternatives of medical waste stations in the form of linguistic q-rung orthopair fuzzy numbers
(Lq-ROFNs), which are capable of handling the complex and fuzzy information [7,8]. Through
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analyzing the considered attributes of medical waste stations, we can find that attributes in the
same clusters are closely related, while attributes in different clusters did not have the relationship.
Therefore, in this paper, we use the PMSM operator to aggregate the evaluation information. It
can capture the correlation among attributes in the same clusters and can reflect the independence
among attributes in different clusters [9,10]. Meanwhile, the evaluation information provided
by the decision-makers may contain unreasonable values. We further use the partitioned dual
MSM (PDMSM) operator to process the evaluation information. It can reduce the influence of
unreasonable evaluation values on the aggregation results.

The other sections of this paper are briefly described as follows. Section 2 is a literature
review, which reviews the knowledge of fuzzy sets and MADM methods. Section 3 gives a
brief introduction to relevant basic concepts, including the definition and properties of the Lq-
ROFSs and the PMSM operators. Section 4 gives the definitions of the Lq-ROFPMSM and
Lq-ROFWPMSM operators, and analyzes their relevant properties and typical examples. In Sec-
tion 5, we define the Lq-ROFPDMSM and Lq-ROFWPDMSM operators and analyze their
related features. A novel MADM method using the Lq-ROFWPMSM and Lq-ROFWPDMSM
operators is proposed in Section 6. Section 7 verifies the reliability and superiority of the model
in this paper by an application example. The last section is an analysis and conclusion of this
paper.

2 Literature Review

As an important part of modern decision theory, MADM has been widely applied in various
fields of engineering, business activities, and government actions. The purpose of MADM is to
evaluate alternatives based on the evaluation information provided by the decision makers. The
optimal solution is then selected based on the ranking results. Early decision-making problems
usually use crisp numbers to evaluate objects. However, evaluation information can be fuzzy and
uncertain as the complexity of the decision problems increases. It is difficult to accurately represent
evaluation information with only crisp numbers. Therefore, Zadeh [11] proposed the fuzzy sets
(FSs) theory, which uses the membership degree (MD) to describe the support degree of the
decision makers. By extending the classical FSs theory, Atanassov [12] proposed the intuitionistic
fuzzy sets (IFSs). It describes the degree of opposition of decision makers through the non-
membership degree (NMD). The sum of MD α and NMD β is not greater than one [12,13]. IFSs
can describe the degree of support, opposition, and hesitation for evaluating objects [14]. Thus, it
has attracted a large number of scholars [15–19]. However, the MD α and the NMD β of IFSs
must satisfy the constraint condition of α + β ≤ 1, which makes the representation of evaluation
information narrow. Therefore, Yager extended the IFSs and proposed the theory of Pythagorean
fuzzy sets (PFSs) [20,21]. PFSs also use the MD and NMD to represent evaluation information.
However, the sum of the square of MD α and the square of NMD β is not greater than one,
i.e., α2 + β2 ≤ 1. Therefore, PFSs are more capable of handling fuzzy problems [22–24]. Further,
Yager proposed the theory of q-rung orthopair fuzzy sets (q-ROFSs) [25]. The sum of qth power
of MD α and qth power of NMD β is not greater than one, i.e., αq + βq ≤ 1. Thus, IFSs and
PFSs are special forms of q-ROFSs.

In daily life, decision-makers usually use linguistic terms to describe evaluation informa-
tion [26]. For instance, when describing the price of a product, decision-makers often use words
such as “high”, “low”, “very high” or “very low”. To model this kind of evaluation information,
the fuzzy linguistic methods that are more in line with the grammatical habits of decision makers
are proposed by Zadeh [27]. Based on the intuitionistic fuzzy sets and linguistic term sets [28],
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Zhang proposed the concept of linguistic intuitionistic fuzzy set (LIFS) [29]. Then, Garg provided
the definition of linguistic Pythagorean fuzzy set (LPFS) [30]. Linguistic q-rung orthopir fuzzy set
(Lq-ROFS) is an extended form of LIFS and LPFS [31].

In the multi-attribute decision making activities, it is a challenge to aggregate the cluttered
evaluation information into relatively intuitive data. The aggregation operator is an effective
tool to solve the above problem. At present, many research results have been achieved in the
aggregation operators. For example, Bonferroni mean (BM) operator [32], power average (PA)
operator [33], Hamacher aggregation operator [34], Heronian mean (HM) operator [35], and so on.
The Maclaurin symmetric mean (MSM) operator was first introduced by Maclaurin in 1729 [36]
and then extended by Detemple et al. [37]. The MSM operator can capture the correlation
among the evaluated information. It can reflect the risk preference of decision-makers during the
evaluation. The MSM operator has been concerned by many scholars since it was proposed, and
many achievements have been made in both theory and applications [38–40]. However, in practical
decision problems, the attributes in the evaluation information are not always interrelated. There
may be divisions among attributes, which cannot be handled by the MSM operator. To solve this
problem, the partitioned MSM (PMSM) operator [41] has been proposed. The PMSM operator
can handle the case where there are partitions among attributes.

As the complexity of the decision problem increases, the following situations may occur:
1) decision makers may use the linguistic terms to describe the evaluation object; 2) due to
lack of experience, decision makers may give some evaluation values that are too high or too
low. To deal with the above problems, we extend the PMSM operator and the partitioned dual
PMSM operator to process Lq-ROFS. Then, we propose the linguistic q-rung orthopair fuzzy
partitioned Maclaurin symmetric mean (Lq-ROFPMSM) operator, linguistic q-rung orthopair
fuzzy partitioned dual Maclaurin symmetric mean (Lq-ROFPDMSM) operator, and their weighted
form (Lq-ROFWPMSM and Lq-ROFWPDMSM). The Lq-ROFPMSM and Lq-ROFPDMSM
operators can solve the decision-making problems that the attributes in the same clusters are
closely related and the attributes in the different clusters have no relationship. The negative impact
of unreasonable values in the evaluation information on the ranking results is also significantly
reduced.

3 Preliminaries

In this chapter, will briefly review the definition and characteristics of the linguistic q-round
orthopair fuzzy sets (Lq-ROFSs) and the partitioned Maclaurin symmetric mean (PMSM)
operators.

3.1 Lq-ROFSs
Definition 1. [31]. Suppose X is the collection of discourse, S= {sα | α ∈ [0, t]} is a continuous

linguistic term set, where t is a positive integer. An Lq-ROFS L is expressed as

L= {(x, sa(x), sb(x)) | x ∈X}, (1)

where sa(x) and sb(x) respectively represent the MD and NMD of parameter x in Lq-ROFS
L. We call the pair (sa(x), sb(x)) an Lq-ROFN. To express it conveniently, we assign (sa, sb) to
represent it, which meets 0 ≤ a ≤ t, 0 ≤ b ≤ t, 0 ≤ aq + bq ≤ tq and q ≥ 1. Let sπ (x) = s q√tq−aq−bq ,
then sπ (x) represents the indeterminacy degree of the parameter x in Lq-ROFS L.
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Definition 2. [31]. Let S = {sα | α ∈ [0, t]} be a linguistic term set and α = (sa, sb) be an
Lq-ROFN, where sa, sb ∈ S, then we can express the score function of the Lq-ROFN α as follows:

D(α)= s
(tq+aq−bq/2)

1
q
. (2)

The accuracy function is expressed as:

J(α)= s
(aq+bq)

1
q
. (3)

Then, we can compare any two Lq-ROFN α and β in the following way:

(1) If D(α) >D(β), then α � β;
(2) If D(α)=D(β), then

If J(α) > J(β), then α � β,
If J(α)= J(β), then α = β.

Definition 3. [31]. Suppose λ is a positive real number and γ = (sa, sb), γ1 = (sa1 , sb1) and γ2 =
(sa2 , sb2) are three arbitrary Lq-ROFNs. The operations among the Lq-ROFNs γ , γ1 and γ2 are
shown as below:

γ1⊕ γ2 = (sa1, sb1)⊕ (sa2 , sb2)=

⎛
⎜⎜⎝s

t

(
1−

2∏
i=1

(
1− a

q
i
tq

)) 1
q
, s
t
(
b1b2
t2

)
⎞
⎟⎟⎠ , (4)

γ1⊗ γ2 = (sa1, sb1)⊗ (sa2 , sb2)=

⎛
⎜⎜⎝st( a1a2

t2

), s
t

(
1−

2∏
i=1

(
1− b

q
i
tq

)) 1
q

⎞
⎟⎟⎠ , (5)

λγ = λ(sa, sb)=

⎛
⎜⎝s

t
(
1−
(
1− aq

tq

)λ
) 1
q
, s
t
(
b
t

)λ

⎞
⎟⎠ , (6)

γ λ = (sa, sb)
λ =

⎛
⎜⎝st( at )λ , s

t
(
1−
(
1− bq

tq

)λ
) 1
q

⎞
⎟⎠ . (7)

3.2 The PMSM Operator
Definition 4. [41]. Suppose ai is a set of real numbers not less than zero, where i= 1, 2, . . . ,n,

and separate them into d partitions P1,P2, . . . ,Pd . k1,k2, . . . ,kd are the parameters of the PMSM
operator, and kr = 1, 2, . . . , |Pr|, where |Pr| represents the number of evaluation information in
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the partition Pr (r= 1, 2, . . . ,d). Then, the formula of the partitioned MSM (PMSM) operator is
shown below:

PMSM(k1,k2,...,kd)(α1,α2, . . . ,αn)= 1
d

d∑
r=1

⎛
⎜⎜⎜⎜⎝
∑

i1,i2,...ikr∈Pr
i1<i2···<ikr

kr∏
j=1

αij

Ckr
|pr|

⎞
⎟⎟⎟⎟⎠

1
kr

, (8)

where {i1, i2, . . . ikr} is a collection of kr integers derived from the collection {1, 2, . . . , |Pr|}, and

1≤ i1 < i2 < · · ·< ik ≤ |Pr|, Ckr
|pr|denotes the binomial coefficient and Ckr

|pr| =
|pr|!

kr!(|pr|−kr)! .

4 The Proposed Lq-ROFPMSMOperator and Lq-ROFWPMSM Operator

4.1 The Lq-ROFPMSM Operator
Definition 5. Let αi = (sai , sbi) be Lq-ROFNs, where i = 1, 2, . . . ,n, which can be partitioned

into d partitions Pr (r= 1, 2, . . . ,d). k1,k2, . . . ,kd are the parameters and kr = 1, 2, . . . , |Pr|, where
|Pr| represents the number of evaluation information in the group Pr. Then, the Lq-ROFPMSM
is shown as follows:

Lq−ROFPMSM(k1,k2,...,kd)(α1,α2, . . . ,αn)= 1
d

d⊕
r=1

⎛
⎜⎜⎜⎜⎝

⊕
i1,i2,...ikr∈Pr
i1<i2···<ikr

(⊗kr
j=1αij)

Ckr
|pr|

⎞
⎟⎟⎟⎟⎠

1
kr

, (9)

where {i1, i2, . . . ikr} is a collection of kr integers derived from the collection {1, 2, . . . , |Pr|}, and

1≤ i1 < i2 < · · ·< ik ≤ |Pr|. Ckr
|pr|denotes the binomial coefficient and Ckr

|pr| =
|pr|!

kr!(|pr|−kr)! .

Theorem 1. Let αi = (sai , sbi) be Lq-ROFNs, where i = 1, 2, . . . ,n, which can be partitioned
into d partitions Pr (r= 1, 2, . . . ,d). k1,k2, . . . ,kd are the parameters and kr = 1, 2, . . . , |Pr|, where
|Pr| represents the number of evaluation information in the partition Pr (r= 1, 2, . . . ,d). Then we
aggregate all the Lq-ROFNs using the above Lq-ROFPMSM operator and the result is still an
Lq-ROFN, shown as below:

Lq−ROFPMSM(k1,k2,...,kd)(α1,α2, . . . ,αn)=

⎛
⎜⎜⎜⎜⎜⎜⎝

s

t

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝
1−

⎛
⎜⎜⎜⎜⎜⎜⎝

d∏
r=1

⎛
⎜⎜⎜⎜⎜⎜⎝
1−

⎛
⎜⎜⎜⎜⎝1−

⎛
⎜⎜⎜⎝ ∏
i1,i2,...ikr∈Pr
i1<i2···<ikr

(
1−

kr∏
j=1

a
q
ij
tq

)⎞⎟⎟⎟⎠
1

Ckr|pr |

⎞
⎟⎟⎟⎟⎠

1
kr

⎞
⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎠

1
d
⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

1
q

s

t

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

d∏
r=1

⎛
⎜⎜⎜⎜⎜⎜⎝
1−

⎛
⎜⎜⎜⎜⎝1−

⎛
⎜⎜⎜⎝ ∏
i1,i2,...ikr∈Pr
i1<i2···<ikr

(
1−

kr∏
j=1

(
1−

b
q
ij
tq

))⎞⎟⎟⎟⎠
1

Ckr|pr |

⎞
⎟⎟⎟⎟⎠

1
kr

⎞
⎟⎟⎟⎟⎟⎟⎠

1
q
⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

1
d

⎞
⎟⎟⎟⎟⎟⎟⎠
.

(10)
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Proof. According to Definition 3, we have

⊗kr
j=1αij =

⎛
⎜⎝st kr∏

j=1

(
aij
t

), s
t

(
1−

kr∏
j=1

(
1−

b
q
ij
tq

)) 1
q

⎞
⎟⎠ ,

and

⊕
i1,i2,...ikr∈Pr
i1<i2···<ikr

(⊗kr
j=1αij)=

⎛
⎜⎜⎜⎜⎝
s

t

⎛
⎜⎜⎜⎝1− ∏

i1,i2,...ikr∈Pr
i1<i2···<ikr

(
1−

kr∏
j=1

aqij
tq

)⎞⎟⎟⎟⎠
1
q
, s

t

⎛
⎜⎜⎜⎝ ∏
i1,i2,...ikr∈Pr
i1<i2···<ikr

(
1−

kr∏
j=1

(
1−

bqij
tq

)) 1
q

⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎠ .

Then we can get

⊕
i1,i2,...ikr∈Pr
i1<i2···<ikr

(⊗kr
j=1αij)

Ckr
|pr|

=

⎛
⎜⎜⎜⎜⎜⎝
s

t

⎛
⎜⎜⎜⎜⎝1−

⎛
⎜⎜⎜⎝ ∏
i1,i2,...ikr∈Pr
i1<i2 ···<ikr

(
1−

kr∏
j=1

a
q
ij
tq

)⎞⎟⎟⎟⎠
1

Ckr|pr |

⎞
⎟⎟⎟⎟⎠

1
q
, s

t

⎛
⎜⎜⎜⎝ ∏
i1,i2,...ikr∈Pr
i1<i2···<ikr

(
1−

kr∏
j=1

(
1−

b
q
ij
tq

)) 1
q

⎞
⎟⎟⎟⎠

1

Ckr|pr |

⎞
⎟⎟⎟⎟⎟⎠ .

Then

⎛
⎜⎜⎝

⊕
i1,i2,...ikr∈Pr
i1<i2···<ikr

(⊗kr
j=1αij )

Ckr
|pr |

⎞
⎟⎟⎠

1
kr

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

s

t

⎛
⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎝1−

⎛
⎜⎜⎜⎝ ∏
i1,i2,...ikr∈Pr
i1<i2···<ikr

(
1−

kr∏
j=1

a
q
ij
tq

)⎞⎟⎟⎟⎠
1

Ckr|pr |

⎞
⎟⎟⎟⎟⎠

1
q
⎞
⎟⎟⎟⎟⎟⎟⎠

1
kr
, s

t

⎛
⎜⎜⎜⎜⎜⎜⎝
1−

⎛
⎜⎜⎜⎜⎝1−

⎛
⎜⎜⎜⎝ ∏
i1,i2,...ikr∈Pr
i1<i2···<ikr

(
1−

kr∏
j=1

(
1−

b
q
ij
tq

))⎞⎟⎟⎟⎠
1

Ckr|pr |

⎞
⎟⎟⎟⎟⎠

1
kr

⎞
⎟⎟⎟⎟⎟⎟⎠

1
q

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
.
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Therefore,

d⊕
r=1

⎛
⎜⎜⎝

⊕
i1,i2,...ikr∈Pr
i1<i2···<ikr

(⊗kr
j=1αij)

Ckr
|pr|

⎞
⎟⎟⎠

1
kr

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

s

t

⎛
⎜⎜⎜⎜⎜⎜⎝
1−

d∏
r=1

⎛
⎜⎜⎜⎜⎜⎜⎝
1−

⎛
⎜⎜⎜⎜⎝1−

⎛
⎜⎜⎜⎝ ∏
i1,i2,...ikr∈Pr
i1<i2···<ikr

(
1−

kr∏
j=1

a
q
ij
tq

)⎞⎟⎟⎟⎠
1

Ckr|pr|

⎞
⎟⎟⎟⎟⎠

1
kr

⎞
⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎠

1
q
, s

t
d∏
r=1

⎛
⎜⎜⎜⎜⎜⎜⎝
1−

⎛
⎜⎜⎜⎜⎝1−

⎛
⎜⎜⎜⎝ ∏
i1,i2,...ikr∈Pr
i1<i2 ···<ikr

(
1−

kr∏
j=1

(
1−

b
q
ij
tq

))⎞⎟⎟⎟⎠
1

Ckr|pr |

⎞
⎟⎟⎟⎟⎠

1
kr

⎞
⎟⎟⎟⎟⎟⎟⎠

1
q

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
,

1
d

d⊕
r=1

⎛
⎜⎜⎝

⊕
i1,i2,...ikr∈Pr
i1<i2···<ikr

(⊗kr
j=1αij )

Ckr
|pr|

⎞
⎟⎟⎠

1
kr

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

s

t

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝
1−

⎛
⎜⎜⎜⎜⎜⎜⎝

d∏
r=1

⎛
⎜⎜⎜⎜⎜⎜⎝
1−

⎛
⎜⎜⎜⎜⎝1−

⎛
⎜⎜⎜⎝ ∏
i1,i2,...ikr∈Pr
i1<i2···<ikr

(
1−

kr∏
j=1

a
q
ij
tq

)⎞⎟⎟⎟⎠
1

Ckr|pr |

⎞
⎟⎟⎟⎟⎠

1
kr

⎞
⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎠

1
d
⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

1
q
, s

t

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

d∏
r=1

⎛
⎜⎜⎜⎜⎜⎜⎝
1−

⎛
⎜⎜⎜⎜⎝1−

⎛
⎜⎜⎜⎝ ∏
i1,i2,...ikr∈Pr
i1<i2···<ikr

(
1−

kr∏
j=1

(
1−

b
q
ij
tq

))⎞⎟⎟⎟⎠
1

Ckr|pr|

⎞
⎟⎟⎟⎟⎠

1
kr

⎞
⎟⎟⎟⎟⎟⎟⎠

1
q
⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

1
d

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

According to the above derivation process, the proof of Theorem 1 is completed. In the next
part, some features of the Lq-ROFPMSM operator are analyzed.

(1) Idempotency. Suppose that αi = (sai , sbi)= α = (sa, sb), where i= 1, 2, . . . ,n. We have

Lq−ROFPMSM(k1,k2,...,kd)(α1,α2, . . . ,αn)= α. (11)

Proof. Due to αi = (sai , sbi)= α = (sa, sb), we have

Lq−ROFPMSM(k1,k2,...,kd)(α,α, . . . ,α)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

s

t

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝
1−

⎛
⎜⎜⎜⎜⎜⎜⎝

d∏
r=1

⎛
⎜⎜⎜⎜⎜⎜⎝
1−

⎛
⎜⎜⎜⎜⎝1−

⎛
⎜⎜⎜⎝ ∏
i1,i2,...ikr∈Pr
i1<i2···<ikr

(
1−

kr∏
j=1

aq
tq

)⎞⎟⎟⎟⎠
1

Ckr|pr |

⎞
⎟⎟⎟⎟⎠

1
kr

⎞
⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎠

1
d
⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

1
q
, s

t

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

d∏
r=1

⎛
⎜⎜⎜⎜⎜⎜⎝
1−

⎛
⎜⎜⎜⎜⎝1−

⎛
⎜⎜⎜⎝ ∏
i1,i2,...ikr∈Pr
i1<i2 ···<ikr

(
1−

kr∏
j=1

(
1− bq

tq

))
⎞
⎟⎟⎟⎠

1
Ckr|pr |

⎞
⎟⎟⎟⎟⎠

1
kr

⎞
⎟⎟⎟⎟⎟⎟⎠

1
q
⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

1
d

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
,
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=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

s

t

⎛
⎜⎜⎜⎜⎜⎝1−

⎛
⎜⎜⎜⎝

d∏
r=1

⎛
⎜⎜⎜⎝1−

⎛
⎜⎜⎝1−

⎛
⎝(1−( aqtq

)kr)Ckr|pr |⎞⎠
1

Ckr|pr|

⎞
⎟⎟⎠

1
kr
⎞
⎟⎟⎟⎠
⎞
⎟⎟⎟⎠

1
d
⎞
⎟⎟⎟⎟⎟⎠

1
q
, s

t

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

d∏
r=1

⎛
⎜⎜⎜⎜⎜⎜⎝
1−

⎛
⎜⎜⎜⎜⎝1−

⎛
⎜⎜⎝
⎛
⎝1−

(
1−

b
q
ij
tq

)kr⎞⎠
Ckr|pr|

⎞
⎟⎟⎠

1

Ckr|pr|

⎞
⎟⎟⎟⎟⎠

1
kr

⎞
⎟⎟⎟⎟⎟⎟⎠

1
q
⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

1
d

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

s

t

⎛
⎜⎜⎜⎜⎜⎝1−

⎛
⎜⎜⎜⎝

d∏
r=1

⎛
⎜⎜⎜⎝1−

⎛
⎜⎜⎝1−

⎛
⎝(1−( aqtq

)kr)Ckr|pr |⎞⎠
1

Ckr|pr|

⎞
⎟⎟⎠

1
kr
⎞
⎟⎟⎟⎠
⎞
⎟⎟⎟⎠

1
d
⎞
⎟⎟⎟⎟⎟⎠

1
q
, s

t

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

d∏
r=1

⎛
⎜⎜⎜⎜⎜⎜⎝
1−

⎛
⎜⎜⎜⎜⎝1−

⎛
⎜⎜⎝
⎛
⎝1−

(
1−

b
q
ij
tq

)kr⎞⎠
Ckr|pr|

⎞
⎟⎟⎠

1

Ckr|pr|

⎞
⎟⎟⎟⎟⎠

1
kr

⎞
⎟⎟⎟⎟⎟⎟⎠

1
q
⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

1
d

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

=

⎛
⎜⎜⎜⎜⎜⎝
s

t

⎛
⎜⎜⎝1−

⎛
⎝ d∏
r=1

⎛
⎝1−(1−(1−( aqtq

)kr)) 1
kr

⎞
⎠
⎞
⎠

1
d

⎞
⎟⎟⎠

1
q
, s

t

⎛
⎜⎜⎜⎜⎝

d∏
r=1

⎛
⎜⎜⎝1−

⎛
⎝1−

⎛
⎝1−

(
1−

b
q
ij
tq

)kr⎞⎠
⎞
⎠

1
kr

⎞
⎟⎟⎠

1
q
⎞
⎟⎟⎟⎟⎠

1
d

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝
s

t

⎛
⎜⎜⎝1−

⎛
⎝ d∏
r=1

⎛
⎝1−(( aqtq

)kr) 1
kr

⎞
⎠
⎞
⎠

1
d

⎞
⎟⎟⎠

1
q
, s

t

⎛
⎜⎜⎜⎜⎝

d∏
r=1

⎛
⎜⎜⎝1−

⎛
⎝(1− b

q
ij
tq

)kr⎞⎠
1
kr

⎞
⎟⎟⎠

1
q
⎞
⎟⎟⎟⎟⎠

1
d

⎞
⎟⎟⎟⎟⎟⎠ ,

=

⎛
⎜⎜⎜⎝
s

t

⎛
⎜⎝1−

(
d∏
r=1

(
1− aq

tq

)) 1
d

⎞
⎟⎠

1
q
, s

t

⎛
⎜⎝ d∏
r=1

(
1−
(
1−

bqij
tq

)) 1
q
⎞
⎟⎠

1
d

⎞
⎟⎟⎟⎠=

⎛
⎜⎜⎜⎝
s

t

⎛
⎝1−

((
1− aq

tq

)d) 1
d

⎞
⎠

1
q
, s

t

⎛
⎜⎜⎝
⎛
⎜⎝
(
b
q
ij
tq

) 1
q
⎞
⎟⎠
d⎞⎟⎟⎠

1
d

⎞
⎟⎟⎟⎠

=
⎛
⎝s

t
(
1−
(
1− aq

tq

)) 1
q
, s
t
(
b
t

)
⎞
⎠=

⎛
⎝s

t
(
aq
tq

) 1
q
, s
t
(
b
t

)
⎞
⎠= (sa, sb).

According to the above derivation process, we have completed the proof of idempotency.

(2) Commutativity. Suppose αi = (sai , sbi) and α′
i = (s′ai , s′bi) are two arbitrary sets of

Lq-ROFNs, where i= 1, 2, . . . ,n. If α′
i is an arbitrary permutation of αi, then

Lq−ROFPMSM(k1,k2,...,kd)(α1,α2, . . . ,αn)=Lq−ROFPMSM(k1,k2,...,kd)(α′
1,α′

2, . . . ,α′). (12)
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Proof. As α′
i is an arbitrary permutation of αi, we can get

Lq−ROFPMSM(k1,k2,...,kd)(α1,α2, . . . ,αn)= 1
d

d⊕
r=1

⎛
⎜⎜⎝

⊕
i1,i2,...ikr∈Pr
i1<i2···<ikr

(⊗kr
j=1αij )

Ckr
|pr|

⎞
⎟⎟⎠

1
kr

= 1
d

d⊕
r=1

⎛
⎜⎜⎝

⊕
i1,i2,...ikr∈Pr
i1<i2···<ikr

(⊗kr
j=1α

′
ij )

Ckr
|pr|

⎞
⎟⎟⎠

1
kr

=Lq−ROFPMSM(k1,k2,...,kd)(α′
1,α′

2, . . . ,α′
n).

According to the above derivation process, we have completed the proof of commutativity.

(3)Monotonicity. Suppose αi = (sai , sbi) and α′
i = (s′ai , s′bi) are two arbitrary sets of Lq-ROFNs,

where i= 1, 2, . . . ,n. If there is sai ≥ s′ai and sbi ≤ s′bi for arbitrary i. We have

Lq−ROFPMSM(k1,k2,...,kd)(α1,α2, . . . ,αn)≥Lq−ROFPMSM(k1,k2,...,kd)(α′
1,α

′
2, . . . ,α

′
n). (13)

Proof. As ai ≥ a′i ≥ 0 and 0≤ bi ≤ b′i, then we can get aij ≥ a′ij ≥ 0 and 0≤ bij ≤ b′ij . Thus

aqij ≥ (a′ij)q ⇒
aqij
tq ≥ (a′ij )

q

tq ⇒
kr∏
j=1

aqij
tq ≥

kr∏
j=1

(a′ij )
q

tq ⇒ 1−
kr∏
j=1

aqij
tq ≤ 1−

kr∏
j=1

(a′ij )
q

tq

⇒ ∏
i1,i2,...ikr∈Pr
i1<i2···<ikr

(
1−

kr∏
j=1

aqij
tq

)
≤ ∏

i1,i2,...ikr∈Pr
i1<i2···<ikr

(
1−

kr∏
j=1

(a′ij )
q

tq

)

⇒

⎛
⎜⎝ ∏

i1,i2,...ikr∈Pr
i1<i2···<ikr

(
1−

kr∏
j=1

aqij
tq

)⎞⎟⎠
1

Ckr|pr |
≤

⎛
⎜⎝ ∏

1,i2,...ikr∈Pr
i1<i2···<ikr

(
1−

kr∏
j=1

(a′ij )
q

tq

)⎞⎟⎠
1

Ckr|pr|

⇒ 1−

⎛
⎜⎝ ∏

i1,i2,...ikr∈Pr
i1<i2···<ikr

(
1−

kr∏
j=1

aqij
tq

)⎞⎟⎠
1

Ckr|pr |
≥ 1−

⎛
⎜⎝ ∏

1,i2,...ikr∈Pr
i1<i2 ···<ikr

(
1−

kr∏
j=1

(a′ij )
q

tq

)⎞⎟⎠
1

Ckr|pr |

⇒ 1−

⎛
⎜⎜⎝1−

⎛
⎜⎝ ∏

i1,i2,...ikr∈Pr
i1<i2···<ikr

(
1−

kr∏
j=1

aqij
tq

)⎞⎟⎠
1

Ckr|pr |

⎞
⎟⎟⎠

1
kr

≤ 1−

⎛
⎜⎜⎝1−

⎛
⎜⎝ ∏

i1,i2,...ikr∈Pr
i1<i2 ···<ikr

(
1−

kr∏
j=1

(a′ij )
q

tq

)⎞⎟⎠
1

Ckr|pr |

⎞
⎟⎟⎠

1
kr
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⇒
d∏
r=1

⎛
⎜⎜⎜⎜⎝1−

⎛
⎜⎜⎝1−

⎛
⎜⎝ ∏

i1,i2,...ikr∈Pr
i1<i2···<ikr

(
1−

kr∏
j=1

aqij
tq

)⎞⎟⎠
1

Ckr|pr|

⎞
⎟⎟⎠

1
kr

⎞
⎟⎟⎟⎟⎠

≤
d∏
r=1

⎛
⎜⎜⎜⎜⎝1−

⎛
⎜⎜⎝1−

⎛
⎜⎝ ∏

i1,i2,...ikr∈Pr
i1<i2···<ikr

(
1−

kr∏
j=1

(a′ij )
q

tq

)⎞⎟⎠
1

Ckr|pr |

⎞
⎟⎟⎠

1
kr

⎞
⎟⎟⎟⎟⎠

⇒ t

⎛
⎜⎜⎜⎜⎜⎝1−

⎛
⎜⎜⎜⎜⎝

d∏
r=1

⎛
⎜⎜⎜⎜⎝1−

⎛
⎜⎜⎝1−

⎛
⎜⎝ ∏

i1,i2,...ikr∈Pr
i1<i2···<ikr

(
1−

kr∏
j=1

aqij
tq

)⎞⎟⎠
1

Ckr|pr |

⎞
⎟⎟⎠

1
kr

⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎠

1
d
⎞
⎟⎟⎟⎟⎟⎠

1
q

≥ t

⎛
⎜⎜⎜⎜⎜⎝1−

⎛
⎜⎜⎜⎜⎝

d∏
r=1

⎛
⎜⎜⎜⎜⎝1−

⎛
⎜⎜⎝1−

⎛
⎜⎝ ∏

i1,i2,...ikr∈Pr
i1<i2···<ikr

(
1−

kr∏
j=1

(a′ij )
q

tq

)⎞⎟⎠
1

Ckr|pr|

⎞
⎟⎟⎠

1
kr

⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎠

1
d
⎞
⎟⎟⎟⎟⎟⎠

1
q

.

Then, we can obtain

bqij ≤ (b′ij)
q ⇒ bqij

tq ≤ (b′ij )
q

tq ⇒ 1− bqij
tq ≥ 1− (b′ij )

q

tq ⇒
kr∏
j=1

(
1− bqij

tq

)
≥

kr∏
j=1

(
1− (b′ij )

q

tq

)

⇒ 1−
kr∏
j=1

(
1− bqij

tq

)
≤ 1−

kr∏
j=1

(
1− (b′ij )

q

tq

)
⇒

⎛
⎜⎝ ∏

i1,i2,...ikr∈Pr
i1<i2···<ikr

(
1−

kr∏
j=1

(
1− bqij

tq

))⎞⎟⎠
1

Ckr|pr |

≤

⎛
⎜⎝ ∏

i1,i2,...ikr∈Pr
i1<i2···<ikr

(
1−

kr∏
j=1

(
1− (b′ij )

q

tq

))⎞⎟⎠
1

Ckr|pr|

⇒ 1−

⎛
⎜⎝ ∏

i1,i2,...ikr∈Pr
i1<i2···<ikr

(
1−

kr∏
j=1

(
1− bqij

tq

))⎞⎟⎠
1

Ckr|pr|
≥ 1−

⎛
⎜⎝ ∏

i1,i2,...ikr∈Pr
i1<i2 ···<ikr

(
1−

kr∏
j=1

(
1− (b′ij )

q

tq

))⎞⎟⎠
1

Ckr|pr |
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⇒ 1−

⎛
⎜⎜⎝1−

⎛
⎜⎝ ∏

i1,i2,...ikr∈Pr
i1<i2···<ikr

(
1−

kr∏
j=1

(
1− bqij

tq

))⎞⎟⎠
1

Ckr|pr|

⎞
⎟⎟⎠

1
kr

≤ 1−

⎛
⎜⎜⎝1−

⎛
⎜⎝ ∏

i1,i2,...ikr∈Pr
i1<i2···<ikr

(
1−

kr∏
j=1

(
1− (b′ij )

q

tq

))⎞⎟⎠
1

Ckr|pr |

⎞
⎟⎟⎠

1
kr

⇒ t

⎛
⎜⎜⎜⎜⎜⎝

d∏
r=1

⎛
⎜⎜⎜⎜⎝1−

⎛
⎜⎜⎝1−

⎛
⎜⎝ ∏

i1,i2,...ikr∈Pr
i1<i2···<ikr

(
1−

kr∏
j=1

(
1− bqij

tq

))⎞⎟⎠
1

Ckr|pr |

⎞
⎟⎟⎠

1
kr

⎞
⎟⎟⎟⎟⎠

1
q
⎞
⎟⎟⎟⎟⎟⎠

1
d

≤ t

⎛
⎜⎜⎜⎜⎜⎝

d∏
r=1

⎛
⎜⎜⎜⎜⎝1−

⎛
⎜⎜⎝1−

⎛
⎜⎝ ∏

i1,i2,...ikr∈Pr
i1<i2···<ikr

(
1−

kr∏
j=1

(
1− (b′ij )

q

tq

))⎞⎟⎠
1

Ckr|pr|

⎞
⎟⎟⎠

1
kr

⎞
⎟⎟⎟⎟⎠

1
q
⎞
⎟⎟⎟⎟⎟⎠

1
d

.

Then we have

sai = t

⎛
⎜⎜⎜⎜⎜⎝1−

⎛
⎜⎜⎜⎜⎝

d∏
r=1

⎛
⎜⎜⎜⎜⎝1−

⎛
⎜⎜⎝1−

⎛
⎜⎝ ∏

i1,i2,...ikr∈Pr
i1<i2···<ikr

(
1−

kr∏
j=1

aqij
tq

)⎞⎟⎠
1

Ckr|pr|

⎞
⎟⎟⎠

1
kr

⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎠

1
d
⎞
⎟⎟⎟⎟⎟⎠

1
q

,

s′ai = t

⎛
⎜⎜⎜⎜⎜⎝1−

⎛
⎜⎜⎜⎜⎝

d∏
r=1

⎛
⎜⎜⎜⎜⎝1−

⎛
⎜⎜⎝1−

⎛
⎜⎝ ∏

i1,i2,...ikr∈Pr
i1<i2···<ikr

(
1−

kr∏
j=1

(a′ij )
q

tq

)⎞⎟⎠
1

Ckr|pr |

⎞
⎟⎟⎠

1
kr

⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎠

1
d
⎞
⎟⎟⎟⎟⎟⎠

1
q

,

sbi = t

⎛
⎜⎜⎜⎜⎜⎝

d∏
r=1

⎛
⎜⎜⎜⎜⎝1−

⎛
⎜⎜⎝1−

⎛
⎜⎝ ∏

i1,i2,...ikr∈Pr
i1<i2···<ikr

(
1−

kr∏
j=1

(
1− bqij

tq

))⎞⎟⎠
1

Ckr|pr |

⎞
⎟⎟⎠

1
kr

⎞
⎟⎟⎟⎟⎠

1
q
⎞
⎟⎟⎟⎟⎟⎠

1
d

,

s′bi = t

⎛
⎜⎜⎜⎜⎜⎝

d∏
r=1

⎛
⎜⎜⎜⎜⎝1−

⎛
⎜⎜⎝1−

⎛
⎜⎝ ∏

i1,i2,...ikr∈Pr
i1<i2···<ikr

(
1−

kr∏
j=1

(
1− (b′ij )

q

tq

))⎞⎟⎠
1

Ckr|pr |

⎞
⎟⎟⎠

1
kr

⎞
⎟⎟⎟⎟⎠

1
q
⎞
⎟⎟⎟⎟⎟⎠

1
d

.
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Owing to sai ≥ s′ai and sbi ≤ s′bi , then αi ≥ α′
i , that is, Lq−ROFPMSM(k1,k2,...,kd)(α1,α2, . . . ,αn)≥

Lq−ROFPMSM(k1,k2,...,kd)(α′
1,α′

2, . . . ,α′
n). According to the above derivation process, we have

completed the proof of monotonicity.

(4) Boundedness. Let α1,α2, . . . ,αn be Lq-ROFNs. Suppose α−
i =minni=1 αi and α+

i =maxni=1 αi.
Then

α−
i ≤Lq−ROFPMSM(k1,k2,...,kd)(α1,α2, . . . ,αn)≤ α+

i . (14)

Proof. According to the monotonicity and idempotency proved above, we have:

Lq−ROFPMSM(k1,k2,...,kd)(α1,α2, . . . ,αn)≥Lq−ROFPMSM(k1,k2,...,kd)(α−,α−, . . . ,α−)= α−,

Lq−ROFPMSM(k1,k2,...,kd)(α1,α2, . . . ,αn)≤Lq−ROFPMSM(k1,k2,...,kd)(α+,α+, . . . ,α+)= α+,

We have completed the proof of boundedness. According to the above theorems and
properties, we will analyze the effect of the variation of the parameter taking values on the
Lq-ROFPMSM operator.

Remark 1. When there is no division between attributes and the relationship type among
attributes is the same, that is, the number of partitions d = 1. The number of elements in
the interval |P1| = n, and k1 = k = 1, 2, . . . ,n. The Lq-ROFPMSM operator transform into the
Lq-ROFMSM operator as follows:

Lq−ROFPMSM(k)(α1,α2, . . . ,αn)=

⎛
⎜⎜⎜⎜⎜⎝

⊕
i1,i2,...ik1

∈P1
i1<i2 ···<ik1

(⊗k1
j=1αij)

Ck1
|p1|

⎞
⎟⎟⎟⎟⎟⎠

1
k1

=

⎛
⎜⎝

⊕
1≤i1<i2···<ik≤n

(⊗k
j=1αij)

Ck
n

⎞
⎟⎠

1
k

. (15)

Remark 2. Subject to Remark 1, we further discuss the typical examples of the Lq-ROFMSM
operator when the parameter k take different values.

Case 1. When k = 1, the Lq-ROFMSM operator transforms into the Linguistic q-rung
orthopair fuzzy average (Lq-ROFA) operator, as follows:

Lq−ROFMSM(1)(α1,α2, . . . ,αn)=

⎛
⎜⎝

⊕
1≤i1<i2···<ik≤n

(⊗1
j=1αij)

C1
n

⎞
⎟⎠

1
1

=
⊕n
ij=1αij

n
. (16)

Case 2. When k = 2, the Lq-ROFMSM operator transforms into the Linguistic q-rung
orthopair fuzzy Bonferroni mean (Lq-ROFBM) operator, as follows:

Lq−ROFMSM(2)(α1,α2, . . . ,αn)=

⎛
⎜⎝

⊕
1≤i1<i2···<ik≤n

(⊗2
j=1αij)

C2
n

⎞
⎟⎠

1
2

=

⎛
⎜⎝
⊕n

ij ,il=1
ij �=il

(αij ⊗αil )

n(n− 1)

⎞
⎟⎠

1
2

. (17)
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Case 3. When k = n, the Lq-ROFMSM operator transforms into the Linguistic q-rung
orthopair fuzzy geometric (Lq-ROFG) operator, as follows:

Lq−ROFMSM(n)(α1,α2, . . . ,αn)=
⎛
⎝ ⊕

1≤i1<i2···<ik≤n
(⊗n

j=1αij)

Cn
n

⎞
⎠

1
n

= ( ⊕
1≤i1<i2···<ik≤n

(⊗n
j=1αij))

1
n . (18)

4.2 The Lq-ROFWPMSM Operator
Definition 6. Let αi = (sai , sbi) be Lq-ROFNs, where i = 1, 2, . . . ,n, which can be partitioned

into d partitions Pr (r= 1, 2, . . . ,d). k1,k2, . . . ,kd are the parameters, and kr = 1, 2, . . . , |Pr|, where
|Pr| represents the number of evaluation information in partition Pr. ωi is the weighting coef-

ficient of αi, which satisfy the following restraint condition ωi ∈ [0, 1] and
n∑
i=1

ωi = 1. Then, the

Lq-ROFWPMSM is shown as follows:

Lq−ROFWPMSM(k1,k2,...,kd)(α1,α2, . . . ,αn)= 1
d

d⊕
r=1

⎛
⎜⎜⎜⎜⎝

⊕
i1,i2,...ikr∈Pr
i1<i2···<ikr

(⊗kr
j=1(ωij ⊗αij))

Ckr
|pr|

⎞
⎟⎟⎟⎟⎠

1
kr

, (19)

where {i1, i2, . . . ikr} is a collection of kr integers derived from the collection {1, 2, . . . , |Pr|}, and

1≤ i1 < i2 < · · ·< ik ≤ |Pr|. Ckr
|pr| denotes the binomial coefficient and Ckr

|pr| =
|pr|!

kr!(|pr|−kr)! .

Theorem 2. Let αi = (sai , sbi) be Lq-ROFNs, where i= 1, 2, . . . ,n, which can be partitioned into
d partitions Pr(r= 1, 2, . . . ,d). k1,k2, . . . ,kd are the parameters, and kr = 1, 2, . . . , |Pr|, where |Pr|
represents the number of evaluation information in partition Pr. ωi is the weight coefficient of

αi, satisfying the following restraint condition ωi ∈ [0, 1] and
n∑
i=1

ωi = 1. Then we aggregate all the

Lq-ROFNs using the above Lq-ROFWPMSM operator, and the result is still an Lq-ROFN, as
follows:

Lq−ROFWPMSM(k1,k2,...,kd)(α1,α2, . . . ,αn)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

s

t

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝
1−

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

d∏
r=1

⎛
⎜⎜⎜⎜⎜⎜⎜⎝
1−

⎛
⎜⎜⎜⎜⎜⎝1−

⎛
⎜⎜⎜⎝ ∏
i1,i2,...ikr∈Pr
i1<i2···<ikr

⎛
⎝1− kr∏

j=1

⎛
⎝1−

(
1−

a
q
ij
tq

)ωij
⎞
⎠
⎞
⎠
⎞
⎟⎟⎟⎠
Ckr|pr |

⎞
⎟⎟⎟⎟⎟⎠

1
kr

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

1
d
⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

1
q

s

t

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

d∏
r=1

⎛
⎜⎜⎜⎜⎜⎜⎜⎝
1−

⎛
⎜⎜⎜⎜⎜⎝1−

⎛
⎜⎜⎜⎝ ∏
i1,i2,...ikr∈Pr
i1<i2···<ikr

(
1−

kr∏
j=1

(
1−
((

bij
t

)ωij
)q))

⎞
⎟⎟⎟⎠
Ckr|pr |

⎞
⎟⎟⎟⎟⎟⎠

1
kr

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

1
q
⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

1
d

⎞
⎟⎟⎟⎟⎟⎟⎠
.

(20)
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Similarly, we can derive that the Lq-ROFWPMSM operator also has the characteristics of
idempotency, commutativity, boundedness and monotonicity. In the next section, we continue to
analyze the effect of parameters on the Lq-ROFWPMSM operator.

Remark 3. When attributes need to be partitioned into several groups P1,P2, . . . ,Pd and there
is an association between any two attributes in the same group, i.e., kr = k= 2 for r= 1, 2, . . . ,d.
The Lq-ROFWPMSM operator will be transformed into the Lq-ROFWPBM operator (p= q= 1)
as follows:

Lq−ROFWPMSM(2,2,...,2)(α1,α2, . . . ,αn)

= 1
d

d⊕
r=1

⎛
⎜⎝

⊕
i1,i2∈Pr
i1<i2

(⊗2
j=1(ωij⊗αij ))

C2
|pr|

⎞
⎟⎠

1
2

= 1
d

d⊕
r=1

⎛
⎝ 2

|pr|(|pr|−1) × 1
2

⎛
⎝ ⊕

i1,i2∈Pr
i1 �=i2

(⊗2
j=1(ωij ⊗αij))

⎞
⎠
⎞
⎠

1
2

= 1
d

d⊕
r=1

⎛
⎝ 1

|pr|(|pr|−1)

⎛
⎝ ⊕

i1,i2∈Pr
i1 �=i2

(ωi1αi1 ⊗ωi2αi2)

⎞
⎠
⎞
⎠

1
2

= 1
d

d⊕
r=1

⎛
⎝ 1

|pr|(|pr|−1)

⎛
⎝ ⊕

i,j∈Pr
i �=j

(ωiαi⊗ωjαj)

⎞
⎠
⎞
⎠

1
2

.

(21)

Example 1. Let α1 = (s7, s1), α2 = (s1, s4), α3 = (s3, s4), α4 = (s2, s6), α5 = (s4, s3), α6 =
(s1, s3), α7 = (s3, s2) be Lq-ROFNs, S = {sε | ε ∈ [0, 8]} and i = 1, 2, . . . , 7. We divide the above
Lq-ROFNs into two partitions, where P1 = {α1,α2,α3} and P2 = {α4,α5,α6,α7}. Assume that
ω = [0.15, 0.15, 0.1, 0.2, 0.05, 0.15, 0.2], k1 = 2, k2 = 2 and q= 3. Then, we have

ω1α1⊗ω2α2 = (s0.2844, s7.5398), ω1α1⊗ω3α3 = (s0.7511, s7.6834), ω2α2⊗ω3α3 = (s0.0933, s7.8635),
ω4α4⊗ω5α5 = (s0.2205, s7.9417), ω4α4⊗ω6α6 = (s0.0779, s7.8462), ω4α4⊗ω7α7 = (s0.2589, s7.7538),
ω5α5⊗ω6α6 = (s0.1000, s7.8676), ω5α5⊗ω7α7 = (s0.3324, s7.7884), ω6α6⊗ω7α7 = (s0.1174, s7.4218)

According to Definition 6, we have

Lq−ROFWPMSM(2,2)(α1,α2, . . . ,α7)= 1
2

2⊕
r=1

⎛
⎜⎜⎝

⊕
i1,i2∈Pr
i1<i2

(ωi1 ⊗αi1)⊗ (ωi2 ⊗αi2)

Ckr
|pr|

⎞
⎟⎟⎠

1
2

= (s1.7741, s7.0636).

5 The Proposed Lq-ROFPDMSM Operator and Lq-ROFWPDMSM Operator

5.1 The Lq-ROFPDMSM Operator
Definition 7. Let αi = (sai , sbi) be Lq-ROFNs, where i = 1, 2, . . . ,n, which can be partitioned

into d partitions Pr (r= 1, 2, . . . ,d). k1,k2, . . . ,kd are the parameters, and kr = 1, 2, . . . , |Pr|, where
|Pr| represents the number of evaluation information in partition Pr. Then, the Lq-ROFPDMSM
is shown as follows:

Lq−ROFPDMSM(k1,k2,...,kd)(α1,α2, . . . ,αn)=
d⊗
r=1

⎛
⎜⎝ 1
kr

⎛
⎜⎝ ⊗

i1,i2,...ikr∈Pr
i1<i2···<ikr

(
kr⊕
j=1

αij)

1

Ckr|pr |

⎞
⎟⎠
⎞
⎟⎠

1
d

, (22)

where {i1, i2, . . . ikr} is a collection of kr integers derived from the collection {1, 2, . . . , |Pr|}, and

1≤ i1 < i2 < · · ·< ik ≤ |Pr|, Ckr
|pr|denotes the binomial coefficient and Ckr

|pr| =
|pr|!

kr!(|pr|−kr)! .



132 CMES, 2021, vol.129, no.1

Theorem 3. Let αi = (sai , sbi) be Lq-ROFNs, where i = 1, 2, . . . ,n, which can be partitioned
into d partitions Pr(r= 1, 2, . . . ,d). k1,k2, . . . ,kd are the parameters, and kr = 1, 2, . . . , |Pr|, where
|Pr| represents the number of evaluation information in partition Pr. Then we aggregate the
Lq-ROFNs by using the above Lq-ROFPMSM operator and the result is still an Lq-ROFN,
shown as below:

Lq−ROFPDMSM(k1,k2,...,kd)(α1,α2, . . . ,αn)=

⎛
⎜⎜⎜⎜⎜⎝

s

t

⎛
⎜⎜⎜⎜⎜⎜⎝

d∏
r=1

⎛
⎜⎜⎜⎜⎝1−

⎛
⎜⎜⎜⎝1−

⎛
⎜⎜⎜⎝ ∏
i1,i2,...ikr∈Pr
i1<i2···<ikr

(
1−

kr∏
j=1

(
1−

aqij
tq

)) 1

Ckr|pr |

⎞
⎟⎟⎟⎠
⎞
⎟⎟⎟⎠

1
kr
⎞
⎟⎟⎟⎟⎠

1
q
⎞
⎟⎟⎟⎟⎟⎟⎠

1
d

s

t

⎛
⎜⎜⎜⎜⎜⎜⎝
1−

⎛
⎜⎜⎜⎜⎝

d∏
r=1

⎛
⎜⎜⎜⎜⎝1−

⎛
⎜⎜⎜⎝1− ∏

i1,i2,...ikr∈Pr
i1<i2···<ikr

⎛
⎜⎝
(
1−
(
kr∏
j=1

bij
t

)q) 1

Ckr|pr|

⎞
⎟⎠
⎞
⎟⎟⎟⎠

1
kr
⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎠

1
d
⎞
⎟⎟⎟⎟⎟⎟⎠

1
q

⎞
⎟⎟⎟⎟⎟⎠.

(23)

Proof. Based on Definition 3, we can get

kr⊕
j=1

αij =

⎛
⎜⎝s

t

(
1−

kr∏
j=1

(
1−

a
q
ij
tq

)) 1
q
, s
t

(
kr∏
j=1

bij
t

)
⎞
⎟⎠ ,

and

(
kr⊕
j=1

αij)

1

Ckr|pr | =

⎛
⎜⎜⎜⎝
s

t

⎛
⎜⎝
(
1−

kr∏
j=1

(
1−

a
q
ij
tq

)) 1
q
⎞
⎟⎠

1

Ckr|pr |
, s

t

⎛
⎜⎝1−

(
1−
(
kr∏
j=1

bij
t

)q) 1

Ckr|pr |

⎞
⎟⎠

1
q

⎞
⎟⎟⎟⎠ .

Then, we can get

∏
i1,i2,...ikr∈Pr
i1<i2···<ikr

⎛
⎝ kr∑
j=1

αij

⎞
⎠

1

Ckr|pr | =

⎛
⎜⎜⎜⎜⎝
s

t

⎛
⎜⎜⎜⎝ ∏
i1,i2,...ikr∈Pr
i1<i2 ···<ikr

⎛
⎜⎝
(
1−

kr∏
j=1

(
1−

aqij
tq

))1
q
⎞
⎟⎠

1

Ckr|pr |

⎞
⎟⎟⎟⎠
, s

t

⎛
⎜⎜⎜⎝1− ∏

i1,i2,...ikr∈Pr
i1<i2···<ikr

⎛
⎜⎝
(
1−
(
kr∏
j=1

bij
t

)q) 1
Ckr|pr|

⎞
⎟⎠
⎞
⎟⎟⎟⎠

1
q

⎞
⎟⎟⎟⎟⎠.
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Then

1
kr

⎛
⎜⎝ ⊗

i1,i2,...ikr∈Pr
i1<i2···<ikr

(
kr⊕
j=1

αij)

1

Ckr|pr |

⎞
⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝
s

t

⎛
⎜⎜⎜⎜⎝1−

⎛
⎜⎜⎜⎝1−

⎛
⎜⎜⎜⎝ ∏
i1,i2,...ikr∈Pr
i1<i2···<ikr

(
1−

kr∏
j=1

(
1−

a
q
ij
tq

)) 1

Ckr|pr |

⎞
⎟⎟⎟⎠
⎞
⎟⎟⎟⎠

1
kr
⎞
⎟⎟⎟⎟⎠

1
q
, s

t

⎛
⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎝1− ∏

i1,i2,...ikr∈Pr
i1<i2···<ikr

⎛
⎜⎝
(
1−
(
kr∏
j=1

bij
t

)q) 1

Ckr|pr |

⎞
⎟⎠
⎞
⎟⎟⎟⎠

1
q
⎞
⎟⎟⎟⎟⎠

1
kr

⎞
⎟⎟⎟⎟⎟⎠.

Therefore,

d⊗
r=1

⎛
⎜⎝ 1
kr

⎛
⎜⎝ ⊗

i1,i2,...ikr∈Pr
i1<i2···<ikr

(
kr⊕
j=1

αij)

1

Ckr|pr |

⎞
⎟⎠
⎞
⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝
s

t

⎛
⎜⎜⎜⎜⎜⎜⎝

d∏
r=1

⎛
⎜⎜⎜⎜⎝1−

⎛
⎜⎜⎜⎝1−

⎛
⎜⎜⎜⎝ ∏
i1,i2,...ikr∈Pr
i1<i2···<ikr

(
1−

kr∏
j=1

(
1−

a
q
ij
tq

)) 1

Ckr|pr |

⎞
⎟⎟⎟⎠
⎞
⎟⎟⎟⎠

1
kr
⎞
⎟⎟⎟⎟⎠

1
q
⎞
⎟⎟⎟⎟⎟⎟⎠

, s

t

⎛
⎜⎜⎜⎜⎝1−

d∏
r=1

⎛
⎜⎜⎜⎜⎝1−

⎛
⎜⎜⎜⎝1− ∏

i1,i2,...ikr∈Pr
i1<i2···<ikr

⎛
⎜⎝
(
1−
(
kr∏
j=1

bij
t

)q) 1

Ckr|pr |

⎞
⎟⎠
⎞
⎟⎟⎟⎠

1
kr
⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎠

1
q

⎞
⎟⎟⎟⎟⎟⎟⎠
,

d⊗
r=1

⎛
⎜⎝ 1
kr

⎛
⎜⎝ ⊗

i1,i2,...ikr∈Pr
i1<i2···<ikr

(
kr⊕
j=1

αij)

1

Ckr|pr |

⎞
⎟⎠
⎞
⎟⎠

1
d

=

⎛
⎜⎜⎜⎜⎜⎝

s

t

⎛
⎜⎜⎜⎜⎜⎜⎝

d∏
r=1

⎛
⎜⎜⎜⎜⎝1−

⎛
⎜⎜⎜⎝1−

⎛
⎜⎜⎜⎝ ∏
i1,i2,...ikr∈Pr
i1<i2···<ikr

(
1−

kr∏
j=1

(
1−

a
q
ij
tq

)) 1
Ckr|pr|

⎞
⎟⎟⎟⎠
⎞
⎟⎟⎟⎠

1
kr
⎞
⎟⎟⎟⎟⎠

1
q ,s
⎞
⎟⎟⎟⎟⎟⎟⎠

1
d

s

t

⎛
⎜⎜⎜⎜⎜⎜⎝
1−

⎛
⎜⎜⎜⎜⎝

d∏
r=1

⎛
⎜⎜⎜⎜⎝1−

⎛
⎜⎜⎜⎝1− ∏

i1,i2,...ikr∈Pr
i1<i2···<ikr

⎛
⎜⎝
(
1−
(
kr∏
j=1

bij
t

)q) 1

Ckr|pr |

⎞
⎟⎠
⎞
⎟⎟⎟⎠

1
kr
⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎠

1
d
⎞
⎟⎟⎟⎟⎟⎟⎠

1
q

⎞
⎟⎟⎟⎟⎟⎠ .

According to the above derivation process, we have completed the proof of Theorem 3.

(1) Idempotency. Suppose that αi = (sai , sbi)= α = (sa, sb)(i= 1, 2, . . . ,n), then

Lq−ROFPDMSM(k1,k2,...,kd)(α1,α2, . . . ,αn)= α. (24)



134 CMES, 2021, vol.129, no.1

Proof. Due to αi = (sai , sbi)= α = (sa, sb), we have

Lq−ROFPDMSM(k1,k2,...,kd)(α,α, . . . ,α)

=

⎛
⎜⎜⎜⎜⎜⎝

s

t

⎛
⎜⎜⎜⎜⎜⎜⎝

d∏
r=1

⎛
⎜⎜⎜⎜⎝1−

⎛
⎜⎜⎜⎝1−

⎛
⎜⎜⎜⎝ ∏
i1,i2,...ikr∈Pr
i1<i2···<ikr

(
1−

kr∏
j=1

(
1− aq

tq

)) 1

Ckr|pr |

⎞
⎟⎟⎟⎠
⎞
⎟⎟⎟⎠

1
kr
⎞
⎟⎟⎟⎟⎠

1
q
⎞
⎟⎟⎟⎟⎟⎟⎠

1
d

s

t

⎛
⎜⎜⎜⎜⎜⎜⎝
1−

⎛
⎜⎜⎜⎜⎝

d∏
r=1

⎛
⎜⎜⎜⎜⎝1−

⎛
⎜⎜⎜⎝1− ∏

i1,i2,...ikr∈Pr
i1<i2 ···<ikr

⎛
⎜⎝
(
1−
(
kr∏
j=1

b
t

)q) 1
Ckr|pr |

⎞
⎟⎠
⎞
⎟⎟⎟⎠

1
kr
⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎠

1
d
⎞
⎟⎟⎟⎟⎟⎟⎠

1
q

⎞
⎟⎟⎟⎟⎟⎠ ,

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

s

t

⎛
⎜⎜⎜⎜⎜⎝

d∏
r=1

⎛
⎜⎜⎜⎝1−

⎛
⎜⎜⎝1−

⎛
⎝(1−(1− aq

tq

)kr)Ckr|pr|⎞⎠
1

Ckr|pr|

⎞
⎟⎟⎠

1
kr
⎞
⎟⎟⎟⎠

1
q
⎞
⎟⎟⎟⎟⎟⎠

1
d
, s

t

⎛
⎜⎜⎜⎜⎜⎜⎜⎝
1−

⎛
⎜⎜⎜⎜⎜⎝

d∏
r=1

⎛
⎜⎜⎜⎜⎜⎝1−

⎛
⎜⎜⎜⎝1−

⎛
⎜⎝(1−( bqtq

)kr) 1
Ckr|pr|

⎞
⎟⎠
Ckr|pr |

⎞
⎟⎟⎟⎠

1
kr

⎞
⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎠

1
d

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

1
q

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎝
s

t

⎛
⎜⎜⎝ d∏
r=1

⎛
⎝1−

(
1−
(
1−
(
1− aq

tq

)kr)) 1
kr

⎞
⎠

1
q

⎞
⎟⎟⎠

1
d
, s

t

⎛
⎜⎜⎝1−

⎛
⎝ d∏
r=1

⎛
⎝1−(1−(1−( bqtq

)kr)) 1
kr

⎞
⎠
⎞
⎠

1
d

⎞
⎟⎟⎠

1
q

⎞
⎟⎟⎟⎠ ,

=

⎛
⎜⎜⎜⎝
s

t

⎛
⎜⎜⎝ d∏
r=1

⎛
⎝1−

((
1− aq

tq

)kr) 1
kr

⎞
⎠

1
q

⎞
⎟⎟⎠

1
d
, s

t

⎛
⎜⎜⎝1−

⎛
⎝ d∏
r=1

⎛
⎝1−

((
bq
tq

)kr) 1
kr

⎞
⎠
⎞
⎠

1
d

⎞
⎟⎟⎠

1
q

⎞
⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎝
s
t

(
d∏
r=1

(
1−
(
1− aq

tq

)) 1
q

) 1
d
, s

t

⎛
⎜⎝1−

(
d∏
r=1

(
1− bq

tq

)) 1
d

⎞
⎟⎠

1
q

⎞
⎟⎟⎟⎠

=

⎛
⎜⎜⎝s

t

⎛
⎝(( aq

tq

) 1
q

)d⎞⎠
1
d
, s

t

⎛
⎝1−((1− bq

tq

)d) 1
d

⎞
⎠

1
q

⎞
⎟⎟⎠ ,

=
⎛
⎝st( at ), st(1−(1− bq

tq

)) 1
q

⎞
⎠=

⎛
⎝sa, s

t
(
bq
tq

) 1
q

⎞
⎠= (sa, sb).

According to the above derivation process, we have completed the proof of idempotency.
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(2) Commutativity. Suppose αi = (sai , sbi) and α′
i = (s′ai , s′bi) are any two collections of

Lq-ROFNs, where i= 1, 2, . . . ,n. If α′
i is an arbitrary permutation of αi, then

Lq−ROFPDMSM(k1,k2,...,kd)(α1,α2, . . . ,αn)=Lq−ROFPDMSM(k1,k2,...,kd)(α′
1,α

′
2, . . . ,α

′
n). (25)

Proof. As α′
i is an arbitrary permutation of αi, we can get

Lq−ROFPDMSM(k1,k2,...,kd)(α1,α2, . . . ,αn)=
d⊗
r=1

⎛
⎜⎝ 1
kr

⎛
⎜⎝ ⊗

i1,i2,...ikr∈Pr
i1<i2···<ikr

(
kr⊕
j=1

αij

) 1

Ckr|pr |

⎞
⎟⎠
⎞
⎟⎠

1
d

= d⊗
r=1

⎛
⎜⎝ 1
kr

⎛
⎜⎝ ⊗

i1,i2,...ikr∈Pr
i1<i2···<ikr

(
kr⊕
j=1

α′
ij

) 1

Ckr|pr |

⎞
⎟⎠
⎞
⎟⎠

1
d

=Lq−ROFPDMSM(k1,k2,...,kd)(α′
1,α′

2, . . . ,α′
n).

According to the above derivation process, we have completed the proof of commutativity.

(3)Monotonicity. Suppose αi = (sai , sbi) and α′
i = (s′ai , s′bi) are two arbitrary sets of Lq-ROFNs,

where i= 1, 2, . . . ,n. If there is sai ≥ s′ai and sbi ≤ s′bi for any i, then

Lq−ROFPDMSM(k1,k2,...,kd)(α1,α2, . . . ,αn)≥Lq−ROFPDMSM(k1,k2,...,kd)(α′
1,α

′
2, . . . ,α

′). (26)

Proof. As ai ≥ a′i ≥ 0 and 0≤ bi ≤ b′i, then we can get aij ≥ a′ij ≥ 0 and 0≤ bij ≤ b′ij . Thus

aqij ≥ (a′ij)
q ⇒

aqij
tq

≥ (a′ij)
q

tq
⇒ 1−

aqij
tq

≤ 1− (a′ij)
q

tq
⇒

kr∏
j=1

(
1−

aqij
tq

)
≤

kr∏
j=1

(
1− (a′ij)

q

tq

)
,

⇒ 1−
kr∏
j=1

(
1− aqij

tq

)
≥ 1−

kr∏
j=1

(
1− (a′ij )

q

tq

)

⇒

⎛
⎜⎝ ∏

i1,i2,...ikr∈Pr
i1<i2···<ikr

(
1−

kr∏
j=1

(
1− aqij

tq

))⎞⎟⎠
1

Ckr|pr |
≥

⎛
⎜⎝ ∏

i1,i2,...ikr∈Pr
i1<i2···<ikr

(
1−

kr∏
j=1

(
1− (a′ij )

q

tq

))⎞⎟⎠
1

Ckr|pr |
,

⇒ 1−

⎛
⎜⎜⎝ ∏

i1,i2,...ikr∈Pr
i1<i2···<ikr

⎛
⎝1−

kr∏
j=1

(
1−

aqij
tq

)⎞
⎠
⎞
⎟⎟⎠

1

Ckr|pr |

≤ 1−

⎛
⎜⎜⎝ ∏

i1,i2,...ikr∈Pr
i1<i2···<ikr

⎛
⎝1−

kr∏
j=1

(
1− (a′ij)

q

tq

)⎞
⎠
⎞
⎟⎟⎠

1

Ckr|pr |

,
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⇒ 1−

⎛
⎜⎜⎝1−

⎛
⎜⎝ ∏

i1,i2,...ikr∈Pr
i1<i2···<ikr

(
1−

kr∏
j=1

(
1− aqij

tq

))⎞⎟⎠
1

Ckr|pr|

⎞
⎟⎟⎠

1
kr

≥ 1−

⎛
⎜⎜⎝1−

⎛
⎜⎝ ∏

i1,i2,...ikr∈Pr
i1<i2···<ikr

(
1−

kr∏
j=1

(
1− (a′ij )

q

tq

))⎞⎟⎠
1

Ckr|pr |

⎞
⎟⎟⎠

1
kr

,

⇒ t

⎛
⎜⎜⎜⎜⎜⎝

d∏
r=1

⎛
⎜⎜⎜⎜⎝1−

⎛
⎜⎜⎝1−

⎛
⎜⎝ ∏

i1,i2,...ikr∈Pr
i1<i2···<ikr

(
1−

kr∏
j=1

(
1− aqij

tq

))⎞⎟⎠
1

Ckr|pr |

⎞
⎟⎟⎠

1
kr

⎞
⎟⎟⎟⎟⎠

1
q
⎞
⎟⎟⎟⎟⎟⎠

1
d

≥ t

⎛
⎜⎜⎜⎜⎜⎝

d∏
r=1

⎛
⎜⎜⎜⎜⎝1−

⎛
⎜⎜⎝1−

⎛
⎜⎝ ∏

i1,i2,...ikr∈Pr
i1<i2···<ikr

(
1−

kr∏
j=1

(
1− (a′ij )

q

tq

))⎞⎟⎠
1

Ckr|pr|

⎞
⎟⎟⎠

1
kr

⎞
⎟⎟⎟⎟⎠

1
q
⎞
⎟⎟⎟⎟⎟⎠

1
d

.

Similar, we have

bqij ≤ (b′ij)q ⇒
bqij
tq ≤ (b′ij )

q

tq ⇒
kr∏
j=1

bqij
tq ≤

kr∏
j=1

(b′ij )
q

tq ⇒ 1−
kr∏
j=1

bqij
tq ≥ 1−

kr∏
j=1

(b′ij )
q

tq ,

⇒ ∏
i1,i2,...ikr∈Pr
i1<i2···<ikr

(
1−

kr∏
j=1

bqij
tq

)
≥ ∏

i1,i2,...ikr∈Pr
i1<i2···<ikr

(
1−

kr∏
j=1

(b′ij )
q

tq

)

⇒

⎛
⎜⎝ ∏

i1,i2,...ikr∈Pr
i1<i2···<ikr

(
1−

kr∏
j=1

bqij
tq

)⎞⎟⎠
1

Ckr|pr |
≥

⎛
⎜⎝ ∏

1,i2,...ikr∈Pr
i1<i2···<ikr

(
1−

kr∏
j=1

(b′ij )
q

tq

)⎞⎟⎠
1

Ckr|pr|
,

⇒ 1−

⎛
⎜⎝ ∏

i1,i2,...ikr∈Pr
i1<i2···<ikr

(
1−

kr∏
j=1

bqij
tq

)⎞⎟⎠
1

Ckr|pr |
≤ 1−

⎛
⎜⎝ ∏

1,i2,...ikr∈Pr
i1<i2 ···<ikr

(
1−

kr∏
j=1

(b′ij )
q

tq

)⎞⎟⎠
1

Ckr|pr |
,

⇒ 1−

⎛
⎜⎜⎝1−

⎛
⎜⎝ ∏

i1,i2,...ikr∈Pr
i1<i2···<ikr

(
1−

kr∏
j=1

bqij
tq

)⎞⎟⎠
1

Ckr|pr |

⎞
⎟⎟⎠

1
kr

≥ 1−

⎛
⎜⎜⎝1−

⎛
⎜⎝ ∏

i1,i2,...ikr∈Pr
i1<i2 ···<ikr

(
1−

kr∏
j=1

(b′ij )
q

tq

)⎞⎟⎠
1

Ckr|pr |

⎞
⎟⎟⎠

1
kr

,
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⇒
d∏
r=1

⎛
⎜⎜⎜⎜⎝1−

⎛
⎜⎜⎝1−

⎛
⎜⎝ ∏

i1,i2,...ikr∈Pr
i1<i2···<ikr

(
1−

kr∏
j=1

bqij
tq

)⎞⎟⎠
1

Ckr|pr|

⎞
⎟⎟⎠

1
kr

⎞
⎟⎟⎟⎟⎠

≥
d∏
r=1

⎛
⎜⎜⎜⎜⎝1−

⎛
⎜⎜⎝1−

⎛
⎜⎝ ∏

i1,i2,...ikr∈Pr
i1<i2···<ikr

(
1−

kr∏
j=1

(b′ij )
q

tq

)⎞⎟⎠
1

Ckr|pr |

⎞
⎟⎟⎠

1
kr

⎞
⎟⎟⎟⎟⎠,

⇒ t

⎛
⎜⎜⎜⎜⎜⎝1−

⎛
⎜⎜⎜⎜⎝

d∏
r=1

⎛
⎜⎜⎜⎜⎝1−

⎛
⎜⎜⎝1−

⎛
⎜⎝ ∏

i1,i2,...ikr∈Pr
i1<i2···<ikr

(
1−

kr∏
j=1

bqij
tq

)⎞⎟⎠
1

Ckr|pr |

⎞
⎟⎟⎠

1
kr

⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎠

1
d
⎞
⎟⎟⎟⎟⎟⎠

1
q

≤ t

⎛
⎜⎜⎜⎜⎜⎝1−

⎛
⎜⎜⎜⎜⎝

d∏
r=1

⎛
⎜⎜⎜⎜⎝1−

⎛
⎜⎜⎝1−

⎛
⎜⎝ ∏

i1,i2,...ikr∈Pr
i1<i2···<ikr

(
1−

kr∏
j=1

(b′ij )
q

tq

)⎞⎟⎠
1

Ckr|pr|

⎞
⎟⎟⎠

1
kr

⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎠

1
d
⎞
⎟⎟⎟⎟⎟⎠

1
q

.

Then we have

sai = t

⎛
⎜⎜⎜⎜⎜⎝

d∏
r=1

⎛
⎜⎜⎜⎜⎝1−

⎛
⎜⎜⎝1−

⎛
⎜⎝ ∏

i1,i2,...ikr∈Pr
i1<i2···<ikr

(
1−

kr∏
j=1

(
1− aqij

tq

))⎞⎟⎠
1

Ckr|pr |

⎞
⎟⎟⎠

1
kr

⎞
⎟⎟⎟⎟⎠

1
q
⎞
⎟⎟⎟⎟⎟⎠

1
d

,

s′ai = t

⎛
⎜⎜⎜⎜⎜⎝

d∏
r=1

⎛
⎜⎜⎜⎜⎝1−

⎛
⎜⎜⎝1−

⎛
⎜⎝ ∏

i1,i2,...ikr∈Pr
i1<i2···<ikr

(
1−

kr∏
j=1

(
1− (a′ij )

q

tq

))⎞⎟⎠
1

Ckr|pr|

⎞
⎟⎟⎠

1
kr

⎞
⎟⎟⎟⎟⎠

1
q
⎞
⎟⎟⎟⎟⎟⎠

1
d

,

sbi = t

⎛
⎜⎜⎜⎜⎜⎝1−

⎛
⎜⎜⎜⎜⎝

d∏
r=1

⎛
⎜⎜⎜⎜⎝1−

⎛
⎜⎜⎝1−

⎛
⎜⎝ ∏

i1,i2,...ikr∈Pr
i1<i2···<ikr

(
1−

kr∏
j=1

bqij
tq

)⎞⎟⎠
1

Ckr|pr |

⎞
⎟⎟⎠

1
kr

⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎠

1
d
⎞
⎟⎟⎟⎟⎟⎠

1
q

,
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s′bi = t

⎛
⎜⎜⎜⎜⎜⎝1−

⎛
⎜⎜⎜⎜⎝

d∏
r=1

⎛
⎜⎜⎜⎜⎝1−

⎛
⎜⎜⎝1−

⎛
⎜⎝ ∏

i1,i2,...ikr∈Pr
i1<i2···<ikr

(
1−

kr∏
j=1

(b′ij )
q

tq

)⎞⎟⎠
1

Ckr|pr |

⎞
⎟⎟⎠

1
kr

⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎠

1
d
⎞
⎟⎟⎟⎟⎟⎠

1
q

.

Owing to sai ≥ s′ai and sbi ≤ s′bi , then αi ≥ α′
i , that is, Lq−ROFPDMSM(k1,k2,...,kd)(α1,α2, . . . ,αn)

≥ Lq − ROFPDMSM(k1,k2,...,kd)(α′
1,α′

2, . . . ,α′
n). According to the above derivation process, we

have completed the proof of monotonicity.

(4) Boundedness. Let α1,α2, . . . ,αn be Lq-ROFNs. Suppose α−
i =minni=1 αi and α+

i =maxni=1 αi,
then

α−
i ≤Lq−ROFPDMSM(k1,k2,...,kd)(α1,α2, . . . ,αn)≤ α+

i . (27)

Proof. According to the monotonicity and idempotency proved above, we have:

Lq−ROFPDMSM(k1,k2,...,kd)(α1,α2, . . . ,αn)≥Lq−ROFPDMSM(k1,k2,...,kd)(α−,α−, . . . ,α−)= α−,

Lq−ROFPDMSM(k1,k2,...,kd)(α1,α2, . . . ,αn)≤Lq−ROFPDMSM(k1,k2,...,kd)(α+,α+, . . . ,α+)= α+.

According to the above derivation process, we have completed the proof of boundedness.

5.2 The Lq-ROFWPDMSM Operator
Definition 8. Let αi = (sai , sbi) be Lq-ROFNs, where i = 1, 2, . . . ,n, which can be parti-

tioned into d partitions Pr(r= 1, 2, . . . ,d). k1,k2, . . . ,kd are the parameters, and kr = 1, 2, . . . , |Pr|,
where |Pr| represents the number of evaluation information in partition Pr. ωi is the weighting

coefficient of αi, which satisfy the following restraint condition ωi ∈ [0, 1] and
n∑
i=1

ωi = 1. Then, the

Lq-ROFWPDMSM is shown as follows:

Lq−ROFWPDMSM(k1,k2,...,kd)(α1,α2, . . . ,αn)=
d⊗
r=1

⎛
⎜⎝ 1
kr

⎛
⎜⎝ ⊗

i1,i2,...ikr∈Pr
i1<i2···<ikr

(
kr⊕
j=1

(ωij ⊗αij ))

1

Ckr|pr|

⎞
⎟⎠
⎞
⎟⎠

1
d

, (28)

where {i1, i2, . . . ikr} is a collection of kr integers derived from the collection {1, 2, . . . , |Pr|}, and

1≤ i1 < i2 < · · ·< ik ≤ |Pr|. Ckr
|pr| denotes the binomial coefficient and Ckr

|pr| =
|pr|!

kr!(|pr|−kr)! .

Theorem 4. Let αi = (sai , sbi) be Lq-ROFNs, where i= 1, 2, . . . ,n, which can be partitioned into
d partitions Pr(r= 1, 2, . . . ,d). k1,k2, . . . ,kd are the parameters, and kr = 1, 2, . . . , |Pr|, where |Pr|
represents the number of evaluation information in partition Pr. ωi is the weighting coefficient of

αi, which satisfy the following restraint condition ωi ∈ [0, 1] and
n∑
i=1

ωi = 1. Then we aggregate the
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Lq-ROFNs by using the above Lq-ROFWPDMSM operator and the result is still an Lq-ROFN,
shown as below:

Lq−ROFWPDMSM(k1,k2,...,kd)(α1,α2, . . . ,αn)

=

⎛
⎜⎜⎜⎜⎜⎝

s

t

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

d∏
r=1

⎛
⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎝1−

⎛
⎜⎜⎜⎝1−

⎛
⎜⎜⎜⎝ ∏
i1,i2,...ikr∈Pr
i1<i2···<ikr

⎛
⎝1−

kr∏
j=1

(
1−

a
q
ij
tq

)ωij
⎞
⎠

1

Ckr|pr |

⎞
⎟⎟⎟⎠
⎞
⎟⎟⎟⎠

1
kr
⎞
⎟⎟⎟⎟⎠

1
q
⎞
⎟⎟⎟⎟⎟⎟⎠

1
d
⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

s

t

⎛
⎜⎜⎜⎜⎜⎜⎝
1−

d∏
r=1

⎛
⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎝1−

⎛
⎜⎜⎜⎝1− ∏

i1,i2,...ikr∈Pr
i1<i2 ···<ikr

(
1−
(
kr∏
j=1

(
bij
t

)ωij
)q) 1

Ckr|pr |

⎞
⎟⎟⎟⎠

1
kr
⎞
⎟⎟⎟⎟⎠

1
d
⎞
⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎠

1
q

⎞
⎟⎟⎟⎟⎟⎠ .

(29)

Similarly, we can derive that the Lq-ROFWPDMSM operator also has the characteristics
of idempotency, commutativity, boundedness and monotonicity. In the following, we illustrate
the computational procedure of the Lq-ROFWPDMSM operator by an application example, as
follows:

Example 2. Let α1 = (s7, s1), α2 = (s1, s4), α3 = (s3, s4), α4 = (s2, s6), α5 = (s4, s3), α6 =
(s1, s3), α7 = (s3, s2) be Lq-ROFNs, S = {sε | ε ∈ [0, 8]} and i = 1, 2, . . . , 7. We divide the above
Lq-ROFNs into two partitions, where P1 = {α1,α2,α3} and P2 = {α4,α5,α6,α7}. Assume that
ω = [0.15, 0.15, 0.1, 0.2, 0.05, 0.15, 0.2], k1 = 2, k2 = 2, q= 3. Then, we have

ω1α1⊕ω2α2 = (s4.2827, s5.2780), ω1α1⊕ω3α3 = (s4.3226, s5.4642), ω2α2⊕ω3α3 = (s1.4286, s6.7272),
ω4α4⊕ω5α5 = (s1.7107, s7.1912), ω4α4⊕ω6α6 = (s1.2073, s6.5194), ω4α4⊕ω7α7 = (s1.9229, s5.7239),
ω5α5⊕ω6α6 = (s1.5264, s6.5750), ω5α5⊕ω7α7 = (s2.0714, s5.7727), ω6α6⊕ω7α7 = (s1.7828, s5.2334)

According to Definition 8, we have

Lq−ROFWPDMSM(2,2)(α1,α2, . . . ,α7)=
2⊗
r=1

⎛
⎝1

2

⎛
⎝ ⊗

i1,i2∈Pr
i1<i2

(ωi1 ⊗αi1)⊕ (ωi2 ⊗αi2)

1

Ckr|pr |

⎞
⎠
⎞
⎠

1
2

= (s1.7797, s7.0271).

6 Model for MADM Method Using the Proposed Operators

In the previous sections, we proposed the Lq-ROFPMSM, Lq-ROFPDMSM operators
and their weighted forms. Next, on the basis of the above operators we propose a novel
MADM model. Suppose there is a collection of x alternatives denoted as A = {A1,A2, . . . ,Ax},
and each alternative has a set of attributes B = {B1,B2, . . . ,By}. The linguistic term set S =
{sε | ε ∈ [0, t]} is used to construct the Lq-ROFNs matrix of evaluation information. αij =
(saij , sbij) (i= 1, 2, . . . ,x, j= 1, 2, . . .y) is an element of the evaluation matrix, which is an Lq-
ROFN denoting the evaluation information about attribute Bi in alternative Ai. All attributes are
divided into d groups Pr(r= 1, 2, . . . ,d). kr is the parameter of the proposed MADM approach,
kr = 1, 2, . . . , |Pr|, where |Pr| denotes the number of evaluation information in the partitioned Pr.
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ωi is the weight coefficient of αi, which satisfy the following restraint condition ωi ∈ [0, 1] and∑n
i=1 ωi = 1.

In order to aggregate the evaluation information in the above MADM problem, we propose
a novel MADM model based on the Lq-ROFWPMSM operator and the Lq-ROFWPDMSM
operator. The implementation steps of the proposed MADM method are summarized as follows:

Step 1: Standardization of the evaluation information.

Standardize the Lq-ROFNs matrix αij = (saij , sbij), the way we standardized the evaluation
matrix is defined as follows:

αij = (saij , sbij)=
{

(saij , sbij), for benefit− type attribute Bj
(sbij , saij), for cost− type attribute Bj

.

Step 2: Calculates the aggregated value of the attributes.

Using the proposed Lq-ROFWPMSM operator to fuse all attribute values of each alternative,

zi =Lq−ROFWPMSM(k1,k2,...,kd)(αi1,αi2, . . . ,αiy),

or using the proposed Lq-ROFWPDMSM operator to fuse all attribute values of each alternative,

zi =Lq−ROFWPDMSM(k1,k2,...,kd)(αi1,αi2, . . . ,αiy).

Step 3: Calculate the score function value D(zi) for Lq-ROFNs zi. If the score function values
are equal, calculate their accuracy function values J(zi).

D(zi)= s
((tq+aqi−bqi )/2)

1
q
,

J(zi)= s
(aqi+bqi )

1
q
.

Step 4: All alternatives A = {A1,A2, . . . ,Ax} are compared and sorted according to the
comparison method of Lq-ROFNs, and then the optimal alternative is selected.

7 Application Example and Comparative Analysis

In this section, the proposed MADM model is applied to solve the siting problem of medical
waste treatment stations. Then the effect of the variation of parameter values on the aggregation
results is discussed. Finally, the proposed method is compared with the previous methods.

7.1 Illustrative Example
Example 3. Suppose there are four alternatives Ai (i = 1, 2, 3, 4) for medical waste treatment

stations with seven attributes: geological conditions (B1), hydrological conditions (B2), topographic
conditions (B3), transportation distance (B4), service radius (B5), protection distance (B6), and
public opinion (B7). ω = (0.2, 0.1, 0.15, 0.25, 0.1, 0.15, 0.05) is the weight array of attribute Bi(i =
1, 2, . . . , 7). The experts evaluated the four stations based on the above seven attributes by taking
the form of Lq-ROFNs, and the decision matrix is detailed in Tab. 1. According to the semantic
interpretation of attributes, all attributes can be divided into two groups P1 = {B1,B2,B3} and
P2 = {B4,B5,B6,B7}. P1 and P2 denote natural factors and public facilities, respectively. According
to the intrinsic correlation among attributes, there is an association between any two attributes in
the same partition, i.e., k1 = 2, k2 = 2. Assume the parameter q = 3.
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Table 1: The evaluation matrix of Example 3

B1 B2 B3 B4 B5 B6 B7

A1 (s4, s1) (s2, s4) (s5, s2) (s1, s6) (s3, s3) (s2, s2) (s1, s2)
A2 (s2, s1) (s2, s2) (s3, s4) (s1, s1) (s3, s2) (s5, s2) (s2, s3)
A3 (s4, s3) (s5, s2) (s2, s3) (s1, s2) (s2, s1) (s3, s4) (s2, s2)
A4 (s4, s1) (s3, s1) (s2, s2) (s5, s1) (s2, s2) (s3, s3) (s1, s1)

Step 1: Standardization of the evaluation information.

According to the description of the attributes Bi (i = 1, 2, . . . , 7), they are all benefit types.
Therefore, there is no need to standardize the evaluation matrix.

Step 2: Calculates the aggregated value of the attributes.

Using the proposed Lq-ROFWPMSM operator to fuse all attribute values of each alternative
station,

z1 = (s1.7711, s6.9002), z2 = (s1.3969, s6.6682), z3 = (s1.6942, s6.8171), z4 = (s1.6976, s6.4000),

or using the proposed Lq-ROFWPDMSM operator to fuse all attribute values of each alternative
station,

z1 = (s1.4432, s6.9109), z2 = (s1.3682, s6.6068), z3 = (s1.4586, s6.8061), z4 = (s1.6986, s6.3926).

Step 3: Get the results of the score function of LqROFNs zi.

The value of the score function of Lq-ROFWPMSM is

D(z1)= s 4.5550, D(z2)= s4.7785, D(z3)= s4.6420, D(z4)= s5.0315,

The value of the score function of Lq-ROFWPDMSM is

D(z1)= s4.5220, D(z2)= s4.8358, D(z3)= s4.6402, D(z4)= s5.0375

Step 4: Choose the optimal alternative station.

The ranking result of medical waste treatment stations obtained using the Lq-ROFWPMSM
operator and the Lq-ROFWPDMSM operator is A4 �A2 �A3 �A1, where the symbol “�” means
“preferred to”. Therefore, the most suitable site for a medical waste treatment station is A4.

7.2 Influence of Parameters Change on Ranking Results
(1) The influence on ranking results when q changes.

We will use Example 3 to analyze the effect on the sorting order when the parameter q is
changed. As the value of q changes, the arrangement obtained with the proposed method are
shown in Figs. 1 and 2 (Suppose the parameter k1 = 2, k2 = 2).

From Figs. 2 and 3 we can obtain the following information: although the value of the
parameter q changes, the arrangements of the alternatives obtained with the proposed method
keep unchanged, i.e., A4 � A2 � A3 � A1. Further, we can know that the score values of the
alternatives increased monotonously with the value of the parameter q increased. While the
optimal station is always constant, so the parameter q is robust.
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Figure 2: Score values calculated by the Lq-ROFWPMSM operator

Figure 3: Score values calculated by the Lq-ROFWPDMSM operator

(2) The influence on ranking results when the parameters k1 and k2 changes.

We will use Example 3 to analyze the effect on the ranking results when the parameters k1
and k2 are changed. As the values of parameters k1 and k2 change, the ranking obtained with
the proposed method are shown in Tabs. 2 and 3 (Suppose the parameter q= 3).
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From Tabs. 2 and 3, we can obtain the following information:

(1) When k1 = 1, whether k2 = 1 or k2 = 2, the sorting of the alternatives calculated by the
Lq-ROFWPMSM operator is: A4 �A2 �A1 �A3.

(2) When k1 = 2, whether k2 = 1 or k2 = 2, the sorting of the alternatives calculated by the
Lq-ROFWPMSM operator is: A4 �A2 �A3 �A1.

(3) Regardless of the change in the values of k1 and k2, the arrangement of the alternatives
calculated by the Lq-ROFWPDMSM operator is: A4 �A2 �A3 �A1.

Table 2: Ranking results of Lq-ROFWPMSM operator of the parameter k

(k1,k2) A1 A2 A3 A4 Ranking orders

(1, 1) s4.7352 s5.0322 s4.7272 s5.1914 A4 �A2 �A1 �A3
(1, 2) s4.7080 s4.8944 s4.6517 s5.0783 A4 �A2 �A1 �A3
(2, 1) s4.5858 s4.9303 s4.7181 s5.1491 A4 �A2 �A3 �A1
(2, 2) s4.5550 s4.7785 s4.6420 s5.0315 A4 �A2 �A3 �A1

Obviously, the arrangements calculated by our proposed MADM approach may change
when k1 and k2 takes different values, but the optimal station is always consistent, i.e., A4. By
comparative analysis, the ranking results changes slightly as the parameters k1 and k2 change, but
the optimal station keep unchanged. The reason is that as the value of k1 and k2 change, the
relationship structure of the attributes also changes. Therefore, the decision-maker can model any
relationship among attributes by setting the appropriate values of k1 and k2.

Table 3: Ranking results of Lq-ROFWPDMSM operator of the parameter k

(k1,k2) A1 A2 A3 A4 Ranking orders

(1, 1) s4.3512 s4.6169 s4.5511 s4.9284 A4 �A2 �A3 �A1
(1, 2) s4.3954 s4.7546 s4.6300 s5.0080 A4 �A2 �A3 �A1
(2, 1) s4.4755 s4.6956 s4.5607 s4.9557 A4 �A2 �A3 �A1
(2, 2) s4.5220 s4.8358 s4.6402 s5.0375 A4 �A2 �A3 �A1

7.3 Verification and Comparative
In this section, we apply the previous MADM methods to solve the medical waste treatment

station selection problem in Example 3. The effectiveness and superiority of the proposed MADM
method (Suppose the parameter q = 3, k1 = 2, k2 = 2) is verified through comparative analysis.
The ranking results obtained by the above method are shown in Tab. 4.

It is obvious from Tab. 4 that there are some differences between the rankings obtained by
the above approaches, but the optimal alternative is the same, i.e., A4. Thus, the usability and
reliability of the proposed MADM model is verified. Next, we will further illustrate the superiority
of the proposed MADM approach by a new example.

Example 4. Suppose there are four alternatives Ai (i = 1, 2, 3, 4) for medical waste treatment
stations with seven attributes: geological conditions (B1), hydrological conditions (B2), topographic
conditions (B3), transportation distance (B4), service radius (B5), protection distance (B6), and
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public opinion (B7). ω = (0.3, 0.15, 0.05, 0.1, 0.15, 0.15, 0.1) is the weight array of attribute Bi (i=
1, 2, . . . , 7). The experts evaluated the four stations based on the above seven attributes by taking
the form of Lq-ROFNs, and the decision matrix is detailed in Tab. 5. According to the semantic
interpretation of attributes, all attributes can be divided into two partitions P1 = {B1,B2,B3} and
P2 = {B4,B5,B6,B7}. P1 and P2 denote natural factors and public facilities, respectively. According
to the intrinsic correlation among attributes, there is an association between any two attributes in
the same partition, i.e., k1 = 2, k2 = 2. Assume the parameter q= 3.

Table 4: Arrangements by different approaches in Example 3

Operator A1 A2 A3 A4 Ranking orders

Lq-ROFWPMSM s4.5550 s4.7785 s4.6420 s5.0315 A4 �A2 �A3 �A1
Lq-ROFWPDMSM s4.5220 s4.8358 s4.6402 s5.0375 A4 �A2 �A3 �A1
WLIFMSM [40] (k = 2) s−6.4231 s−6.0926 s−6.3206 s−5.7542 A4 �A2 �A3 �A1
WLIFDMSM [40] (k = 2) s−6.5203 s−6.5887 s−6.3672 s−5.8608 A4 �A3 �A1 �A2
LqROFWA [31] s6.4392 s6.4553 s6.4316 s6.5597 A4 �A2 �A1 �A3
LqROFWG [31] s6.0671 s6.3290 s6.3022 s6.4422 A4 �A2 �A3 �A1
LPBM [42] (s = 1, t = 1) s−2.7189 s−3.0881 s−3.0483 s−2.0616 A4 �A1 �A3 �A2

Table 5: The evaluation matrix of Example 4

B1 B2 B3 B4 B5 B6 B7

A1 (s3, s1) (s2, s4) (s5, s2) (s2, s4) (s3, s3) (s2, s2) (s2, s2)
A2 (s1, s5) (s5, s2) (s3, s4) (s1, s1) (s4, s2) (s1, s2) (s2, s3)
A3 (s4, s3) (s5, s2) (s2, s3) (s4, s2) (s3, s1) (s3, s4) (s2, s2)
A4 (s3, s2) (s3, s2) (s2, s2) (s5, s1) (s1, s2) (s3, s3) (s1, s3)

Using the above method to process the evaluation information in Example 4, the ranking
results were obtained as shown in Tab. 6.

Table 6: The sorting obtained using different methods in Example 4

Operator A1 A2 A3 A4 Ranking orders

Lq-ROFWPMSM s4.5439 s4.4992 s4.6674 s4.7455 A4 �A3 �A1 �A2
Lq-ROFWPDMSM s4.6299 s4.5123 s4.7150 s4.7920 A4 �A3 �A1 �A2
WLIFMSM [40] (k= 2) s−6.3166 s−6.4733 s−6.1188 s−6.2038 A3 �A4 �A1 �A2
WLIFDMSM [40] (k= 2) s−6.4039 s−6.8819 s−6.1942 s−6.2696 A3 �A4 �A1 �A2
LqROFWA [31] s6.4089 s6.4101 s6.5223 s6.4387 A3 �A4 �A2 �A1
LqROFWG [31] s6.3182 s6.1592 s6.4214 s6.3532 A3 �A4 �A1 �A2
LPBM [42] (s= 1, t= 1) s−3.0302 s−3.7718 s−2.8959 s−3.2073 A3 �A1 �A4 �A2
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From Tab. 6, we can know that the ranking results obtained by the proposed method are
significantly different from those obtained by the previous methods. Then, we compare the ranking
results in detail and analyze the main reasons for the differences.

(1) The rankings obtained by our proposed approach using the Lq-ROFWPMSM operator
and the Lq-ROFWPDMSM operator are both A4 �A3 �A1 �A2. While the arrangement
obtained by Liu et al.’s model using the WLIFMSM operator and the WLIFDMSM
operator [40] are both A3 � A4 � A1 � A2. The reason is that our method considers
the interrelationship among attributes in the process of aggregation and partitioning of
attributes. The proposed method can handle the case where attributes need to be grouped
into different clusters. Obviously, partition is required between the attributes of the medical
waste treatment stations in Example 4. While Liu et al.’s model [40] cannot handle the case
where partition exists between attributes. Therefore, the proposed method can express the
relationship among attributes more accurately than Liu et al.’s method.

(2) The ranking obtained by our proposed method is the same, both are A4 � A3 � A1 � A2.
While the sorting obtained by Lin et al.’s approach using the LqROFWA operator is
A3 � A4 � A2 � A1 and the sorting result obtained using the LqROFWG operator [31]
is A3 � A4 � A1 � A2. The reason for the above differences is that unreasonable values
in attributes or weights will have a significant impact on the LqROFWA or LqROFWG
operators [31]. Meanwhile, the LqROFWA operator or LqROFWG operator [31] does not
consider the effect of partitioning and correlation among attributes on the sorting results.
In Example 4, partitioning of attributes is required according to the intrinsic relationship
among attributes, and there is correlation among attributes in the same partition. Therefore,
the proposed MADM model is more reasonable than the approach of Lin et al. [31].

(3) It can be seen from Tab. 6 that the rankings obtained by Liu et al.’s method using
the LPBM operator [42] and our proposed MADM approach are significantly different.
Both Liu et al.’s model [42] and our proposed model share a common premise that
attributes need to be partitioned into several independent partitions. However, Liu et al.’s
approach [42] can only capture the association between attributes in the same partition,
while our approach can capture the relationship among attributes. In Example 4, three
attributes B1,B2,B3 are relevant to each other and four attributes B4,B5,B6,B7 are related
to each other. By changing the values of the corresponding parameters, the proposed
method can handle not only the case of interconnection between attributes, but also the
case of interconnection among attributes. Therefore, our approach is more general and
realistic than Liu et al.’s MADM method [42] in solving the MADM problems.

The purpose of the medical waste treatment station is to treat medical waste in a timely
manner to avoid hazardous discharges and environmental pollution. The management insights of
this study are mainly to facilitate the decision of site selection. In many cases, the selection of
a suitable station for medical waste treatment seems to be inevitable. Station selection involves
multiple attributes of the alternatives [43]. The attributes may be interrelated or independent
of each other. Meanwhile, the evaluation information given by the decision maker may contain
unreasonable values due to the lack of knowledge about the evaluation object [44]. The proposed
MADM method using the Lq-ROFWPMSM operator and the Lq-ROFWPDMSM operator can
effectively solve the above problems. However, the proposed method also has limitations. When
there is no partition between attributes, the proposed method may not be a suitable choice. The
reason is that in order to deal with the complex relationships among attributes, the proposed
method increases the computational complexity significantly.
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8 Conclusions

This paper proposes a novel MADM method based on linguistic q-rung orthopair fuzzy
numbers to solve the medical waste treatment stations selection problem. The PMSM operator
can effectively handle MADM problems in which attributes in the same cluster are closely related,
while attributes in different clusters are not related. Therefore, we extend the PMSM operator
to process Lq-ROFNs and propose the Lq-ROFPMSM operator and its corresponding weighted
form (Lq-ROFWPMSM). Then, to reduce the adverse effects of unreasonable values in the
evaluation information on the final decision results, we propose the Lq-ROFPDMSM operator
and the Lq-ROFWPDMSM operator. Meanwhile, we analyze the corresponding properties and
theorems of the above operators and give some special cases. In addition, a novel MADM
method is proposed for the siting of medical waste treatment stations, and the steps to implement
the method are given. The main features of the proposed MADM method include: (1) it can
handle the case where partitions exist among attributes; (2) it can handle complex relationships
among attributes; (3) it can reduce the adverse effects of inappropriate values in the evaluation
information on the final ranking results. Then, the feasibility of the proposed method is verified by
an application example, and the effect of parameter variation on the ranking is analyzed. Finally,
the reliability and superiority of the method are verified by comparing it with previous methods.
However, when there is no partitioning between the attributes of the evaluation alternatives, the
proposed approach may not be an appropriate choice. In the next step, we will use the developed
MADM method to provide solutions for many fields, such as technology selection, environmental
assessment, energy management, etc.

Data Availability: The data used to support the findings of this study are included within the
article.

Funding Statement: This research work was supported by the National Natural Science Foundation
of China under Grant No. U1805263.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding
the present study.

References
1. Tirkolaee, E. B., Abbasian, P.,Weber, G.W. (2021). Sustainable fuzzymulti-trip location-routing problem for

medical waste management during the COVID-19 outbreak. Science of the Total Environment, 756, 143607.
DOI 10.1016/j.scitotenv.2020.143607.

2. Ma, Y., Lin, X., Wu, A., Huang, Q., Li, X. et al. (2020). Suggested guidelines for emergency treatment of
medical waste during COVID-19: Chinese experience.Waste Disposal & Sustainable Energy, 2, 81–84. DOI
10.1007/s42768-020-00039-8.

3. Yu, H., Sun, X., Solvang,W. D., Zhao, X. (2020). Reverse logistics network design for effective management
of medical waste in epidemic outbreaks: Insights from the coronavirus disease 2019 (COVID-19) outbreak
in Wuhan (China). International Journal of Environmental Research and Public Health, 17(5), 1770. DOI
10.3390/ijerph17051770.

4. Mu, Z., Zeng, S., Wang, P. (2021). Novel approach to multi-attribute group decision-making based on
interval-valued pythagorean fuzzy power maclaurin symmetric mean operator. Computers & Industrial
Engineering, 155, 107049. DOI 10.1016/j.cie.2020.107049.

5. Zeng, S., Hu, Y., Balezentis, T., Streimikiene, D. (2020). A multi-criteria sustainable supplier selection
framework based on neutrosophic fuzzy data and entropy weighting. Sustainable Development, 28(5),
1431–1440. DOI 10.1002/sd.2096.

http://dx.doi.org/10.1016/j.scitotenv.2020.143607
http://dx.doi.org/10.1007/s42768-020-00039-8
http://dx.doi.org/10.3390/ijerph17051770
http://dx.doi.org/10.1016/j.cie.2020.107049
http://dx.doi.org/10.1002/sd.2096


CMES, 2021, vol.129, no.1 147

6. Zeng, S., Hu,Y., Xie, X. (2021). Q-rungorthopair fuzzyweighted induced logarithmic distancemeasures and
their application in multiple attribute decision making. Engineering Applications of Artificial Intelligence,
100, 104167. DOI 10.1016/j.engappai.2021.104167.

7. Zhang, C., Hu, Q., Zeng, S., Su, W. (2021). IOWLAD-Based MCDM model for the site assessment
of a household waste processing plant under a pythagorean fuzzy environment. Environmental Impact
Assessment Review, 89, 106579. DOI 10.1016/j.eiar.2021.106579.

8. Zhang, C., Su, W., Zeng, S., Balezentis, T., Herrera-Viedma, E. (2021). A two-stage subgroup decision-
making method for processing large-scale information.Expert Systems with Applications, 171, 114586. DOI
10.1016/j.eswa.2021.114586.

9. Huang, C., Lin, M., Xu, Z. (2020). Pythagorean fuzzyMULTIMOORAmethod based on distance measure
and score function: Its application in multicriteria decision making process. Knowledge and Information
Systems, 62(11), 4373–4406. DOI 10.1007/s10115-020-01491-y.

10. Lin, M., Huang, C., Chen, R., Fujita, H., Wang, X. (2021). Directional correlation coefficient measures for
pythagorean fuzzy sets: Their applications to medical diagnosis and cluster analysis. Complex & Intelligent
Systems, 7(2), 1025–1043. DOI 10.1007/s40747-020-00261-1.

11. Zadeh, L. A. (1965). Fuzzy sets. Information & Control, 8(3), 338–353. DOI 10.1016/S0019-9958(65)90
241-X.

12. Atanassov, K. T. (1986). Intuitionistic fuzzy sets. Fuzzy Sets & Systems, 20(1), 87–96. DOI
10.1016/S0165-0114(86)80034-3.

13. Atanassov, K. T. (2000). Two theorems for intuitionistic fuzzy sets. Fuzzy Sets & Systems, 110(2), 267–269.
DOI 10.1016/S0165-0114(99)00112-8.

14. Xu, Z. (2007). Intuitionistic fuzzy aggregationoperators. IEEETransactions on Fuzzy Systems, 15(6),1179–
1187. DOI 10.1109/TFUZZ.2006.890678.

15. Szmidt, E., Kacprzyk, J. (2001). Entropy for intuitionistic fuzzy sets. Fuzzy Sets and Systems, 118(3), 467–
477. DOI 10.1016/S0165-0114(98)00402-3.

16. Xu, Z., Yager, R. R. (2006). Some geometric aggregation operators based on intuitionistic fuzzy sets.
International Journal of General Systems, 35(4), 417–433. DOI 10.1080/03081070600574353.

17. De, S. K., Biswas, R., Roy, A. R. (2001). An application of intuitionistic fuzzy sets in medical diagnosis.
Fuzzy Sets and Systems, 117(2), 209–213. DOI 10.1016/S0165-0114(98)00235-8.

18. Kahraman, C., Keshavarz Ghorabaee, M., Zavadskas, E. K., Onar, S. C., Yazdani, M. et al. (2017). Intu-
itionistic fuzzy EDASmethod:An application to solid waste disposal site selection. Journal of Environmental
Engineering and Landscape Management, 25(1), 1–12. DOI 10.3846/16486897.2017.1281139.

19. Liao, H., Mi, X., Xu, Z., Xu, J., Herrera, F. (2018). Intuitionistic fuzzy analytic network process. IEEE
Transactions on Fuzzy Systems, 26(5), 2578–2590. DOI 10.1109/TFUZZ.91.

20. Yager, R. R. (2013). Pythagorean fuzzy subsets. 2013 Joint IFSA World Congress and NAFIPS Annual
Meeting (IFSA/NAFIPS), pp. 57–61. IEEE. DOI 10.1109/IFSA-NAFIPS.2013.6608375.

21. Yager, R. R. (2013). Pythagorean membership grades in multicriteria decision making. IEEE Transactions
on Fuzzy Systems, 22(4), 958–965. DOI 10.1109/TFUZZ.2013.2278989.

22. Wei, G., Lu, M. (2018). Pythagorean fuzzy power aggregation operators in multiple attribute decision
making. International Journal of Intelligent Systems, 33(1), 169–186. DOI 10.1002/int.21946.

23. Peng, X., Selvachandran, G. (2019). Pythagorean fuzzy set: State of the art and future directions. Artificial
Intelligence Review, 52(3), 1873–1927. DOI 10.1007/s10462-017-9596-9.

24. Fei, L., Deng, Y. (2020). Multi-criteria decision making in pythagorean fuzzy environment. Applied
Intelligence, 50(2), 537–561. DOI 10.1007/s10489-019-01532-2.

25. Yager, R. R. (2017). Generalized orthopair fuzzy sets. IEEE Transactions on Fuzzy Systems, 25(5), 1222–
1230. DOI 10.1109/TFUZZ.2016.2604005.

26. Gou, X., Xu, Z. (2016). Novel basic operational laws for linguistic terms, hesitant fuzzy linguistic term sets
and probabilistic linguistic term sets. Information Sciences, 372, 407–427. DOI 10.1016/j.ins.2016.08.034.

27. Zadeh, L. A. (1975). The concept of a linguistic variable and its application to approximate reasoning—I.
Information Sciences, 8(3), 199–249. DOI 10.1016/0020-0255(75)90036-5.

http://dx.doi.org/10.1016/j.engappai.2021.104167
http://dx.doi.org/10.1016/j.eiar.2021.106579
http://dx.doi.org/10.1016/j.eswa.2021.114586
http://dx.doi.org/10.1007/s10115-020-01491-y
http://dx.doi.org/10.1007/s40747-020-00261-1
http://dx.doi.org/10.1016/S0019-9958(65)90241-X
http://dx.doi.org/10.1016/S0019-9958(65)90241-X
http://dx.doi.org/10.1016/S0165-0114(86)80034-3
http://dx.doi.org/10.1016/S0165-0114(99)00112-8
http://dx.doi.org/10.1109/TFUZZ.2006.890678
http://dx.doi.org/10.1016/S0165-0114(98)00402-3
http://dx.doi.org/10.1080/03081070600574353
http://dx.doi.org/10.1016/S0165-0114(98)00235-8
http://dx.doi.org/10.3846/16486897.2017.1281139
http://dx.doi.org/10.1109/TFUZZ.91
http://dx.doi.org/10.1109/IFSA-NAFIPS.2013.6608375
http://dx.doi.org/10.1109/TFUZZ.2013.2278989
http://dx.doi.org/10.1002/int.21946
http://dx.doi.org/10.1007/s10462-017-9596-9
http://dx.doi.org/10.1007/s10489-019-01532-2
http://dx.doi.org/10.1109/TFUZZ.2016.2604005
http://dx.doi.org/10.1016/j.ins.2016.08.034
http://dx.doi.org/10.1016/0020-0255(75)90036-5


148 CMES, 2021, vol.129, no.1

28. Lin, M., Wei, J., Xu, Z., Chen, R. (2018). Multiattribute group decision-making based on linguistic
pythagorean fuzzy interaction partitioned bonferroni mean aggregation operators.Complexity, 2018, 1–24.
DOI 10.1155/2018/9531064.

29. Zhang, H. (2014). Linguistic intuitionistic fuzzy sets and application in MAGDM. Journal of Applied
Mathematics, 2014, 1–11. DOI 10.1155/2014/432092.

30. Garg, H. (2018). Linguistic pythagorean fuzzy sets and its applications in multiattribute decision-making
process. International Journal of Intelligent Systems, 33(6), 1234–1263. DOI 10.1002/int.21979.

31. Lin, M., Li, X., Chen, L. (2020). Linguistic q-rung orthopair fuzzy sets and their interactional partitioned
heronian mean aggregation operators. International Journal of Intelligent Systems, 35(2), 217–249. DOI
10.1002/int.22136.

32. Bonferroni, C. (1950). Sulle medie multiple di potenze. Bollettino Dell’Unione Matematica Italiana, 5(3–4),
267–270.

33. Yager, R. R. (2001). The power average operator. IEEE Transactions on Systems,Man, and Cybernetics–Part
A: Systems and Humans, 31(6), 724–731. DOI 10.1109/3468.983429.

34. Liu, P. (2013). Some hamacher aggregation operators based on the interval-valued intuitionistic fuzzy
numbers and their application to group decision making. IEEE Transactions on Fuzzy Systems, 22(1),
83–97. DOI 10.1109/TFUZZ.2013.2248736.

35. Liu, P., Liu, Z., Zhang, X. (2014). Some intuitionistic uncertain linguistic heronian mean operators and
their application to group decision making. Applied Mathematics and Computation, 230, 570–586. DOI
10.1016/j.amc.2013.12.133.

36. Maclaurin, C. (1729). A second letter to Martin Folkes, Esq.; concerning the roots of equations, with
demonstration of other rules of algebra. Philosophical Transactions of the Royal Society, London Series A,
36, 59–96. DOI 10.1098/rstl.1729.0011.

37. deTemple, D. W., Robertson, J. M. (1979). On generalized symmetric means of two variables. Publikacije
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