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ABSTRACT

We proposed an improved graphics processing unit (GPU) acceleration approach for three-dimensional structural
topology optimization using the element-free Galerkin (EFG) method. This method can effectively eliminate the
race condition under parallelization. We established a structural topology optimization model by combining the
EFG method and the solid isotropic microstructures with penalization model. We explored the GPU parallel
algorithm of assembling stiffness matrix, solving discrete equation, analyzing sensitivity, and updating design
variables in detail. We also proposed a node pair-wise method for assembling the stiffness matrix and a node-wise
method for sensitivity analysis to eliminate race conditions during the parallelization. Furthermore, we investigated
the effects of the thread block size, the number of degrees of freedom, and the convergence error of preconditioned
conjugate gradient (PCG) on GPU computing performance. Finally, the results of the three numerical examples
demonstrated the validity of the proposed approach and showed the significant acceleration of structural topology
optimization. To save the cost of optimization calculation, we proposed the appropriate thread block size and the
convergence error of the PCG method.
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1 Introduction

Topology optimization as a powerful tool at the early stages of the design process aims to find
the optimal layout of material that fulfills the design requirements for conceptual designs [1]. Until
now, topology optimization has been applied successfully to a wide range of problems, such as
compliant mechanisms [2], heat conduction systems [3], material microstructures [4], and additive
manufacturing [5]. These mentioned applications have displayed the advantages of the topology
optimization technique. Numerical instabilities, such as checkerboards and mesh-dependencies,
can occur in applications of topology optimization by mesh-based methods [6]. Furthermore, for
mesh-based methods, mesh distortion or entanglement always appears in the large deformation or
moving boundary problems [7].
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To overcome these difficulties related to the mesh-based method, a meshless method, which
relies solely on a series of scattered nodes and eliminates the grid [8], has been introduced into
topology optimization problems. Cho et al. [9] developed a variable density approach based on the
reproducing kernel method for the topology optimization of geometrically nonlinear structures.
Lin et al. [10] presented a topology optimization method using the smoothed particle hydrodynam-
ics (SPH) method. In particular, the element-free Galerkin (EFG) method with good convergence,
computing accuracy, and stability [11] has gained popularity in topology optimization. Gong
et al. [12] presented a structural modal topology optimization method of continuum structure
using the EFG method. He et al. [13] applied the EFG method to the design of compliant
mechanisms involving geometrical nonlinearity. Shobeiri et al. [14,15] carried out the topology
optimization of continuum structures and cracked structures according to the evolutionary struc-
tural optimization method integrated with the EFG method. More recently, Zhang et al. [16]
introduced a meshless-based topology optimization coupled with the finite element method (FEM)
to the large displacement problem of nonlinear hyperelastic structures. Khan et al. [17] proposed a
combination of the EFG method and the level set method (LSM) for topology optimization. This
combination worked independently of initial guessed topology and could automatically nucleate
holes in the design. Zhang et al. [18] presented a numerical method of topology optimization
for isotropic and anisotropic thermal structures by combining the EFG method and the rational
approximation of material properties model.

The aforementioned studies have shown the advantages of the meshless method for topol-
ogy optimization, that is, it can avoid checkerboard patterns and mesh distortion. Because the
computational cost for meshless method is much higher than the traditional mesh-based method,
these studies are limited to small-scale and two-dimensional topology optimization problems. To
improve the computational efficiency, Metsis et al. [19] proposed a novel approach by employ-
ing the domain decomposition techniques on physical as well as on algebraic domains. Trask
et al. [20] proposed a fast multigrid preconditioner in the generalized minimal residual (GMRES)
iterative solver for fluid flow problem discretized by the SPH method. Singh et al. [21] developed
a preconditioned biconjugate gradient stabilized solver for the meshless local Petrov–Galerkin
method applied to heat conduction in three-dimensional (3D) complex geometry. For solving more
complex and large-scale problems, parallel computing is applied to the meshless method [22,23].

In recent years, with the prevalence of Compute Unified Device Architecture (CUDA) released
by NVIDIA, the graphics processing unit (GPU) approach with its massively parallel architecture
has been applied widely in computational mechanics [24–27]. The meshless method is computa-
tionally intensive and well suited for parallelism by the GPU system because of the absence of
mesh. Karatarakis et al. [28] proposed a node pair-wise algorithm for stiffness matrix assembly
with GPU parallel computing. Dong et al. [29] presented a parallel computing strategy of the
material point method (MPM) with multiple GPUs for large-scale problems, with a maximum
speed up to 1280 using 16 GPUs. Frissane et al. [30] simulated a blunt projectile penetrating thin
steel plate by combining the 3D SPH method and GPU. Chen et al. [31] applied GPU acceleration
technique to simulate large-scale 3D-violent free-surface flow problems using the moving particle
semi-implicit method. Afrasiabi et al. [32] identified the parameters of a friction model in metal
machining using GPU-accelerated meshless simulations. In terms of topology optimization, Challis
et al. [33] carried out the GPU parallel computing of topology optimization with the LSM and
FEM. They found that the GPU is utilized more effectively at the higher problem size. To solve
large FE model in topology optimization, Martinez-Frutos et al. [34] presented a parallelism
method using multi-GPU systems for robust topology optimization and proposed a well-suited
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strategy for large-scale 3D topology optimization problems [35,36]. Ramirez-Gil et al. [37] designed
3D electrothermomechanical actuators using the GPU as the coprocessor for the most intensive
and intrinsic parallel tasks. Xia et al. [38] proposed a new level-set-based topology optimization
method using a parallel strategy of GPU and isogeometric analysis.

According to the literature, it can be seen that if the GPU parallel acceleration is combined
with the EFG method and applied in topology optimization, the advantages of both can be fully
exploited. Therefore, to minimize the computational cost of topology optimization, we present an
entire GPU parallel computing procedure for topology optimization using the EFG method. We
explore the parallel algorithm of assembling stiffness matrix, solving discrete equation, analyzing
sensitivity, and updating design variables in detail and provide the flow chart of GPU parallelism.
We also propose a node pair-wise method for assembling stiffness matrix and a node-wise method
for sensitivity analysis to eliminate race conditions during the parallelization. Then, we verify
the proposed approach and evaluate it through three numerical examples. Finally, we discuss
the influence of thread block size, number of degrees of freedom (DOFs), and preconditioned
conjugate gradient (PCG) convergence error on the computational efficiency of the GPU parallel
algorithm.

2 Review of the EFGMethod

In the EFG method, the moving least squares (MLS) scheme is used to construct the variable
shape function only with the nodes that distributed in the domain. The local approximation
uhL(x, x̄) of the unknown function u(x) can be written as follows:

uhL(x, x̄)= pT(x)a(x̄), (1)

where pT(x) is a complete polynomial of order m. In the 3D problems, the linear basis pT(x) is
given by the following:

pT(x)= [1 x y z
]
. (2)

The unknown coefficient vector a(x) is determined at any point x by minimizing the weighted
functional J(x) defined as follows:

J(x)=
n∑
i=1

w(x−xi)[pT(xi)a(x)− ui]
2
, (3)

where ui is the nodal parameter at node xi, and the weight function w(x− xi) used in this work
is the cubic spline weight which is given as follows:

w(r)=
⎧⎨
⎩
2/3− 4r2+ 4r3, r≤ 1/2
4/3− 4r+ 4r2 − 4r3/3, 1/2< r≤ 1
0, r> 1

, (4)

with

r= ||x−xi||
dmi

, (5)

where dmi = dmaxci is the domain of influence size of node i, dmax is the scaling parameter of
domain of influence, ci is the distance to the nearest neighbor node.
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The derivative ∂J/∂a equaling to zero leads to the following relation:

A(x)a(x)=B(x)Us. (6)

By substituting Eq. (6) into Eq. (1), the MLS approximant can be defined as follows:

uh(x)=
n∑
i=1

Φi(x)ui =ΦT(x)Us, (7)

where ΦT(x) is the MLS shape function given by the following:

ΦT(x)= [Φ1(x) Φ2(x) . . . Φn(x)
]= pT(x)A−1(x)B(x), (8)

where Φ i(x) at node i is defined as follows:

Φi(x)= (pTA−1B)i. (9)

Because of the lack of the Kronecker delta property of the previous shape function, the
essential boundary conditions cannot be imposed in the same way as it can be imposed in FEM.
In the present work, we used the penalty method to enforce the essential boundary conditions.
The discrete algebraic equation of 3D elasticity problems can be written as follows:

KU = F, (10)

with

K ij =
∫

Ω

BT
i DBjdΩ +α

∫
Γu

ΦT
i Φ jdΓ , (11)

U i =
[
ui, vi, wi

]T, (12)

F i =
∫

Ω

ΦT
i bdΩ +

∫
Γt

ΦT
i t̄dΓ +α

∫
Γu

ΦT
i ūdΓ , (13)

where Bi and Φi are given by

Bi =

⎡
⎢⎢⎢⎢⎢⎢⎣

Φi,x 0 0
0 Φi,y 0
0 0 Φi,z

Φi,y Φi,x 0
0 Φi,z Φi,y

Φi,z 0 Φi,x

⎤
⎥⎥⎥⎥⎥⎥⎦
, (14)

Φ i =
⎡
⎣Φi 0 0
0 Φi 0
0 0 Φi

⎤
⎦ . (15)
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3 Topology Optimization Based on the EFGMethod

3.1 Topology Optimization Model
We selected the nodal relative density parameter ρi as the design variable in the topology

optimization model based on EFG method, and the density of any point ρi can be obtained as
follows:

ρ =
n∑
i=1

Φiρi. (16)

According to the solid isotropic microstructures with penalization (SIMP) model, the relation-
ship between the nodal relative density parameter ρi and the Young’s modulus E can be defined
as follows:

E = ρpE0 =
(

n∑
i=1

Φiρi

)p
E0, (17)

where p is a penalization factor, and E0 represents the initial full-solid state material property.

The structural compliance minimization problem can be mathematically defined by the
following:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

find ρ = [ρ1 ρ2 . . . ρn
]

min c(ρ)= FTU
s.t. V/V0 = f
K̄U = F
0< ρmin ≤ ρi ≤ 1

, (18)

where c is the compliance of structure, V is the volume of material after topology optimization,
V0 is the initial volume of material, f is the volume fraction, and ρmin is a lower bound of density
to avoid the numerical singularity. Substituting Eq. (17) into Eq. (11), the stiffness matrix K̄ can
be formulated as follows:

K̄ ij =
∫

Ω

ρpBT
i DBjdΩ +α

∫
Γu

ΦT
i Φ jdΓ . (19)

The material volume of the design domain is calculated by the following:

V =
∫

Ω

ρdΩ . (20)

It can be seen from Eq. (19) that many elements of the stiffness matrix K̄ are approximated to
zero as the void area are expanded in topology optimization. As a result, the condition number of
the global stiffness matrix tends to degenerate when the optimization problem begins to converge
to the optimal solution.
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3.2 Optimization Criterion Method
The optimization criterion (OC) method is used to update the design variable. The updating

scheme for the design variable can be formulated as follows:

ρ
(k+1)
i =

⎧⎪⎨
⎪⎩

max(ρmin,ρ
(k)
i − ξ ), if max(ρmin,ρ

(k)
i − ξ)≥ (B(k)

i )
η
ρ

(k)
i

(B(k)
i )

η
ρ

(k)
i , if max(ρmin,ρ

(k)
i − ξ ) < (B(k)

i )
η
ρ

(k)
i <min(1,ρ(k)

i + ξ)

min(1,ρ(k)
i + ξ), if (B(k)

i )
η
ρ

(k)
i ≥min(1,ρ(k)

i + ξ )

, (21)

where ξ is a positive move-limit, η is a numerical damping coefficient and Bi can be found from
the optimality condition as follows:

Bi =− ∂c
∂ρi

/(
λ
∂V
∂ρi

)
, (22)

where λ is a Lagrange multiplier that can be obtained by a bisection algorithm.

The sensitivity of the objective function and the volume constraint function can be expressed
as follows:

∂c
∂ρi

=−UT ∂K̄
∂ρi

U , (23)

∂V
∂ρi

=
∫

Ω

ΦidΩ , (24)

where

∂K̄
∂ρi

=
∫

Ω

pρp−1ΦiBTDBdΩ . (25)

3.3 Topology Optimization Procedure
The detailed procedure of the topology optimization with the EFG method for minimum

compliance problem is illustrated in Fig. 1. The main steps in the loop included assembling
stiffness matrix, solving discrete equation, analyzing sensitivity, and updating design variables.
Because local data (e.g., the shape function and its derivatives, the load vector, and the initial
volume of material in the domain) are used a large number of times, all calculations of these data
are performed in the initial calculation. The amount of storage required for these data is small,
so storing it temporarily is not an issue.

4 GPU Parallel Programming

4.1 CUDA
CUDA is a general purpose parallel computing platform and programming model. In the

CUDA context, a thread is the smallest unit of execution of kernel functions, which are defined
in the GPU. As shown in Fig. 2, a large number of threads are executed concurrently on the
GPU. All threads generated by a kernel are defined as a grid. A certain number of threads in a
grid are organized as a thread block. A grid consists of a number of blocks. Similar to thread
organization, the GPU has a variety of different memories. Global memory can be accessed by
all threads on the GPU, but it had a noticeable latency. Constant memory can be read quickly
by all threads, but cannot be written to. Shared memory can be stored input and output data by
all threads in a block, which is almost as fast as registers. Registers are allocated to individual



CMES, 2021, vol.128, no.3 1157

threads, meaning that each thread can access only its own registers. This hierarchy of thread and
memory makes it easier for programmers to develop high-performance parallel programs.

Figure 1: Topology optimization procedure

GPU

Grid

Block

Thread 1

Register

Shared memory

Global memory

Constant memory

... ......
...

CPU

Host memory

Thread b

Register
Block

Thread 1

Register

Shared memory

... Thread b

Register

Figure 2: Hierarchy of CUDA thread and memory
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4.2 The Reduction Summation Method
In the GPU parallel algorithm, it is necessary to calculate a summation of data for all threads

in a thread block. To overcome the problem that using a single thread accumulator would lead to
poor performance on a GPU, we adopted a parallel reduction summation strategy in this study.
As shown in Fig. 3, b/2 threads (e.g., thread 1–b/2) of all threads executed the pairwise summation
during the first step. Analogously, each step of this pairwise summation divided the number of
partial sums by half. Ultimately, the sum b was obtained after log2b steps. It was obvious that
the number of threads b should be a power of 2.

1 1 1 1

2 2

b/2 b/2

b

b threads

b/2 threads

2 threads

1 thread

... ...

...
...

Thread
1

Thread
b/2

Thread
b

+ +

+

Figure 3: The reduction summation method

4.3 The Race Conditions
As shown in Fig. 4, the same memory location might have had conflicting updates when

no less than two threads attempted to access the same memory unit (e.g., units with red color)
concurrently. This is an example of the racing of CUDA threads, which could lead to an
uncertain outcome. For example, parallelizing the Gauss point-wise approach for the assembly of
the stiffness matrix might lead to an uncertain outcome. These race conditions can be avoided
with proper algorithms that make a thread write data only to the corresponding memory unit.
In addition, atomic operations can avert race conditions by making all updates serialization. In a
massively parallel system, however, thousands of threads may be working simultaneously, which
can hamper performance. Therefore, atomic operations are suitable only for processing a small
number of parallel threads.

Thread Thread ...... ...

... ...

Figure 4: The race conditions
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5 GPU Parallel Algorithm

5.1 Assembling Stiffness Matrix

The stiffness matrix K̄ of Eq. (18) usually is formed by looping all Gauss points. As shown in
Fig. 5, there would be a conflict of multiple threads (red arrows) writing data to the memory unit
of the subblock K̄ ij, when the Gauss points (red x-types) of parallel computation were located
in the intersection of domains of influence of node i and j. Obviously, this Gauss point-wise
method had poor parallelism. To avoid the race conditions, we adopted the interacting node pair
idea in [28] for assembly of the stiffness matrix in this work. According to Eq. (19), each node
pair corresponded to a 3× 3 subblock of the stiffness matrix K̄. As shown in Fig. 5, the stiffness
coefficients submatrix K̄ lm were written to the memory unit after gathering the contributions from
several Gauss points (green x-types) in the intersection of domains of influence of node l and
m. Therefore, the aforementioned race conditions could be avoided by interacting the node pairs
directly.

Figure 5: The Gauss point-wise and node pair-wise method for assembling stiffness matrix

The amenability to parallelism of the node pair-wise method is well suited for the GPU par-
allel computation. As shown in Fig. 6, the GPU parallel algorithm of the node pair-wise method
had two levels of parallelism. A thread block handled a node pair related to a specific submatrix,
and each thread in a thread block was assigned to a Gauss point of the shared domains of
influence of the node pair. When all threads of a thread block completed the calculation, the
corresponding 3× 3 subblock was obtained by the reduction summation method. Note that the
number of threads in a thread block should be a power of 2. Finally, the first thread in each
thread block wrote the submatrix to the corresponding location in the global memory.
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Figure 6: The GPU parallel algorithm for assembling stiffness matrix

5.2 Solving Discrete Equations
In the process of topology optimization, the discrete equations formed by the EFG method

need to be solved repeatedly to obtain the structural response. For large-scale problems, in
addition to the huge computation time, the use of the direct method is expensive in terms of the
storage requirement, resulting from the large number of zeroes that mostly become nonzero values
during the factorization process. Therefore, the iterative method usually is employed in the EFG
method. The linear equations in topology optimization, however, are extremely ill-conditioned
because of the highly heterogeneous material distributions. To improve on the rate of convergence,
a preconditioning technique is necessary. In this study, we used the PCG method with the Jacobi
preconditioner J to solve the discrete equations. The GPU algorithm of the PCG method using
the CUBLAS and CUSPARSE libraries is listed as Algorithm 1.
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Algorithm 1: PCG with Jacobi preconditioner using CUBLAS/CUSPARSE subroutines

Data: K̄, F, U0, tol, Itmax, J
Result: U

1 k= 0
2 K̄u = K̄U0 →cusparseDcsrmv
3 r0 = F− K̄u →cublasDaxpy
4 z0 = Jr0 →cusparseDcsrmv
5 p0 = z0 →cublasDcopy
6 rr2 = rT0 z0, ff = FTF→cublasDdot
7 for k = 0, 1, . . . , Itmax
8 rr1 = rr2
9 if

(√
rr1/ff ≤Tol

)
break;

10 K̄p = K̄pk →cusparseDcsrmv
11 αk = rr1(pTk K̄p)→cublasDdot
12 Uk+1 =Uk+αkpk →cublasDaxpy
13 rk+1 = rk−αkK̄p→cublasDaxpy
14 zk+1 = Jrk+1 →cusparseDcsrmv
15 rr2 = rTk+1zk+1 →cublasDdot
16 βk = rr2/rr1
17 pk+1 = zk+1+βkpk →cublasDaxpy
18 end
19 U =Uk

The convergence error Tol in the PCG method had a remarkable effect on the solving of
linear equations. We obtained more accurate results of linear equations with a stricter error
value. Nevertheless, the stricter the convergence error value was, the more PCG iterations at each
optimization iteration led to an increase in computing time. In contrast, the topology optimization
often is used as a preprocessing stage to find the optimal layout of the material that fulfills the
design requirements, and the resulting topology then can be used as the initial guess for further
detailed design. If there is a slight change in the density value, the resulting input to the detailed
design will not change significantly. Therefore, if we used the PCG method with a loose error to
solve the equations, and it had no effect on the topological results, then the time to solve the
linear equations could be reduced significantly.

5.3 Analyzing Sensitivity
As shown in Fig. 7, the sensitivity of the objective function to the design variable ρi is the

sum of the contributions of all Gauss points (red x-types) in the influence domain of nodal i to
the objective sensitivity. Similar to the assembly of the stiffness matrix, the objective sensitivity of
Eq. (23) usually is calculated by looping all Gauss points to accumulating the contributions. The
parallelization of the Gauss point-wise method, however, also suffered from the race conditions
in which the multiple threads might have accessed a memory unit at the same time, as shown by
the red arrow in Fig. 7.
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Figure 7: The Gauss point-wise and node-wise method for analyzing sensitivity

We proposed a node-wise method to eliminate the race conditions in the calculation of
the objective sensitivity herein. By substituting Eq. (25) into Eq. (23), the sensitivity calculation
formula of the objective function can be expressed as follows:

∂c
∂ρi

=−UT
(∫

Ω

pρp−1ΦiBTDBdΩ

)
U =−

∫
Ω

(pρp−1Φi)QdΩ , (26)

where

Q=UTBTDBU . (27)

According to the Eq. (26), the computation of the objective sensitivity for each node is split
in two steps. In the first step, we calculated the Q values for each Gauss point and stored them for
the calculation of the objective sensitivity in the next stage. The required storage of all Q values
was small, so storing them temporarily was not an issue. In the second step, we computed the
objective sensitivity value corresponding to each node. For node j, the objective sensitivity value
∂c/∂ρj was calculated over all influenced Gauss points (green x-types) and summed to form the
final values of the corresponding objective sensitivity, which is shown schematically in Fig. 7. Both
steps of the presented node-wise method could be parallelized without involving race conditions,
which was for the GPU parallel systems. Obviously, compared with the Gauss point-wise method,
the node-wise method did not increase calculated amount.

In the first step, we calculated the Q values for all influenced node pairs of every Gauss point,
as described in Eq. (27). The two levels of parallelism were as follows: the major over the Gauss
points and the minor over the influenced node pairs. This is shown schematically in Fig. 8. We
assigned a Gauss point to each thread block (thread number was a power of 2) and each thread
handled one influenced node pair at a time. Because each Gauss point corresponded to one thread
block, all Q values in the Gauss points were stored in the respective global memory unit.
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Figure 8: The GPU parallel algorithm for computing the Q values

The GPU parallel algorithm for the calculation of the final value of the objective sensitivity
is shown in Fig. 9. We adopted the mode of parallelization similar to the aforementioned parallel
strategy, in which each thread block (the number of threads in a thread block should be a power
of 2) processed one node at a time and each influenced Gauss point was assigned to one thread.
After all influenced Gauss points were processed, the objective sensitivity values of threads of the
block were summed according to a reduction summation into the corresponding memory. Because
each objective sensitivity value had its own memory unit in the global memory, they were not
conflicted in this stage.
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Figure 9: The GPU parallel algorithm for computing the final value of the objective sensitivity

5.4 Updating Design Variables
We split the update of the design variable for each node in three stages: calculating the

relative density parameter of nodes, the relative density of Gauss points, and the volume of
material. Because each design variable was updated independent of the updating of the other
design variables according to Eq. (21), the first stage had good parallelism. The GPU parallel
strategy of the first stage is illustrated as Fig. 10. To adapt to the hierarchy of CUDA architecture,
we organized all nodes in a number of node groups. Each thread block processed a node group,
and each thread in the thread block handled a node in the group. After all nodes were processed,
the design variable value related to each thread was stored in the corresponding storage unit.
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Figure 10: The GPU parallel strategy for calculating the relative density parameter of nodes

The second stage had two levels of parallelism: the major over the Gauss points and the
minor over the influenced nodes. As shown in Fig. 11, each Gauss point was assigned to a thread
block and each thread handled one affected node. Finally, the reduction sum of values of all
threads in each thread block gave the relative density of each Gauss point. Obviously, this stage
did not have any race conditions.
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Figure 11: The GPU parallel strategy for calculating the relative density of Gauss points

We adopted the mode of parallelization similar to the parallelization of the first stage in
the third stage, as illustrated in Fig. 12. Each thread block dealt with a Gauss point group and
each Gauss point was assigned to a thread. Because the number of Gauss point groups was
much smaller than the number of Gauss points, we used the atomic operations to avoid the race
conditions when the first thread in each thread block wrote the reduction summation to the global
memory.
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Figure 12: The GPU parallel strategy for calculating the volume of material

5.5 Parallel Flowchart
The GPU parallel flowchart of topology optimization using the EFG method is shown in

Fig. 13. The initial calculation to be executed just once in the flowchart was performed on CPU.
The main steps that had to be repeated in the topology optimization process, namely, assembling
the stiffness matrix, solving the discrete equation, analyzing sensitivity, and updating the design
variables, were parallelized on the GPU to reduce the computation time.
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Figure 13: The GPU parallel flowchart of topology optimization using the EFG method

6 Numerical Experiments and Discussions

We evaluated the performance of the proposed GPU parallel algorithm of topology opti-
mization using three numerical examples: the cantilever beam, the quarter annulus, and the cub.
The design domain was discretized with a set of meshless field nodes, and a number of virtual
background cells were used only for the numerical integration. We used the 2× 2×2 Gauss
quadrature rule for each virtual background cell. The Young’s modulus for full-solid region was
E0 = 200 GPa, and Poisson’s ratio for all material inside the design domain was ν = 0.3. The
scaling factor of the domain of influence was 2.0. The numerical experiments were run on the
following hardware: the CPU was an Intel Core i7-8750H, which had six physical cores (12 logical
cores) at 2.20 GHz, the RAM was 16 GB DDR4, and the GPU was NVIDIA GeForce RTX
2070 with 2304 CUDA cores and 8 GB GDDR6 memory. The compiler for CPU code using
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C language was Microsoft Visual Studio 2012, and the compiler for GPU code was NVIDIA
CUDA 9.2. To ensure the accuracy of calculation, we performed all floating point calculations
using double precision floating-point format. To compare efficiency among the CPU and GPU
codes, we defined the speedup ratio as the running time of the CPU serial code divided by the
running time of the GPU parallel code.

6.1 Numerical Examples
(1) Example I: Cantilever Beam
Fig. 14 displays the design domain of a 3D cantilever beam structure. The model size was 100

mm × 50 mm × 4 mm. The left face of the domain was fixed. We applied a vertically downward
force F = 1000N at the center of the right face. The allowed material usage was limited to 40%.
The design domain of the cantilever beam structure was discretized with 16,605 nodes, and the
total number of DOFs was 49,950. The iteration process and staged results of the topology
optimization with CPU and GPU programs are shown in Fig. 15.
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Figure 14: Design domain of the cantilever beam

Figure 15: Iteration history and staged results of the cantilever beam topology optimization with
CPU and GPU program
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(2) Example II: Quarter Annulus
Fig. 16 displays the design domain of a 3D quarter annulus structure and the model size

(Unit: mm). The bottom end of the domain was fixed. As shown in the Fig. 16, a horizontal
force toward the left was F = 1000 N. The allowed material usage was limited to 50%. The
design domain was discretized with 14,840 nodes, and the total number of DOFs was 44,520.
The iteration process and the staged results of the topology optimization with CPU and GPU
programs are shown in Fig. 17.

100
50

4

F

Figure 16: Design domain of the quarter annulus

Figure 17: Iteration history and staged results of the quarter annulus topology optimization with
CPU and GPU program
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(3) Example III: Cube
Fig. 18 displays the design domain of a cub structure. The edge length of the cub was

200 mm. The model was fixed at the gray zones of its lower face, which indicated that the
displacements at these surfaces were fixed. We applied a concentrated force F = 10, 000 N at the
central point of the upper face. The allowed material usage was limited to 5%. The design domain
was discretized with 28,830 nodes, and the total number of DOFs was 86,490. The iteration
process and the staged results of the topology optimization with CPU and GPU programs are
shown in Fig. 19.
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Figure 18: Design domain of the cube

Figure 19: Iteration history and staged results of the cube topology optimization with the CPU
and GPU programs

Figs. 15, 17, and 19 show that the staged results and iteration history of topology opti-
mization obtained by using the GPU program proposed in this study are completely consistent
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with that of the CPU program. This finding further verified the feasibility of the proposed GPU
acceleration algorithm and strategy.

6.2 Analysis of Speedup Characteristic
(1) The thread block size
Fig. 20 shows the relationship between the thread block size and the speedup ratio in different

stages of three examples.

(a)

(c)

(b)

Figure 20: Speedup ratios under different thread block size. (a) Example I (b) Example II (c)
Example III

Fig. 20 shows that the speedup ratios increase first and then decrease with the increase of the
thread block size. In the GPU algorithm, a greater thread block size was not necessarily better.
Under the calculation conditions in this study, the best choice of the thread block size was 32 for
the stiffness matrix assembly and density update, and 64 for the sensitivity analysis. This finding
also indicated that the GPU algorithm proposed in this study effectively reduced the thread block
size, to reduce the occupation of computer resources.

(2) The computing time for different stages
When the PCG error was defined as 1e-5 and the thread block sizes with the best values were

chosen, the total computational time for all OC iterations was as given in Tab. 1.
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Table 1: Total computing time and speedup ratios of different stage

Stage Example I Example II Example III

Time (s) Speedup Time (s) Speedup Time (s) Speedup

CPU GPU CPU GPU CPU GPU

Assembly 3795.8 191 19.9 4940.7 291.7 16.9 7223.2 392.6 18.4
Solution 9468.1 110.5 85.7 11829.5 150.7 78.5 63055.6 641.1 98.4
Sensitivity 520.4 7.7 67.6 736.4 10.5 70.1 916.2 12.6 72.7
Update 42 6.3 6.7 50.2 7 7.2 46.8 4.7 10
Global 13826.3 315.5 43.8 17556.8 459.9 38.2 71241.8 1051 67.8

Tab. 1 shows that the assembling stiffness matrix, solving equation, and sensitivity analysis
took up most of the time for CPU serial program. Therefore, the computing efficiency of topology
optimization was effectively improved by accelerating these three parts using GPU. In addition,
although the updating density was not time-consuming, it also had to be computed on GPU to
avoid the repeated transmission of large amounts of data between the CPU and GPU. Meanwhile,
although the structures of the three numerical examples were different, the speedup ratio of
equation solving and overall optimization calculation increased with the increase in the number of
DOFs, as shown in Tab. 1, which demonstrated the high efficiency of the proposed GPU parallel
approach.

(3) The number of DOFs
When the PCG error was defined as 1e-5 and the thread block sizes with the best values were

chosen, the total computing times under different DOFs for Example I were as given in Tab. 2.
Global speedup ratios under different DOFs of Example I are shown in Fig. 21. Because of the
limitation of computer resources, the maximum total number of DOFs only reached 110,880.

Table 2: Total computing time under different DOFs of Example I

DOFs Time (s) Speedup

CPU GPU

19,488 1163.5 39.8 29.23
49,815 13826.3 315.5 43.82
77,265 49711.2 938.4 52.97
110,880 101464 1703.4 59.57

Fig. 21 shows that the speedup ratios will increase with the increase of the DOFs for the
same model example before the model scale exceeds the maximum parallel capability of GPU.
The GPU was suitable for solving computation-intensive problems; however, the increase of the
speedup ratio decreased gradually. This was caused by the limited computing resources of GPU.
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Figure 21: Global speedup ratios under different DOFs of Example I

Simultaneously, because of the use of the interacting node pair method during the stiffness
matrix assembly and node-wise method during the sensitivity analysis, the speedup ratios were
close to 20 and 70, respectively. Compared with the traditional Gauss point-wise method, their
computational efficiency greatly improved. This meant that the use of interacting node pair and
node-wise method not only improved the parallelism performance of the GPU, but also effectively
avoided the race condition that occurred in the thread-block stored procedures.

6.3 Convergence Error in PCG
In general, the convergence error in the PCG method had a remarkable effect on the solution

of discrete equations. The more accurate results of discrete equations could be obtained with more
strict error value. Nevertheless, the stricter the error value is, the greater the number of PCG
iterations at each optimization iteration leading to increased time. The effect of the convergence
error in the PCG method on the topology results and the GPU computing time is shown in
Fig. 22.

Fig. 22 shows that when the PCG error value varied from 1e-8 to 1e-1, the final optimal
results were basically unchanged, and the number of iterations was about the same. With the
relaxation of the error value, the time to solve the equation and the overall optimization time
decreased rapidly at first and then increased at the later stage. The increase of the total time was
accompanied by an increase of the number of iterations. This meant that the PCG error value
could not be relaxed too much, and the recommended error was between 1e-4 and 1e-2.
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Figure 22: GPU computing performance under different PCG error values. (a) Example I (b)
Example II (c) Example III

7 Conclusions

To improve computational efficiency, we presented a novel GPU acceleration approach for 3D
structural topology optimization problems using the EFG method. We developed GPU parallel
algorithms of assembling stiffness matrix, solving discrete equation, analyzing sensitivity, and
updating design variables. The following conclusions can be drawn from the example analysis:

(1) The final optimal structures obtained by the proposed GPU acceleration approach were
in good agreement with the CPU results. Thus, the presented approach in this study was
feasible. Meanwhile the boundary profiles were clear even without the filtering technique
of sensitivity, and there were no checkerboard and other unstable phenomena.

(2) Compared with the conventional CPU serial approach, the proposed GPU acceleration
approach greatly improved the computational efficiency of 3D structural topology opti-
mization using the EFG method. The maximum of the global speedup ratio of the whole
topology optimization process in the examples reached up to 67.8, and the acceleration
ratio also increased as the number of DOFs increased. In addition, the thread block size
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had a significant effect on the computational efficiency. For 3D topology optimization
problems, the recommended value of the thread block size was 32 for the stiffness matrix
assembly and density update, and 64 for the sensitivity analysis.

(3) We used the interacting node pair method during the stiffness matrix assembly and the
node-wise method during the sensitivity analysis to effectively improve the parallelism per-
formance of the GPU, and we avoided the race conditions that can occur in thread-block
stored procedures.

(4) The results showed that the convergence error of the PCG solver used to solve discrete
equation at each OC iteration could be properly loosened without qualitatively affecting
the resulting topology and leading to a considerable reduction in the solution time of the
discrete equation. The overall computing time may have increased as a result of the added
OC iterations when loosening the PCG convergence error. Therefore, it is essential to use
the appropriate PCG error for topology optimization problems based on the EFG method.
The reasonable range of PCG convergence error was between 1e-4 and 1e-2.
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