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ABSTRACT

This work presents a fall detection system based on artificial intelligence. The system incorporates miniature
wearable devices for fall detection. Fall detection is achieved by integrating a three-axis gyroscope and a three-
axis accelerometer. The system gathers the differential data collected by the gyroscope and accelerometer, applies
artificial intelligence algorithms for model training and constructs an effective model for fall detection. To provide
easywearing and effective position detection, it is designed as a small device attached to the user’s waist. Experiment
results have shown that the accuracy of the proposed fall detection model is up to 98%, demonstrating the
effectiveness of the model in real-life fall detection.
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1 Introduction

1.1 Research Motivation
The current reduction in birth rate and extended life expectancy have resulted in the ageing

of the population, which has become a global issue. According to [1], the aged population will
increase drastically in the future, the percentage of the aged population will continue to rise within
the global population and reach 28% by the year 2050.

Falling is an important health issue for the senior population as it may cause serious harm
to the elderly [2]. If an elderly person falls, he or she may not be able to move or regain
consciousness and can only wait passively for medical assistance. However, if adequate assistance
is not provided within a short time frame, more serious harm may result. Delays in receiving
treatment may cause difficult or irrecoverable damages and increase the cost and burden of health
care [3,4]. Additionally, some elderly people may develop fears of falling again and become limited
in their range of movements, thus decreasing their quality of life. Therefore, the instantaneous
fall detection of the elderly in an indoor environment and the establishment of an effective caring
system are crucial for the aged population.
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1.2 Research Purpose
We propose a system based on artificial intelligence for fall detection to reduce manual cost

and provide early warnings. The system’s goal is to detect the current positions of personnel
within a monitored range and determine if a falling event has occurred. The current behaviours
of the personnel are returned to the monitoring system for centralized record and management
to establish the conditions of indoor activities of the personnel. The proposed system integrates
a three-axis gyroscope, a three-axis accelerometer, as well as a Bluetooth module for wireless
communication to design a waist-attached, miniature fall detection device. The device collects
information from the gyroscope and accelerometer for analysis to deduce continuous signals
representing the human body postures. According to the posture and signal relationship, artificial
intelligence is used to construct a highly accurate model. Information associated with falling is
transmitted by the waist-attached, miniature fall detection device via Bluetooth wireless packets to
a receiving end designed using a Raspberry Pi computer and collected. The information is trans-
mitted through the built-in local area network in the Raspberry Pi to the computer management
interface to facilitate decision making after a fall.

1.3 Literature Review
The current fall detection system implementation methods can be divided into two categories:

fixed fall detection system and non-fixed fall detection system. The fixed fall detection system [5]
is mainly based on image recognition detection, floor vibration detection, wireless signal detection
methods and so on. The system detects whether or not the user has fallen through sensors built
on the wall or floor. The advantage of the system is that the user does not need to wear additional
equipment and the disadvantages are that it is location-specific and the cost is high. The non-fixed
fall detection system [6–9] mainly uses components such as the RFID, gyroscope, accelerometer
and so on to detect whether or not a user has fallen via sensors attached to the user’s body. The
advantages of this system are that the computational complexity and the cost are low, however,
the disadvantage is that the accuracy is relatively low.

In 2014, Wang et al. [5] proposed a fall detection system based on wireless network signals.
This method determines if a user has fallen according to the current physical movement of a
user, which is calculated via the differences between the transmitted signal and the received signal
within the Wi-Fi equipment installed in the environment. This approach effectively reduces issues
regarding equipment installation and privacy invasion since there is no need to install additional
equipment if there is an existing Wi-Fi device in the environment.

In 2017, De Miguel et al. [8] presented a low-cost fall detector for smart homes based on
artificial vision algorithms. The proposed detector combines several algorithms as input into a
machine learning algorithm. The detector is able to provide high detection accuracy of fall diction.

In 2018, Shahzad et al. [10] proposed a fall detection system based on a three-axis sensor on
a smartphone. The proposed approach attaches the phone to the user’s waist or leg and uses the
three-axis acceleration values to construct a fall model with a set threshold and a multiple kernel
learning support vector machine (MKL-SVM). The model is integrated with a mobile application
to calculate the user’s current status. The model constructed using machine learning algorithms
achieves an accuracy of 97.81% when attached to the waist and 91.70% when attached to the legs
without requiring additional equipment.

In the same year, Ichwana et al. [11] proposed an accelerometer-based fall detection system.
In the proposed system, a sensing module is attached to the waist, and a user’s fall is determined
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by the user’s movements, which are identified according to the calculated angular and vertical
velocities. This method has low computational complexity and makes quick decisions.

In 2020, Nooruddin et al. [12] proposed a system based on client-server architecture. The
system can be implemented using any type of IoT devices with internet connectivity and can
be interfaced with four modules. The developed linear classifier model used in this system has
achieved 99.7% accuracy in fall detection.

In the same year, Clemente et al. [13] presented a smart system performing fall detection
based on floor vibration data produced by fall downs. Only using floor vibration as the recognition
source, the system incorporates a person identification through vibration produced by footsteps to
inform who is the fallen person. It is able to detect fall downs with an acceptance rate of 95.14%.

2 Research Method

Nowadays, artificial intelligence is widely used in various systems. This research uses Ten-
sorFlow as the framework for building a neural network (NN) and uses three different neural
network architectures to build a fall detection model. The purpose of the neural network is to find
the optimal weight value and deviation, which are obtained when the input data passes through
the function in the framework. Therefore, an activation function is added after the hidden layer
of the neural network to facilitate the finding of the desired result and calculate the suitable value
to build a predictive model for fall detection. This work uses the multi-layer perceptron (MLP),
recurrent neural network (RNN) and long short-term memory (LSTM) models to compare their
advantages and disadvantages as shown in Tab. 1.

Table 1: Comparison of the advantages and disadvantages of neural networks

Neural network Advantages Disadvantages

MLP Simple structure
Solves classification
problems

Difficult to select the number
of nodes.
Learning speed is slow.
Suffers from the overfitting
problem.

RNN Able to handle
continuous signals

Suffers from the vanishing
gradient or exploding
gradient problems.
Signal is poorly processed for
a long time.

LSTM Continuous processing
Long-term signals

Suffers from the exploding
gradient problem.
Complex architecture.
Time-consuming calculation.

2.1 Multi-Layer Perceptron (MLP)
The MLP is a kind of feedforward neural network with three layers: an input layer, a hidden

layer and an output layer. The input layer is the current material to be learned. The hidden layer
is the feature node that needs to be learned and each node is a neuron with a nonlinear activation
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function so that its output meets the required results. The output layer is the category that needs
to be learned. Each layer in the middle is a fully connected layer. The multi-layer perceptron was
widely used in the 1980s in applications such as speech recognition, image recognition, machine
translation and so on, and achieved good results in classification problems.

2.2 Recurrent Neural Network (RNN)
The early neural network architecture had no time concept and labeling learning for sequence

signals. In 1982, Hopfield [14] proposed a Hopfield neural network. The network has 2n states, the
value of each neuron is 1 or 0 and the output is a four-bit binary number. There are 16 network
states in total due to the network’s recursive characteristics. If the network is stable, it converges
from any initial state to a stable state. If the network is unstable, it will not result in a divergent
state since each neuron has only two states.

Jordan [15] proposed a learning structure in 1986 that included labeling the sequence signal
with an output that feedback to hidden nodes. The system multiplies the input X value by the
now weight value in the neural network, adds the deviation value in the node and recalculates the
value to provide the output value. This architecture achieves better results for an RNN modeled by
serial signals where the before and after signals are correlated. Therefore, the architecture is often
applied to natural language, handwriting recognition, weather, or sensor-detected values. However,
as the hidden layer of the network becomes deeper, vanishing or exploding gradient problems may
occur, rendering the architecture unsuitable in situations where the signal time is long.

2.3 Long Short-Term Memory (LSTM)
The LSTM is a recurrent neural network. Since the RNN architecture is unsuitable for very

long time series, Hochreiter et al. [16] have proposed the LSTM architecture. The architecture has
8 input nodes, 4 output nodes and 2 memory blocks of size 2.

The LSTM architecture consists of three layers, the forget gate, the input gate and new input,
and the output gate. The forget gate determines which old memories to retain, the input gate and
the new input determine which values need to be added and the output gate determines which
values to output.

2.4 Activation Function
The activation function in neural networks mainly uses nonlinear equations to solve nonlinear

problems. When the activation function is not used, the neural network is a linear combination
of operations. As both the hidden layer and the output layer are the input results of the upper
layer, they are calculated with the weight value and the deviation, and the calculation result is
regarded as the output of the layer so that the output and the input have a linear relationship. If
a nonlinear activation function is not used, the learned model cannot solve a nonlinear problem.
In this work, we have investigated 4 different activation functions for learning the framework and
selected suitable functions through experiments to implement the fall detection model.

2.4.1 Rectified Linear Unit (ReLU)
According to Eq. (1), when the value of x is negative, the output is 0, and when x is positive,

the output remains unchanged. Since the algorithm is linear, the result is easy to predict. The
quick convergence provides effective solutions for vanishing and exploding gradient problems with
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very few calculations. However, when a certain neuron is 0, it will be difficult to activate this node
and the node will have no effective results for the data.

ReLU (x)=
{
x, x> 0
0, x≤ 0

(1)

2.4.2 Exponential Linear Unit (ELU)
According to Eq. (2), when the value of x is negative, a nonlinear function is used to provide

the output value. This function resolves the shortcomings of the ReLU with an increased amount
of calculations.

ELU (x)=
{
x, x> 0
σ(ex− 1), x≤ 0

(2)

2.4.3 Hyperbolic Tangent Function
The function is calculated according to Eq. (3) and it compresses the output values to the

range of between −1 and 1. The effect is better when the feature is obvious. However, the function
requires more complex exponential calculations and the gradient vanishing problem still occurs
when the input value is extremely large or small.

tanh (x)= ex− e−x

ex+ e−x
(3)

2.4.4 Sigmoid Function
The function is provided in Eq. (4), which compresses the output value to the range of

between 0 and 1. The effect is better with the bi-partition. Nevertheless, the function requires
exponential calculations and the gradient vanishing problem may still occur.

Sigmoid (x)= 1
1+ e−x

(4)

3 System Structure

This research incorporates a three-axis gyroscope, a three-axis acceleration sensor, as well
as the Bluetooth radio frequency technology, Raspberry Pi system, management terminal inter-
face program, cloud database and other related components and technology to implement the
smart fall detection system. The system also uses artificial intelligence algorithms to improve the
accuracy of fall detection.

In this work, we propose an efficient solution for the monitoring center to confirm the status
of a user wearing the device via a convenient and intuitive operation management platform.
The system detects accidental falls using a three-axis gyroscope and a three-axis accelerometer.
The Bluetooth wireless transmitter is used to send the current user status to the signal receiving
device. A packet is then sent through the TCP/IP Socket to the computer interface program for
status recording and display. The system needs to distinguish between various falling postures and
other actions performed by the user, as well as overcome electromagnetic interference caused by
metallic or electronic objects in the experimental area to increase the accuracy and reliability of
fall detection.
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3.1 Hardware Architecture
The system architecture is shown in Fig. 1. The architecture of the system includes four

hardware components: the devices worn by the user, information receivers for receiving packets,
routers for establishing the local networks and computers with interface programs.

Wearing Device

User

Status receiver

6-axis sensor

Bluetooth module

Built-in

Status receiver

Analyze signal

Signal status
Signal status

The best signal state

Gateway

Network

Figure 1: The architecture of the smart fall detection system

As the device worn by the user obtains the six-axis signal, the smart fall detection algorithm
is used to calculate the current walking state of the user and information packets are continuously
sent to the information receiving device through the Bluetooth broadcast mode. The information
receiver calculates the RSSI value of the received packet and selects the information receiver with
the best RSSI value for data transmission. When the information receiver receives the relevant
signal, it will be sent to the management computer through the wired network. The signal will
be analyzed through the smart fall detection model to find the current walking status of the user
and the user status will be displayed on the interface program. The management computer will
also store the analysis data on the cloud database.

The wearing device uses the Texas Instruments CC2541 Bluetooth wireless chip. The core of
the chip is an 8051 microcontroller and a six-axis sensing module (MPU-6050). The fall detection
algorithm analyzes the signals generated during the user’s actions to determine if a fall has
occurred. The power source of the device is a 3.7 V, 1000 mAh, polymer lithium battery and its
working endurance is about 30 days.

3.2 Smart Fall Detection System Process
When the user attaches the device to the waist and turns the power on, the power level is

automatically detected, which allows the management staff to confirm if the power of the device
is sufficient and check the status of the wearing device. The smart fall detection model on the
wearing device starts to continuously detect for a fall event and uses the information packet
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to send the detected state to the information receiver for transmission. The information receiver
analyzes whether or not the received packet needs to be forwarded to the management computer
and discard the packets sent by the non-wearing device.

The status information of the correct packet is sent to the management computer through the
TCP/IP Socket, the content of the information packet is analyzed through the computer interface
program and the result is displayed on the graphical user interface. The management personnel
is able to check the status information of all users in the field through the computer interface
program. When a person accidentally falls or activates the emergency button, the displayed user
marker will be marked in different colors and an alarm page will be displayed, allowing the
management staff to quickly proceed to the location and deal with the situation. Fig. 2 shows the
flowchart of the fall detection system.

Power on the wearing 
device

Confirm wearing 
device status

Enter the 
experimental 
environment

Start the fall 
detection algorithm

Send status 
information 

Bluetooth packet

Receiver receives 
packet

Analyze and confirm 
the packet and 

calculate the signal 
strength

Send packets back to 
the interface program 

via TCP/IP

Parse packet content 
information

Display personnel 
status in the interface 

program

Figure 2: Flowchart of the fall detection system

3.3 Smart Fall Detection Model Establishment
To solve the difference between the fall and non-fall states of a user, we use a neural

network to build a detection model and find an optimal algorithm to solve the problem. The
development software for building the model is Spyder and the model is implemented using the
Python programming language and Tensorflow framework.

The proposed system uses a variety of neural network models to find a model that consumes
fewer resources and is highly accurate. The established model is programmed in the C/C++ lan-
guage to reproduce the algorithm and apply it to smart fall detection. Fig. 3 shows the flowchart
of the smart fall detection model.

3.3.1 Acquire Training Materials
To capture the complete fall action, all 6 signals from the six axes are used and every 80

times is taken as a complete action. The once time is 10 ms. A total of 110 fall actions and 130
other actions are captured as the training material.

3.3.2 Build Model Architecture
In this work, 3 different neural network models have been chosen for comparison with respect

to the accurate determination of the differences between each action. The three models are the
multi-layer perceptron (MLP), recurrent neural network (RNN) and long short-term memory
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(LSTM) models. When building the model, 160 motion signals are used for training, and 80
signals are used for testing the trained model. The input layer is 6 * 80 groups of fall signal
values and the output layer is 2 to indicate if a fall action has been detected. After modifying the
number of nodes, the number of layers, the activation function of the intermediate hidden layer,
and considering the resource constraints of the controller, it is impossible to store too many model
weights. The system uses the Tensorflow framework to train a model that meets the demands and
select a model with low resource consumption and high accuracy out of the three chosen models.

Acquire training 
materials

Build model 
architecture

Training model

Get the best model 
weight

Use C/C++ to implement 
the algorithm

Figure 3: Flowchart of the smart fall detection model

3.3.3 Multi-Layer Perceptron Fall Model
The architecture diagram of the MLP fall model is shown in Fig. 4. The MLP is a fully

connected layer architecture. It inputs 480 action signal values simultaneously. Each node needs
to be multiplied and added to all of the input values and the point with the largest value along
with the output node is taken as the result. For example, the largest output in the first output
node means that a fall action has been detected and the largest output in the second node means
that a non-fall action has been detected.
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Figure 4: Architecture diagram of the MLP fall model
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3.3.4 Recurrent Neural Network Fall Model
The architecture diagram of the RNN fall model is shown in Fig. 5. The input layer of

the RNN is different from the MLP. It has only 6 instead of 480 values. Since the RNN is a
recursive architecture, only one six-axis signal is given as the input each time (6 signals constitute
one input). After completing the calculation, the next six-axis signal is used as the input and the
calculation is combined with the previous result. After 80 consecutive inputs, the model uses the
calculation result of the fully connected layer to determine whether or not there is a fall event.
This model is better at finding the correlation of the input data as a continuous signal and the
effect of the RNN training is better than that of the MLP. Therefore, when training the model,
another output result is not only to detect a fall but other six actions including walking, sitting,
squatting and bending over.
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Figure 5: Architecture diagram of the RNN fall model

3.3.5 Long Short-Term Memory Fall Model
The architecture diagram of the LSTM fall model is shown in Fig. 6. The LSTM is an

improved version of the RNN architecture. The RNN uses the last six-axis signal to predict the
current state, whereas the LSTM not only remembers the previous result but also the result of the
previous calculation and uses the forget gate to delete unnecessary information. If the continuous
signal of the input data is related to a previous signal as well as another earlier signal, then the
LSTM can be used to learn a more effective model and detect six actions like the RNN model.

4 Experimental Result and Discussion

Corresponding correction methods and discussions are proposed according to the test data
recorded in the smart fall detection model from training and testing. The proposed system is
evaluated with respect to the model test data collection, model architecture accuracy and resource
consumption.
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Figure 6: Architecture diagram of the LSTM fall model

4.1 Wearable Device Signal Stability
The system adopts a non-fixed fall detection system. We install the wearable device on the

test person. The accelerometer sensor on the wearable device will detect the falling state of the
test person at any time and determine whether a fall has occurred. Since the acceleration stability
is different when acting in different positions. This experiment will install the wearable device on
the chest, wrist and waist to test the stability of the impact.

In Fig. 7, the stability of the wearable device installed on the chest and waist is regarded
as the best. However, when it is installed on the chest, wearing it for a long time will cause
discomfort and inconvenient installation. Therefore, the wearable device of the system is installed
at the waist position and designed belt-type.
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Figure 7: Signals for wearable device

4.2 Model Test Data Acquisition
To capture the complete fall action, the 6 signals of the six axes are acquired once every 10

ms and every 80 acquisitions constitute a complete action, as shown in Figs. 8a–8e. In Fig. 8, the
horizontal axis represents the number of times and the vertical axis represents the signal values
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from the six axes in different colours. The red box in the figure is the six-axis signal captured
during the action. To avoid classifying non-fall actions as a fall, a total of 5 other actions were
also selected for training, so that the model would not misjudgments other actions. A total of 240
action signals were captured, 110 of which fall actions and 130 were other, non-fall actions.
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Figure 8: Six-axis signals for six actions

4.3 Model Architecture Accuracy and Resource Consumption
The six-axis signal is captured every 10 ms and if the weight value is too large, it cannot be

burned into the microcontroller. Therefore, the calculation time of the model must be within 10
ms and the resources consumed by the number of node weights must also be met. The learning
effect varies according to the hidden layer, the number of nodes and the activation function. In
this work, we have selected several model architectures with good results in training and testing.
The final test model does not show a large difference between the training and testing accuracies,
which means that the model has high reliability.

4.3.1 MLP Fall Model Accuracy and Resource Consumption
Since each layer of the MLP architecture is a fully connected layer with 480 input nodes,

where each node in the first layer has 480 weight values and 1 deviation. As a result, the number
of weight values is very large and the microcontroller cannot load the resources. In the end, the
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algorithm is not implemented in the fall detection model and the resource consumption is not
calculated. Tab. 2 is the model architecture for the MLP training and the activation function uses
the ReLU to reduce the number of model calculations.

Table 2: The model architecture for MLP Training

Judge action Number of layers Number of nodes Dropout Activation function

A fall action is detected 1 layer 6 0.7 ReLU
A fall action is detected 1 layer 9 0.7 ReLU
A fall action is detected 2 layers 1st layer 4

2nd layer 6
0.7 ReLU

A fall action is detected 2 layers 1st layer 6
2nd layer 9

0.7 ReLU

Tab. 3 shows the results of the MLP model training. It can be seen from Tab. 3 that the
accuracy increases as the number of nodes or layers increases. This is due to the training data
having too many features and using few nodes for training, resulting in poor performance.
Conversely, when the number of nodes is sufficient with respect to the number of features, the
comparison result is improved. Although the calculation time meets the requirements, the weight
of the architecture far exceeds the resources of the microcontroller, therefore, this model cannot
be implemented on the wearable device.

Table 3: The results for MLP model training

Judge action Number of weights Training
accuracy (%)

Testing
accuracy (%)

Calculated
time (ms)

A fall action is
detected

2886 hidden layers
14 output layers

88 86 4.1

A fall action is
detected

4329 hidden layers
20 output layers

92 90 5.6

A fall action is
detected

1954 hidden layers
14 output layers

93 92 3.3

A fall action is
detected

2949 hidden layers
20 output layers

95 94 4.3

4.3.2 RNN Fall Model Accuracy and Resource Consumption
Since the trained RNN model has better results, the model is divided into two architectures

to judge a fall action and other six kinds of actions, to facilitate better understandings of the
user’s current actions and prevent a user from performing dangerous actions, such as a jump. If
a user’s action before the fall can be detected, the rescue can be carried out more effectively.

The number of weights on a single node in the hidden layer of the RNN is the number of
input nodes plus the number of nodes in the hidden layer. For example, if the input value of
the hidden layer is 6 and the number of hidden nodes is 12, then each node of the layer has 18
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weight values and 1 deviation value. Tab. 4 is the model architecture for RNN training. To adapt
the implementation for the microcontroller, fewer nodes are used.

Table 4: The model architecture for RNN training

Judge action Number of layers Number of nodes Dropout Activation
function

A fall action is detected 1 layer 6 0.7 ReLU
A fall action is detected 1 layer 9 0.7 ReLU
Six actions 2 layers 1st layer 12

2nd layer 18
0.7 ReLU

Six actions 2 layers 1st layer 18
2nd layer 24

0.7 ReLU

Tab. 5 shows the results of the RNN model training. From Tab. 5, it can also be seen that
when the number of nodes increases, the accuracy also increases because when the number of
nodes increases, the number of historical features that can be remembered also increases and
improves the accuracy. However, it can be seen in this table that adding nodes to the six-action
model increases the accuracy gap between training and testing, which means that the model is
slightly over-fitting. Since too many nodes have been used for training, the model only satisfies
the training data.

Table 5: The results for RNN model training

Judge action Total number
of nodes

Training
accuracy (%)

Testing
accuracy (%)

A fall action is detected 6 hidden nodes
2 output nodes

96 95

A fall action is detected 9 hidden nodes;
2 output nodes

99 98

Six actions 1st layer 12 hidden nodes
2nd layer 18 hidden nodes
6 output nodes

96 95

Six actions 1st layer 18 hidden nodes
2nd layer 24 hidden nodes
6 output nodes

97 93

Tab. 6 is the model resource for the RNN implementation for fall detection. Since the imple-
mented model is an architecture for fall detection, only the time of a fall event is calculated in
this model and the number of weights consumed by the model is calculated to ensure that it can
be implemented on the microcontroller.
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4.3.3 LSTMMultiple-Action Fall Model Accuracy and Resource Consumption
Since the trained LSTM model has better results, it has two architectures like the RNN

model. Each layer of the LSTM model has 4 sets of nodes to determine the memory and output
values. The number of hidden layer nodes will be 4 times the setting and the weight value of each
node is the same as the RNN, which is the input plus the recursion number. For example, if the
hidden layer is set to 12 nodes, the input value is 6, which means that the layer has 48 nodes,
and each node has 18 weight values and a deviation value. Tab. 7 is the model architecture for
the LSTM training.

Table 6: The model resource for the RNN implementation for fall detection

Architecture Number of weights One-time
calculation
time (ms)

1-layer RNN hidden layer with 6 nodes
1-layer fully connected output layer with
2 output nodes

78 hidden layers
14 output layers

4.8

1-layer RNN hidden layer with 9 nodes
1-layer fully connected output layer with
2 output nodes

144 hidden layers;
20 output layers

5.8

Table 7: The model architecture for the LSTM training

Judge action Number of layers Number of
nodes

Dropout Activation
function

A fall action is detected 1 layer 6 0.7 sigmoid
tanh

A fall action is detected 1 layer 9 0.7 sigmoid
tanh

Six actions 2 layers 1st layer 9
2nd layer 12

0.7 sigmoid
tanh

Six actions 2 layers 1st layer 12
2nd layer 18

0.7 sigmoid
tanh

Tab. 8 is the result for LSTM model training. It can be seen from the result that the model is
slightly overfitting with regard to the fall detection model because the number of nodes explained
above will be 4 times the set, which is too many for training. In the six-action model, each action
has its own different characteristics, so more nodes are required for learning and the final result
is not over-fitting.

Tab. 9 is the six-action model resources implemented by LSTM. Since the implemented model
is used to judge six actions, only the time for the six actions taken is calculated in this model. It
can be seen from the table that the calculation time of this model far exceeds the time taken to
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grab a six-axis signal and the weight value also far exceeds the resources of the microcontroller,
so this model cannot be implemented on the wearable device.

4.3.4 The Fall Model Comparison
Tab. 10 shows the comparison between the three chosen architectures. Only the settings with

the highest accuracy are selected for comparison for each architecture. Although the accuracy of
the MLP fall architecture is not as good as the other two, it is the fastest of the three in terms of
calculation time, and although it consumes fewer resources than the LSTM, the microcontroller
is still unable to load. The RNN fall architecture has the highest accuracy among the three and
requires very few resources. However, it is slower than the MLP architecture due to its recursive
nature, but it still meets the demand. Although the LSTM fall architecture is not good at judging
a fall, it has good performance for the six actions, but with the worst resource consumption
among the three architectures. According to the comparison result, the RNN fall architecture is
selected for the proposed system.

Table 8: The results for the LSTM model training

Judge action Total number of nodes Training
accuracy (%)

Testing
accuracy (%)

A fall action is detected 24 (4 times 6) hidden nodes
2 output nodes

97 94

A fall action is detected 36 (4 times 9) hidden nodes
2 output nodes

98 94

Six actions 1st layer 36 hidden nodes
2nd layer 48 hidden nodes
6 output nodes

95 94

Six actions 1st layer 48 hidden nodes;
2nd layer 72 hidden nodes;
6 output nodes

97 95

Table 9: The six-action model resources implemented by LSTM

Architecture Number of weights One-time
calculation
time (ms)

2-layers LSTM hidden layer with 84 nodes
1-layer fully connected output layer with 6
output nodes

1632 hidden layers
78 output layers

20

2-layers RNN hidden layer with 120 nodes
1-layer fully connected output layer with 6
output nodes

3144 hidden layers
114 output layers

30
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Table 10: The comparison between the three chosen architectures

Comparison
items

Model Number of
nodes

Number of
weights

Time
consump-
tion (ms)

Accuracy
rate (%)

MLP fall
architecture

A fall action is
detected

1st layer 6 hidden
nodes;
2nd layer 9 hidden
nodes;
2 output nodes

2969 4.3 94.5

RNN fall
architecture

A fall action is
detected

9 hidden nodes;
2 output nodes

164 5.8 98.5

LSTM fall
architecture

Six actions 1st layer 18 hidden
nodes
2nd layer 24 hidden
nodes
6 output nodes

3258 30 96

5 Conclusion

In this work, we have proposed a smart fall detection system that uses artificial intelligence to
implement fall detection to improve the accuracy of human fall detection. The proposed system
uses a variety of different neural network models to learn a low-resource and high-accuracy
algorithm. The system provides the users with a convenient management interface program so that
the management staff can quickly and efficiently handle accidental situations. The experimental
results have demonstrated that the accuracy of fall detection can be up to 98%.

At present, artificial intelligence is widely used to facilitate systems that require large amounts
of data and noise processing. Still, the model architecture often requires too many resources to be
written into the microcontroller, such as the LSTM algorithm used in this research. In the future,
if the processing resources of the hardware microcontroller become sufficient, artificial intelligence
can be effectively applied to various signal-related systems.
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