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ABSTRACT

Diabetes is a burning issue in the whole world. It is the imbalance between body glucose and insulin. The study
of this imbalance is very much needed from a research point of view. For this reason, Bergman gave an important
model named-Bergman minimal model. In the present work, using Caputo-Fabrizio (CF) fractional derivative, we
generalize Bergman’s minimal blood glucose-insulin model. Further, we modify the old model by including one
more component known as diet D(t), which is also essential for the blood glucose model. We solve the modified
modelwith the help of Sumudu transformandfixed-point iteration procedures. Also, using the fixed point theorem,
we examine the existence and uniqueness of the results along with their numerical and graphical representation.
Furthermore, the comparison between the values of parameters obtained by calculating different values of t with
experimental data is also studied. Finally, we draw the graphs of G(t),X(t), I(t), andD(t) for different values of τ .
It is also clear from the obtained results and their graphical representation that the obtained results of modified
Bergman’s minimal model are better than Bergman’s model.
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1 Introduction

These days, Mathematical modeling is turning out to be a vital tool in mathematical science.
Since it translates real-world problems into mathematical language and after applying the neces-
sary methods, we again translate the results into real-world languages to forecast the objective.
In every field, modeling is being used to achieve or predict the future prospective. In recent
years, modeling is being used with another important but less interactive field of mathematics—
Fractional Calculus (see [1–8]). We have studied several problems and their solutions by ordinary
calculus methods, but sometimes fractional calculus gives us better results to describe the model
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than the old one. Fractional calculus has several real-world applications. A few of them are
Fractional conservation of mass, Groundwater flow problem, Time-space fractional diffusion equa-
tion models, Acoustical wave equations, Fractional Schrdinger equation in quantum theory, etc.
(see [9–22]).

Nowadays, diabetes is turning out to be a fatal disease. The imbalance between body glucose
and insulin causes diabetes. It is categorized into two types. Type-I diabetes is more severe than
Type-II. According to a survey, Type-I and Type-II diabetes sufferers are one ratio nine. So, the
study of this imbalance was very much needed from a research point of view. For this reason,
Bergman gave an important model named-Bergman minimal model (see [23–27]).

Riemann-Liouville and Caputo introduced the initial concept of fractional calculus. But they
use a singular kernel in their definition. However, Caputo and Fabrizio recently found specific
systems related to material heterogeneities that cannot be well connected with Riemann-Liouville
or Caputo derivative. Because of that, Caputo and Fabrizio introduced a new fractional derivative
operator involving a non-singular kernel. Due to its memory and non-singularity property, this
operator is used to study different models of engineering, science, and bio-mathematical fields.
In general, we get more reliable results while using this operator than others for more details of
applications of Caputo-Fabrizio derivative (see [28–45]).

Apart from changing the model to fractional-order, we also include the Diet factor in the
model that describes the effect of meals on the glucose level. The generalize of Bergman’s minimal
blood glucose-insulin model gives us a more precise and detailed prediction about the problem.

1.1 The Caputo-Fabrizio Fractional Differential Operator [46–48]

Definition 1: Suppose h ∈H1(a1, b1), b1 > a1, β ∈ [0, 1] hence the Caputo-Fabrizio differential
coefficient of fractional order:

Dβ
t (h(t))= M(β)

(1−β)

∫ t

a
h′ (x) e

[
−β t−x

1−β

]
dx, (1)

M(β) is function of normalization such as M(0)=M(1)= 1.

If, h /∈H1(a1, b1), then the derivative is

Dβ
t (h(t))= N(σ )

σ

∫ t

a
h′ (x) e[−

t−x
σ ] dx, N(0)=N(∞)= 1, (2)

also,

lim
σ→0

1
σ
e

[
− t−x

1−β

]
= δ(x− t). (3)

One thing is to be noted here that the Caputo-Fabrizio operator has an exponent differential
coefficient. We know that the exponential function has no singularity which, means the derivative
exists at every point of the territory. So CF operator gives better results in its domain, see [49–56].

Definition 2: The fractional integral of the function h(t) of order β (0< β < 1), is

Itβ (h(t))= 2 (1−β)

(2−β)M (β)
h (t)+ 2β

(2−β)M (β)

∫ t

0
h(s)ds, t≥ 0. (4)
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Remark 1: From the above equation, we conclude that the fractional integral of order β

(0< β < 1), is the mean of h and its anti-derivative. So Nieto et al. gave this condition,

2 (1−β)

(2−β)M (β)
+ 2β

(2−β)M (β)
= 1. (5)

M (β)= 2
(2−β)

, 0< β < 1.

Based on the above relation, Nieto and Losada defined the following operator;

CF
0 Dβ

t (h(t))= 1
(1−β)

∫ t

a1
h′ (x) e

[
−β t−x

1−β

]
dx. (6)

1.2 Sumudu Transform of Caputo-Fabrizio Operator [57,58]
Suppose f (t) be a function whose Caputo-Fabrizio derivative occurs, hence the Sumudu

Transform of Caputo-Fabrizio fractional differential coefficient of f(t) is defined below:

ST
(
CF
0 Dβ

t

)
( f (t))=M(β)

[
ST( f (t))− f (0)

1−β +βu

]
(7)

The whole paper is divided into six sections. Section first introduces fractional calculus and
mathematical modeling with its brief history. The second section describes the Bergman model’s
fractional exponent and an overview of the fractional modified minimal model. The third section
discusses the existence and uniqueness of the modified mathematical model with the help of the
Caputo-Fabrizio operator. Section 4 is devoted to the solution of the model by using the Sumudu
Transform operator. Section 5 deals with numerical solutions along with graphical representations
of the modified Bergman model. In section 6, we have concluded our findings.

2 Mathematical Model

2.1 Bergman Model of Fractional Order
Here, we are going to discuss the Bergman model of fractional order. In this model, we

consider a glucose chamber and plasma insulin which is inherent to carry out across the isolated
chamber to control the final glucose intake. This model, asserts that this is good to satisfy specific
validation criteria with minimum parameters. This system is efficient in describing the gesture of
interactivity of blood sugar and insulin. In the presented model, we suppose that G(t) is the
imbalance of plasma glucose cluster and I(t) is the free plasma insulin cluster, from their initial
values. The model was

dαG(t)
dtα

=− (p1+X(t))G(t)+ p1Gb, 0< α < 1 (8)

dβX(t)
dtβ

=−p2X(t)+ p3 (I (t)− Ib) , 0< β < 1 (9)

dγ I(t)
dtγ

= p6 (G(t)− p5)
+ t− p4 (I (t)− Ib) , 0< γ < 1 (10)

with starting conditions G(0)=G0, X(0)=X0, and I(0)= I0.
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2.2 Overview of Fractional Modified Minimal Model
Here, we redefined the structure of the previous model. We made some changes in the model

and added few parameters. As we have, ‘Diet’ having significant effect on the glucose level. Now
the changed structured Bergman modified system has been described in the following equations-
CF
0 Dτ

t G(t)=−(p1+X(t))G(t)+D(t)−X(t)Gb, (11)

CF
0 Dτ

t X(t)=−p2X(t)+ p3I(t), (12)

CF
0 Dτ

t I(t)=−n[I(t)+ Ib]+
u(t)
V1

, (13)

CF
0 Dτ

t D(t)=−kD(t). (14)

Here one thing is to be noted that 0< τ ≤ 1 and initial restrictions are, G(0)=G0, X(0)=X0,
I(0)= I0 and D(0)=D0.

This model can be a tool in search of an artificial pancreas. But, unfortunately, it also adopts
the problems with the glucose-minimal model. Here, G(t)—blood glucose cluster, X(t)—aftermath
of effective insulin, I(t)—blood insulin cluster, D(t)—infusion of exogenous glucose, u(t)—insulin
distribution function, Gb—initial blood glucose cluster, Ib—initial blood insulin cluster, V1—
insulin issuance volume, n—fractional fading rate of insulin, p1—insulin free glucose dispensation
rate, p2—active insulin dispensation rate and p3—the increase in absorption capacity caused by
insulin.

3 Existence of the Solutions of Described Model

3.1 Theorem 1
Define K1, K2, K3, K4 and their relations with variables.

Proof: Since the system is
CF
0 Dτ

t G(t)=−(p1+X(t))G(t)+D(t)−X(t)Gb, (15)

CF
0 Dτ

t X(t)=−p2X(t)+ p3I(t), (16)

CF
0 Dτ

t I(t)=−n[I(t)+ Ib]+
u(t)
V1

, (17)

CF
0 Dτ

t D(t)=−kD(t). (18)

Here one thing is to be noted that 0< τ ≤ 1. Then converting the above system into a system
of integral equations

G(t)−G(0)= CF
0 Iτ

t [−(p1+X(t))G(t)+D(t)−X(t)Gb], (19)

X(t)−X(0)= CF
0 Iτ

t [−p2X(t)+ p3I(t)], (20)

I(t)− I(0)= CF
0 Iτ

t

[
−n[I(t)+ Ib]+

u(t)
V1

]
, (21)

D(t)−D(0)= CF
0 Iτ

t [−kD(t)]. (22)
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Then by definition stated by Nieto, we get

G(t)=G(0)+ 2(1− τ )

(2− τ )M(τ )
[−(p1+X(t))G(t)+D(t)−X(t)Gb ]

+ 2τ
(2− τ )M(τ )

∫ t

0
[−(p1+X(s))G(s)+D(s)−X(s)Gb] ds, (23)

X(t)=X(0)+ 2(1− τ )

(2− τ )M(τ )
[−p2X(t)+ p3I(t)]+ 2τ

(2− τ )M(τ )

∫ t

0
[−p2X(s)+ p3I(s)] ds, (24)

I(t)= I(0)+ 2(1− τ )

(2− τ )M(τ )
[−n[I(t)+ Ib]+

u(t)
V1

]+ 2τ
(2− τ )M(τ )

∫ t

0

[
−n[I(s)+ Ib]+

u(s)
V1

]
ds, (25)

D(t)=D(0)+ 2(1− τ )

(2− τ )M(τ )
[−kD(t)]+ 2τ

(2− τ )M(τ )

∫ t

0
[−kD(s)] ds. (26)

Now let us suppose the kernels are given as

K1(t, G)=−(p1+X(t))G(t)+D(t)−X(t)Gb ,

K2(t, X)=−p2X(t)+ p3I(t),

K3(t, I)=−n[I(t)+ Ib]+
u(t)
V1

,

K4(t, D)=−kD(t).

3.2 Theorem 2
Show that K1, K2, K3 and K4 satisfies the Lipchitz condition.

Proof: At first, we shall show this for K1. Suppose G and G1 are any functions, so

‖K1(t, G)−K1(t, G1)‖ = ‖−(p1+X(t))G(t)+ (p1 +X(t))G1(t)‖
= ‖p1+X(t)‖‖G(t)−G1(t)‖

‖K1(t, G)−K1(t, G1)‖ ≤H ‖G(t)−G1(t)‖ , where ‖p1+X(t)‖ ≤H < 1.

Similarly, we can have

‖K2(t, X)−K2(t, X1)‖ ≤H1 ‖X(t)−X1(t)‖ , where ‖p2‖ ≤H1 < 1.

‖K3(t, I)−K3(t, I1)‖ ≤H2 ‖I(t)− I1(t)‖ , where ‖n‖ ≤H2 < 1.

and

‖K4(t, D)−K4(t, D1)‖ ≤H3 ‖D(t)−D1(t)‖ where ‖k‖ ≤H3 < 1.

Now consider the recursive formula

Gn(t)= 2(1− τ )

(2− τ )M(τ )
K1(t, Gn−1)+ 2τ

(2− τ )M(τ )

∫ t

0
K1(s, Gn−1)ds, (27)

Xn(t)= 2(1− τ )

(2− τ )M(τ )
K2(t, Xn−1)+ 2τ

(2− τ )M(τ )

∫ t

0
K2(s, Xn−1)ds, (28)
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In(t)= 2(1− τ )

(2− τ )M(τ )
K3(t, In−1)+ 2τ

(2− τ )M(τ )

∫ t

0
K3(s, In−1)ds, (29)

Dn(t)= 2(1− τ )

(2− τ )M(τ )
K4(t, Dn−1)+ 2τ

(2− τ )M(τ )

∫ t

0
K4(s, Dn−1)ds, (30)

Now suppose that the deviation amid two successive terms is

Un(t)=Gn(t)−Gn−1(t)

= 2(1− τ )

(2− τ )M(τ )
K1(t, Gn−1)+ 2τ

(2− τ )M(τ )

∫ t

0
K1(s, Gn−1)ds

− 2(1− τ )

(2− τ )M(τ )
K1(t, Gn−2)− 2τ

(2− τ )M(τ )

∫ t

0
K1(s, Gn−2)ds, (31)

Un(t)= 2(1− τ )

(2− τ )M(τ )
K1(t, Gn−1)− 2(1− τ )

(2− τ )M(τ )
K1(t, Gn−2)

+ 2τ
(2− τ )M(τ )

∫ t

0
{K1(s, Gn−1)−K1(s, Gn−2)}ds. (32)

Now

‖Un(t)‖ = ‖Gn(t)−Gn−1(t)‖

=
∥∥∥∥ 2(1− τ )

(2− τ )M(τ )
K1 (t,Gn−1)− 2(1− τ )

(2− τ )M(τ )
K1(t, Gn−2)

+ 2τ
(2− τ )M(τ )

∫ t

0
{K1(s, Gn−1)−K1(s, Gn−2)}ds

∥∥∥∥ ,

≤ 2(1− τ )

(2− τ )M(τ )
‖K1(t, Gn−1)−K1(t, Gn−2)‖

+ 2τ
(2− τ )M(τ )

∥∥∥∥
∫ t

0
{K1(s, Gn−1)−K1(s, Gn−2)}ds

∥∥∥∥ . (33)

But K1 satisfies Lipchitz condition so,

‖Un(t)‖ ≤ 2(1− τ )

(2− τ )M(τ )
H ‖Gn−1−Gn−2‖+ 2τ

(2− τ )M(τ )
K

∫ t

0
‖Gn−1−Gn−2‖ ds. (34)

Similarly, we have

‖Vn(t)‖ ≤ 2(1− τ )

(2− τ )M(τ )
H1 ‖Xn−1−Xn−2‖+ 2τ

(2− τ )M(τ )
J1

∫ t

0
‖Xn−1−Xn−2‖ ds, (35)
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‖Wn(t)‖ ≤ 2(1− τ )

(2− τ )M(τ )
H2 ‖In−1− In−2‖+ 2τ

(2− τ )M(τ )
J2

∫ t

0
‖In−1 − In−2‖ ds, (36)

‖Tn(t)‖ ≤ 2(1− τ )

(2− τ )M(τ )
H3 ‖Dn−1−Dn−2‖+ 2τ

(2− τ )M(τ )
J3

∫ t

0
‖Dn−1 −Dn−2‖ ds. (37)

3.3 Theorem 3
Establish that Bergman Minimal Model with Fractional-order is a minimum system of sugar

insulin dynamics.

Proof: Using the recursive technique, we have

‖Un(t)‖ ≤ ‖G(0)‖+
{

2(1− τ )H
(2− τ )M(τ )

}n
+

{
2τKt

(2− τ )M(τ )

}n
(38)

‖Vn(t)‖ ≤ ‖X(0)‖+
{

2(1− τ )H1

(2− τ )M(τ )

}n
+

{
2τJ1t

(2− τ )M(τ )

}n
(39)

‖Wn(t)‖ ≤ ‖I(0)‖+
{

2(1− τ )H2

(2− τ )M(τ )

}n
+

{
2τJ2t

(2− τ )M(τ )

}n
(40)

‖Tn(t)‖ ≤ ‖D(0)‖+
{

2(1− τ )H3

(2− τ )M(τ )

}n
+

{
2τJ3t

(2− τ )M(τ )

}n
(41)

Hence the existence of results is verified, which is continuous too. Now we get

G(t)=Gn(t)+Pn(t),

X(t)=Xn(t)+Qn(t),

I(t)= In(t)+Rn(t),

D(t)=Dn(t)+Sn(t),

where Pn, Qn, Rn and Sn are residues of series solution.

So,

G(t)−Gn(t)= 2(1− τ )

(2− τ )M(τ )
K1(t, Gn)+ 2τ

(2− τ )M(τ )

∫ t

0
K1(s, Gn)ds,

G(t)−Gn(t)= 2(1− τ )

(2− τ )M(τ )
K1(t, G−Pn(t))+ 2τ

(2− τ )M(τ )

∫ t

0
K1(s, G−Pn(s))ds.

Similarly, we have

X(t)−Xn(t)= 2(1− τ )

(2− τ )M(τ )
K2(t, X −Qn(t))+ 2τ

(2− τ )M(τ )

∫ t

0
K2(s, X −Qn(s))ds,

I(t)− In(t)= 2(1− τ )

(2− τ )M(τ )
K3(t, I −Rn(t))+ 2τ

(2− τ )M(τ )

∫ t

0
K3(s, I −Rn(s))ds,



1254 CMES, 2021, vol.128, no.3

D(t)−Dn(t)= 2(1− τ )

(2− τ )M(τ )
K4(t, D−Sn(t))+ 2τ

(2− τ )M(τ )

∫ t

0
K4(s, D−Sn(s))ds.

From the above, it is clear that,

G(t)−Gn(t)= 2(1− τ )

(2− τ )M(τ )
K1(t, G−Pn(t))+ 2τ

(2− τ )M(τ )

∫ t

0
K1(s, G−Pn(s))ds,

G(t)−G(0)− 2(1− τ )K1(t, G)

(2− τ )M(τ )
− 2τ

(2− τ )M(τ )

∫ t

0
K1(s, G)ds

=Pn(t)+ 2(1− τ )K1(t, G−Pn(t))
(2− τ )M(τ )

+ 2τ
(2− τ )M(τ )

∫ t

0
K1(s, G−Pn(s))ds.

Now,∥∥∥∥G(t)− 2(1− τ )K1(t, G)

(2− τ )M(τ )
−G(0)− 2τ

(2− τ )M(τ )

∫ t

0
K1(s, G)ds

∥∥∥∥
≤‖Pn(t)‖+

{
2(1− τ )H

(2− τ )M(τ )
+ 2τ

(2− τ )M(τ )
Kt

}
‖Pn(t)‖ , (42)

∥∥∥∥X(t)− 2(1− τ )K2(t, X)

(2− τ )M(τ )
−X(0)− 2τ

(2− τ )M(τ )

∫ t

0
K2(s, X)ds

∥∥∥∥
≤‖Qn(t)‖+

{
2(1− τ )H1

(2− τ )M(τ )
+ 2τ

(2− τ )M(τ )
J1t

}
‖Qn(t)‖ , (43)

∥∥∥∥I(t)− 2(1− τ )K3(t, I)
(2− τ )M(τ )

− I(0)− 2τ
(2− τ )M(τ )

∫ t

0
K3(s, I)ds

∥∥∥∥
≤‖Rn(t)‖+

{
2(1− τ )H2

(2− τ )M(τ )
+ 2τ

(2− τ )M(τ )
J2t

}
‖Rn(t)‖ , (44)

∥∥∥∥D(t)− 2(1− τ )K4(t, D)

(2− τ )M(τ )
−D(0)− 2τ

(2− τ )M(τ )

∫ t

0
K4(s, D)ds

∥∥∥∥
≤‖Tn(t)‖+

{
2(1− τ )H3

(2− τ )M(τ )
+ 2τ

(2− τ )M(τ )
J3t

}
‖Tn(t)‖ . (45)

Now taking n→∞ we have

G(t)=G(0)+ 2(1− τ )K1(t, G)

(2− τ )M(τ )
+ 2τ

(2− τ )M(τ )

∫ t

0
K1(s, G)ds, (46)

X(t)=X(0)+ 2(1− τ )K2(t, X)

(2− τ )M(τ )
+ 2τ

(2− τ )M(τ )

∫ t

0
K2(s, X)ds, (47)
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I(t)= I(0)+ 2(1− τ )K3(t, I)
(2− τ )M(τ )

+ 2τ
(2− τ )M(τ )

∫ t

0
K3(s, I)ds, (48)

D(t)=D(0)+ 2(1− τ )K4(t, D)

(2− τ )M(τ )
+ 2τ

(2− τ )M(τ )

∫ t

0
K4(s, D)ds. (49)

On behalf of the above equations, we can state that the solution of the system exists.

3.4 The Uniqueness of Result
To show the uniqueness of results, we suppose that other sets of results exist for the system

specified from Eqs. (46) to (49) such that

G (t)−G1 (t)= 2 (1− τ )

M (τ ) (2− τ )
[K1(t, G)−K1(t, G1)]

+ 2 (τ )

M (τ ) (2− τ)

∫ t

0
[K1(s, G)−K1(s, G1)] ds, (50)

taking norm both sides, we get

‖G−G1‖ = 2 (1− τ )

M (τ ) (2− τ )
[‖K1(t, G)−K1(t, G1)‖]

+ 2 (τ )

M (τ ) (2− τ )

∫ t

0
[‖K1(s, G)−K1(s, G1)‖] ds, (51)

using Lipchitz condition, we obtain

‖G−G1‖<
2 (1− τ )

M (τ ) (2− τ )
HD+

(
2 (τ )

M (τ ) (2− τ )
J1Dt

)n

, (52)

which is valid for all n, so

G=G1, (53)

similarly

X =X1, I = I1, and D=D1. (54)

Hence, it claims uniqueness of the system.

4 Result of the Model by Using Sumudu Transform

Considering the system has various equations so it can be challenging to find the exact results.
For this, we will adopt the iterative technique together with the Sumudu Transform. Now take
Sumudu Transform either sides, side of Eq. (15)

ST(CF0 Dτ
t )(G(t))= ST {−(p1+X(t))G(t)+D(t)−X(t)Gb},

or

ST(G(t))=G(0)+ (1− τ + τu)
M(τ )

ST {−(p1+X(t))G(t)+D(t)−X(t)Gb}.
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At this moment, take inverse Sumudu Transform on both ends, we have-

G(t)=G(0)+ST−1
[
(1− τ + τu)

M(τ )
ST {−(p1+X(t))G(t)+D(t)−X(t)Gb}

]
(55)

Similarly, we have from Eqs. (16)–(18)

X(t)=X(0)+ST−1
[
(1− τ + τu)

M(τ )
ST {−p2X(t)+ p3I(t)}

]
(56)

I(t)= I(0)+ST−1
[
(1− τ + τu)

M(τ )
ST

{
−n(I(t)+ Ib)+

u(t)
V1

}]
(57)

D(t)=D(0)+ST−1
[
(1− τ + τu)

M(τ )
ST {−kD(t)}

]
(58)

Then we get the following recurrent form from the above

Gn+1(t)=Gn(0)+ST−1
[
(1− τ + τu)

M(τ )
ST {− (p1+Xn(t))Gn(t)+Dn(t)−Xn(t)Gb}

]
(59)

Xn+1(t)=Xn(0)+ST−1
[
(1− τ + τu)

M(τ )
ST {−p2Xn(t)+ p3In(t)}

]
(60)

In+1(t)= In(0)+ST−1
[
(1− τ + τu)

M(τ )
ST

{
−n (In(t)+ Ib)+

u(t)
V1

}]
(61)

Dn+1(t)=Dn(0)+ST−1
[
(1− τ + τu)

M(τ )
ST {−kDn(t)}

]
(62)

The result is obtained by

G(t)= lim
n→∞Gn(t),

X(t)= lim
n→∞Xn(t),

I(t)= lim
n→∞ In(t),

and

D(t)= lim
n→∞Dn(t).

5 Numerical Solution

For numerical solution, we use the values given below by the experiment defined in [59,60].

Table 1: Table with initial value and parameters

Parameter Value

G0 287 mg/dL

(Continued)
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Table 1 (continued)

Parameter Value

X0 0
I0 241 mu/L
D0 9 mg/dL
Gb 92 mg/dL
Ib 7.3 mu/L
p1 0.01572
p2 0.01301
p3 0.4031× 10−5

n 0.3606/min.
k 0.05

Table 2: Comparison between the values of G for different values of t with experimental data

Time G(tau= 1) G(tau= 0.95) G(tau= 0.7) Exp. |Exp.−G(tau= 1)| |Exp.−G(tau= 0.95)| |Exp.−G(tau= 0.7)|
0 287 287 287 92 195 195 195
4 279.35 279.35 279.36 287 7.65 7.65 7.64
6 275.64 275.71 275.72 251 24.64 24.71 24.72
12 264.71 265.09 265.03 211 53.71 54.09 54.03
18 253.51 253.61 253.41 193 60.51 60.61 60.41
30 224.75 209.89 210.07 149 75.75 60.89 61.07
36 201.98 154.15 156.87 133 68.98 21.15 23.87
38 192.10 124.69 129.23 130 62.1 5.31 0.77

Table 3: Comparison between the values of I for different values of t with experimental data

Time I(tau= 1) I(tau= 0.95) I(tau= 0.7) Exp. |Exp.− I(tau= 1)| |Exp.− I(tau= 0.95)| |Exp.− I(tau= 0.7)|
0 241 238.74 225.17 11 230 227.74 214.17
4 117.17 117.06 121.96 130 12.83 12.94 8.04
6 81.70 81.97 89.76 85 3.30 3.03 4.76
10 39.72 40.20 48.66 49 9.27 8.80 0.34
14 19.44 19.91 27.11 41 21.56 21.09 13.89
18 11.38 12.36 21.19 32 20.62 19.64 10.81
19 11.40 12.83 23.42 30 18.59 17.17 6.56
20 12.74 14.88 28.19 30 17.26 15.12 1.81

By using the above-defined values, we can easily determine the numerical results for the
defined model. In that analysis, we found the numerical result by using the sumudu transform. We
found the result for some different τ values and formed a table that shows the comparison of the
obtained result with the experimental data (see Tab. 1). In Tab. 2, we discussed G, and in Tab. 3,
we discussed I and found from these analyses that the fractional model gives less error than the
integer model. We also drew four figures to show the numerical outcomes. In Fig. 1 we showed
the values of G at different values of τ , i.e., τ = 1, τ = 0.95, τ = 0.9, τ = 0.8, and τ = 0.7. In
Fig. 2, we showed the values of I at different values of τ . In the same way, we drew the Figs. 3
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and 4 to show the numerical results of X and D at different values of τ . From the numerical
outcome, it is clear that the diet is an essential component of glucose level.

Figure 1: Graph of blood glucose cluster (G) with respect to time t for different values of τ

Figure 2: Graph of blood insulin cluster (I) with respect to time t for different values of τ

Furthermore, it has been observed from Tabs. 2 and 3, that the values obtained for G and I
with linear order have more error than fractional order. So we can see that the fractional model
with Caputo-Fabrizio operator gives better results in contrast to linear model, and our model
defined the real-world problem in a better manner.
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Figure 3: Graph of aftermath of effective insulin (X) with respect to time t for different values
of τ

Figure 4: Graph of infusion of exogenous glucose (D) with respect to time t for different values
of τ

6 Conclusion

The presented work strives to explain the presence and oneness of the Modified Bergman
Minimal Model that is stretched out by Caputo-Fabrizio fractional differential coefficient in the
frame of reference of sugar and insulin quantity in blood. From the obtained results, it is clear
that the fractional model error reduces compared to integer order. Thus, we get nearby results
of a set-up that displays the aftermath of time on the concentrations G(t), X(t), I(t), and D(t).
As in future work, we can generalize the model or compare the results using various differential
operators.
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