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ABSTRACT

This paper proposes a new element-based multi-material topology optimization algorithm using a single variable
for minimizing compliance subject to a mass constraint. A single variable based on the normalized elemental
density is used to overcome the occurrence of meaningless design variables and save computational cost. Different
from the traditional material penalization scheme, the algorithm is established on the ordered ersatz material
model, which linearly interpolates Young’smodulus for relaxed design variables. To achieve amulti-material design,
the multiple floating projection constraints are adopted to gradually push elemental design variables to multiple
discrete values. For the convergent element-based solution, the multiple level-set functions are constructed to
tentatively extract the smooth interface between two adjacent materials. Some 2D and 3D numerical examples
are presented to demonstrate the effectiveness of the proposed algorithm and the possible advantage of the
multi-material designs over the traditional solid-void designs.
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1 Introduction

Topology optimization aims at finding optimal material distribution within the prescribed
design domain and achieving the best performance of the structure. Since the seminar paper
of Bendsøe et al. [1] in 1988, several topology optimization methods have been developed,
including the homogenization method [2,3], the solid isotropic material with penalization (SIMP)
method [4,5], the level-set method (LSM) [6–8], the bi-directional evolutionary structural opti-
mization (BESO) [9–12]. With the recent development of additive manufacturing, multi-material
structures can be comfortably fabricated and play an important role in practical engineering appli-
cations. The multi-material topology optimization has attracted increasing attention for designing
lightweight structures.
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Multi-material topology optimization traditionally seeks the best distributions of materials
under multiple volume constraints so that the objective performance of the resulting multi-
material structure is optimal. Sigmund et al. [13] and Bendsoe et al. [5] proposed a mixture
rule of the multi-material model to characterize the distributions of materials in the SIMP
framework. For instance, the three-material model containing two solid and one void materials
can be described as Ee(ρ1e,ρ2e) = ρP1e[ρ

P
2eE1+ (1−ρP2e)E2] for element e, where E1 and E2 are

Young’s modulus of two solid materials and ρ1e and ρ2e are artificial densities of element e.
P is the penalty exponent. Naturally, all M-phase materials can be identified by total (M− 1)
design variables and each material is generally restricted by the corresponding volume constraint
[14–17]. In the level-set method, Wang et al. [18] introduced a “color” level set approach for
multi-material topology optimization under multiple volume constraints and the subdomain of the

k-th material is characterized as χk(Φ(x))=∏m
i=1H

Iki
i , where Φ(x)= [�1(x), . . . ,�i(x), . . . ,�m(x)]

is the vector of level set functions and Hi is the Heaviside function related to Φi(x). Iki is

used as an index (0 or 1) and H1
i = H(�i), H0

i = 1−H(�i). It indicates that only m level set
functions are used to represent total of 2m-phases by the “color” level set method [18,19]. Besides,
Huang et al. [20] extended the BESO method for achieving an optimal solution of multi-material
structures, and the proposed method is further applied to the topological design of multi-material
microstructures under multiple volume constraints [21–25]. Zhang et al. [26] proposed the moving
morphable component (MMC) method to solve the multi-material topology optimization problem
under multiple volume constraints using much fewer design variables and degrees of freedom.
Other approaches have also been developed to solve the multi-material topology optimization
problem, such as the phase-field method [27], the alternating active-phase algorithm [28,29], the
bi-level hierarchical optimization method [30], the piecewise constant level set method [31,32] and
the multi-material level set (MMLS) topology description [33]. The above multi-material topology
optimization methods considered multiple material volume constraints, commonly called resource
constraints.

In practical engineering applications, the total weight of a structure may be more concerned.
This is a lightweight design, where the total mass should be reasonably adopted as a constraint
or objective function for a multi-material design. However, when a single mass function is imple-
mented with multiple design variables, some meaningless combinations of multiple design variables
may occur and further bring some numerical difficulties for multi-material topology optimization.
Yin et al. [34] introduced the peak function with SIMP method for the multi-material design
using a single variable, but the horizontal zero slope of the peak function model has potential
difficulties in numerical calculations. Gao et al. [35,36] developed a uniform multiphase materi-
als interpolation (UMMI) scheme using multiple design variables. For example, a three-material
UMMI model containing two solid and one void materials can be described by Ee(ρ1e,ρ2e) =
ρP1e(1−ρP2e)E1 + ρP2e(1−ρP1e)E2. The meaningless combination of two variables, i.e., ρ1e = ρ2e = 1,
an be possibly avoided, supposed that the penalty exponent P is large enough. The work also
demonstrated that the multi-material topology optimization under a mass constraint might have
multiple solutions. Zuo et al. [37] proposed an ordered SIMP interpolation using a single variable
for solving multi-material topology optimization problems subject to a mass constraint and an
additional cost constraint. Yang et al. [38] developed a BESO algorithm to find the optimal
distributions of multi-materials under the total mass constraint by solving a series of two-material
sub-problems.
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The multi-material topology optimization using a single variable has an obvious advantage in
saving computational cost [37]. However, the nonlinearity of the ordered-SIMP model could result
in a local optimum as demonstrated in our late examples. Using the linear ordered-ersatz material
model, this paper will develop a new multi-material topology optimization algorithm using a
single variable based on the floating projection topology optimization (FPTO) method [39,40].
The FPTO method belongs to the element-based approach, but the structural topology is formed
by the floating projection constraint, which simulates the 0/1 constraints of design variables. This
provides the possibility for multi-material topology optimization using an ordered ersatz material
model proposed in this paper. The remainder of this paper is organized as follows: Section
2 introduces the multi-material topology optimization problem and the ordered ersatz material
model. In Section 3, the multi-material topology optimization algorithm is developed. Some 2D
and 3D numerical examples are presented in Section 4 to verify the developed multi-material
topology optimization algorithm, as well as its various applications. Finally, some conclusions are
drawn in Section 5.

2 The Problem Statement and Material Model

2.1 Statement of the Topology Optimization Problem
Suppose that a multi-material structure is composed of M-phase materials within the design

domain, where void is also as one material. Ei and ρi are Young’s modulus and material density of
the ith candidate material. Those candidate materials are sorted in the ascending order according
to their normalized densities (ρ1

N < . . . < ρiN < . . . < ρM
N ) as

ρiN = ρi/ρmax i= 1, . . . ,M (1)

where ρmax is the maximum density of all candidate materials, and the normalized Young’s
modulus of candidate materials is defined by EiN = Ei/EM. Topology optimization will build on
finite element analysis with the fixed mesh and the design domain is discretized by a certain
number of finite elements (e = 1, . . . ,NE) as shown in Fig. 1. Here, the normalized density xe
is considered as a single variable of element e and will be relaxed to attain any value between
xmin = 10−6 and 1. xe = ρiN means element e is full of the ith material. Thus, the total mass of a
multi-material structure, MT , can be expressed by

MT =
NE∑
e=1

(xeρmaxVe) (2)

where Ve denotes the total volume of element e. It can be seen that the elemental mass is linearly
related to the single variable, xe, which overcomes the occurrence of meaningless design variables
using multiple design variables.

When the design domain is made up of multiple materials, as shown in Fig. 1. �=�1∪�2∪
�3 denotes the whole design domain in R2 or R3 and �i denotes the domain of material i. The
topology optimization problem for minimizing the compliance of a multi-material structure can
be stated by
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⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

min
x
C = FTu

s.b. K(x)u= F
MT ≤ M̄T⎧⎨
⎩
xe = ρiN when xe ∈�i

xe = ρi−1
N when xe ∈�i−1

ρi−1
N < xe < ρiN when xe ∈ ∂�i−1,i

i= 1, . . . ,M

(3)

where x= {x1, . . . ,xe, . . . ,xNE} is the vector of design variables. K, u and F are the global stiffness
matrix, nodal displacement vector and force vector, respectively. M̄T is the constrained value of
the total mass of the multi-material structure. To mathematically solve the above quasi-discrete
topology optimization problem defined in Eq. (3), the elemental design variable, xe, is relaxed and
assumed to attain any value between xmin and 1 and its material property is interpolated according
to the following ordered ersatz material model.

Figure 1: Schematic illustration of the three-material design with the smooth boundary under the
fixed-mesh finite element analysis

2.2 Ordered Ersatz Material Model
For an element with the normalized density xe, it is necessary to define its material property,

such as Young’s modulus, for conducting the finite element analysis. In the traditional topology
optimization method such as SIMP [14–17], the formation of structural topology traditionally
originates from material penalization. Differently, the FPTO method [39,40] generates structural
topology by employing the implicit floating projection constraint, which simulates the 0/1 con-
straints of design variables. Thus, the material interpolation can use the linear model, e.g., the
ersatz material model. In the multi-material design, the ordered ersatz material model is proposed
here. Considering that all candidate materials are well-ordered, i.e., E1

N < . . . <EiN < . . . <EM
N = 1,

the ordered ersatz material model is depicted as Fig. 2a. For an elemental design variable, ρi−1
N ≤

xe ≤ ρiN , Young’s modulus of element e can be linearly interpolated by

ENe (xe)=Ei−1
N + xe−ρi−1

N

ρiN −ρi−1
N

(
EiN −Ei−1

N

)
(4)
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where EiN and Ei−1
N are the normalized Young’s modulus of the candidate material i and i− 1,

respectively. Thus, the elemental stiffness matrix is expressed by

ke(xe)=ENe (xe)k1e (5)

where k1e denotes the stiffness matrix of element e when fully filling with the heaviest material.

Figure 2: (a) Schematic diagram of the ordered ersatz material model containing three adjacent
materials and (b) its linear transition scheme of the derivative near the point (ρ iN ,E

i
N ) in Fig. 2a

However, such an ordered ersatz material model becomes non-differentiable at points, xe = ρiN
as depicted by the red lines in Fig. 2b. To overcome this difficulty, a linear transition is assumed
that the derivative continuously varies around those abrupt points as the blue line shown in
Fig. 2b:

∂ENe
∂xe

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

a= (EiN −Ei−1
N )

ρiN −ρi−1
N

when ρi−1
N ≤ xe ≤ (ρiN − γ )

b= (Ei+1
N −EiN)

ρi+1
N −ρiN

when (ρiN + γ )≤ xe ≤ ρi+1
N

a+ b− a
2γ

(xe−ρi−1
N ) when (ρiN + γ )≤ xe ≤ (ρiN + γ )

(6)

where γ = 0.02 is used in this paper. Thus, the derivative, ∂ENe
∂xe

, becomes continuous over the whole

range from xmin to 1.

3 Multi-Material Topology Optimization Algorithm

3.1 Update Scheme
To consider the mass constraint defined in Eq. (3), the objective function can be modified by

introducing a Lagrange multiplier as

min : f =C+	(MT − M̄T ) (7)
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where Λ ≥ 0. For the convenience of numerical implementation, the objective function can be
further modified by

min : f = (1−λ)C+λ(MT − M̄T ) (8)

where 0 ≤ λ ≤ 1 and therefore Eq. (8) is equivalent to Eq. (7) for the minimization operation.
Thus, the optimality criterion of the problem can be expressed by

∂f
∂xe

= (1−λ)
∂C
∂xe

+λ
∂MT

∂xe
= 0 (9)

where the sensitivity of the compliance can be easily derived by using the adjoint method.

∂C
∂xe

=−uT
∂K
∂xe

u=−uTe
∂ke
∂xe

ue =−∂ENe
∂xe

uTe k
1
eue (10)

According to Eq. (2), the sensitivity of the total mass fraction is straightforward

∂MT

∂xe
= ρmaxVe (11)

Meanwhile, the sensitivity of the compliance is averaged with its value in the previous iteration
to damp the update of the design variables

∂Cl

∂xe
=

∂Cl

∂xe
+ ∂Cl−1

∂xe

2
when l> 1 (12)

where l is the current iteration number.

The optimality criterion in Eq. (9) can be further expressed by

Al ≡ (1−λ)
∂Cl/∂xe
∂MT/∂xe

+λ = 0 (13)

Thus, the design variable of element e is updated by

x1,e = xl−1
e (1−Al) (14)

where the negative sign before Al denotes the search direction. It can be seen that x1,e = xl−1
e

when the optimality criterion is satisfied, i.e., Al = 0. To overcome the checkerboard pattern and
mesh-dependence problem [41], the heuristic density filter is employed, and the design variable is
then modified by

x2,e =
∑wje x1,e∑wje (15)

where the wje is the linear weight factor as

wje =
{
rmin− rje if rje < rmin
0 if rje ≥ rmin

(16)

where the rje is the distance between the jth element and the eth element. rmin is the specified
filter radius by the user.
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In the traditional solid/void topology optimization, the implicit floating projection constraint
simulates 0/1 constraints of design variables and further modifies the design variables after filter-
ing. In the multi-material design, all design variables should be constrained to the discrete values,
ρiN (i= 1, 2, · · · , M). Therefore, any design variables between ρiN and ρi+1

N are further modified by
the following Heaviside function.

xle = ρiN + (ρi+1
N −ρiN)

tanh(β · (thi−ρiN))+ tanh[β · (x2,e− thi)]

tanh(β · (thi−ρiN))+ tanh[β · ((ρi+1
N − thi)]

(17)

where β controls the steepness of the Heaviside function and thi is the ith threshold. Note that the
projected design variable, xle is between ρiN and ρi+1

N but may be close to ρiN or ρi+1
N depending

on the value of β. The threshold is determined by ensuring that the summation of x2,e between

ρiN and ρi+1
N equals to the summation of xle between ρiN and ρi+1

N . The projection function is

applied to any two adjacent materials, and xle is therefore updated by M− 1 projection functions.
Then, the move limit δ, the upper and lower bounds of the design variables are applied by xmin ≤
xl−1
e (1− δ) ≤ xle ≤ xl−1

e (1+ δ) ≤ 1. The Lagrange multiplier λ is determined by ensuring that the

design variables, xl = {xl1, · · · , xle, · · · ,xlNE
} satisfy the given mass constraint. This can be easily

accomplished by using the bi-section method.

With the increase of β, the design variables are gradually pushed towards ρ iN and a clear
multi-material topology is created. For the robustness of the algorithm, β starts from a small
positive value, e.g., 10−6, and increases with Δβ = 1. For a given β, the solution converges when
the variation of the objective function over the last 10 iterations is small enough, as defined by
the following equation.

ε =
∑Q

k=1 |Cl−k+1−Cl−Q−k+1|∑Q
k=1C

l−k+1
≤ 0.001 (18)

where ε is the allowable convergence tolerance and Q is set as 5. Meanwhile, the β will stop
increasing once the optimized result is close to a smooth design with a clear interface between
two adjacent materials, which will be explained in the next section.

3.2 Representation of a Solution with Smooth Interfaces between Two Adjacent Materials
Once the algorithm is convergent for a given β, we should check if the desired solution is

achieved. Similar to the FPTO method for a solid/void design [39,40], the resulting design variable
x is linearly interpolated into the whole design domain, x(x,y). The M− 1 level-set functions are
constructed for distinguishing the M-phase materials in the multi-material design. The ith level-set
function is defined to identify the interface or boundary between the ith and i + 1th materials.

φi(x,y)= x(x,y)− lsi for ρiN ≤ x(x,y)≤ ρi+1
N (19)

where lsi is the threshold, and the area or volume above and below the zero level-set can be
assumed as the heavier and lighter materials, respectively.⎧⎨
⎩

φi(x,y) > 0 for material i+ 1
φi(x,y)= 0 for the interface betweenmaterials i and i+ 1
φi(x,y) < 0 for material i

(20)
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The threshold, lsi, is determined by ensuring that the total mass of materials i and i+1
identified by this level-set function is equal to the summation of the design variables between
ρiN and ρi+1

N . Finally, we identify all interfaces between any two adjacent materials and thus the
whole design domain is divided into many regions representing the multiple materials, as depicted
in Fig. 1.

Obviously, the above level-set functions are purely based on imaging processing and the
resulting multi-material design may be far different from the element-based design expressed
by the design variables, x. To check the difference between the multi-material design and the
element-based design, we project the resulting multi-material design back to the fixed mesh and
re-calculate the density of each element. If an element is fully occupied by material i, the density
of the element is assigned with x̄e = ρiN . If an element is occupied by two adjacent materials, we
calculate the volume fractions of each material inside the element and then x̄e is assigned with
the homogenized density. According to the ordered ersatz material model, the compliance of the
multi-material design, C̄, is calculated by one additional finite element analysis. The difference
between the multi-material design and the element-based design can be measured by

τ =
∣∣∣∣∣
C− C̄
C

∣∣∣∣∣ (21)

where C denotes the compliance of the element-based design. If τ is larger than 0.01 which
means there is a large difference between the resulting multi-material design and the element-
based design, and β increases with Δβ for further optimization as described in the last section.
Otherwise, β keeps unchanged.

4 Results and Discussion

In this section, several 2D and 3D numerical examples are presented to demonstrate the
effectiveness of the proposed multi-material topology optimization algorithm. It is assumed that
Poisson’s ratio of all candidate materials is v = 0.3.

4.1 Multi-Material Cantilever Beam
As shown in Fig. 3, a typical cantilever beam composes of two solid materials (m1, m2) and

one void material. The design domain is discretized with 120× 80 four-node plane-stress elements.
A vertical concentrated force F = 10 kN is applied at the middle of the right side of the beam
and the left side is fully fixed. The material properties of the solid materials are E1 = 60 GPa,
ρ1 = 500 kg/m3, E2 = 100 GPa and ρ2 = 1000 kg/m3. The constraint of the total mass is M̄T =
6× 103 kg.

The optimized multi-material design is shown in Fig. 4a, whose compliance is 49.63 Nm, and
the volume fractions of m1 and m2 are 42.2% and 3.9%, respectively. It can be seen that the stiff
material (m2) appears around the concentrated load and the concerns of the fixed boundary to
resist high stresses. The optimized design is mainly composed of material 1 (m1) since its stiffness-
density ratio is higher than that of material 2. In order to verify the optimized multi-material
design, the traditional solid-void designs using m1 or m2 only are shown in Figs. 4b and 4c. The
compliances of those solid-void designs are 52.29 Nm and 59.41 Nm, respectively, while the total
mass of those designs is still 6× 103 kg. It well indicates that the multi-material design is better
than those of the traditional solid/void designs because the multiple materials expand the design
space.
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Figure 3: Design domain, dimensions and boundary condition of a cantilever

Figure 4: Comparison of the optimized designs where m1 and m2 are represented by blue and red
colors, respectively. (a) the multi-material design and its compliance is 49.63 Nm; (b) the solid-
void design using m1 and its compliance is 52.29 Nm; (c) the solid-void design using m2 and its
compliance is 59.41 Nm

Fig. 5 shows the iteration histories of the compliance, topology and β for the multi-material
design. Initially, the compliance stably decreases and achieves its minimum at iteration 66. How-
ever, the corresponding design contains a large volume of “grey” elements and the design variables
are far away from discrete values, 0, 0.5, or 1, as required in the problem. Thereafter, β increases
so that the corresponding floating projections simulate stricter discrete constraints of design
variables. As a result, design variables gradually aggregate to the specified discrete values and the
compliance increases due to such stricter constraints imposed to design variables. When β = 7,
a clear multi-material topology is formed. However, its compliance is still away from that of
the representative design and therefore β further increases. When β = 10, the compliance of
the element-based design is close enough to that of the smooth design (τ = 0.89%), and the
whole optimization is thus stopped with 219 iterations. Fig. 5 also indicates that the formation of
structural topology attributes to the increase of β, that is, the adoption of the floating projection
constraint.

4.2 Multi-Material Designs of a Simply Supported Beam
This example shows the multi-material design for a 2D beam as shown in Fig. 6 under the

total mass constraint, M̄T = 5.4× 103 kg. The design domain is discretized with total 120× 60
four-node plane-stress elements. Three concentrated forces are applied at the 1/4, 1/2 and 3/4 of
the bottom edge and F = 10 kN. The structure is assumed to be composed of three solid materials
(m1, m2 and m3) and their material properties are listed in Tab. 1. In the final design, those three
materials can be represented by blue, red and black colors, respectively.
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Figure 5: Iteration histories of the compliance, topology and β during the multi-material design
with M̄T = 6× 103 kg

Figure 6: Design domain, dimensions and boundary condition of a simply supported beam

Table 1: Material properties of three candidate materials

Material ρi (kg/m3) Ei (GPa) Color

m1 (solid) 400 50 Blue
m2 (solid) 700 80 Red
m3 (solid) 1000 100 Black

Under the given mass constraint, Fig. 7 shows the optimized results using the different
combination of candidate materials: (a) void, m1, m2 and m3; (b) void, m2 and m3; (c) void, m1
and m3; (d) void, m1 and m2; (e) void and m1; (f) void and m2; (g) void and m3. In Fig. 7a,
the compliance of the optimized design using all of the candidate materials is 193.32 Nm, which
is the lowest one compared with other designs. The stiff material (m3) mainly distributes near the
locations of concentrated forces and supports. The volume fraction of m1 is larger than that of
m2 and m3 because its stiffness-density ratio is the highest. In these designs composed by two
solid materials, as shown in Figs. 7b–7d, their corresponding compliances are 207.17 Nm, 195.49
Nm and 208.17 Nm, which are higher than that of the previous design. The compliances of the
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traditional solid/void designs shown in Figs. 7e–7g are 264.08 Nm, 221.63 Nm and 232.03 Nm,
respectively. Therefore, the compliance of the multi-material design in Fig. 7a has the minimum
compliance, which also indicates the advantage of optimally designing structures using multiple
materials and the effectiveness of the proposed multi-material topology optimization algorithm.

Figure 7: Optimized designs under M̄T = 5.4×103 kg. (a) the multi-material design using m1, m2,
and m3, and its compliance is 193.32 Nm; (b) the multi-material design using m2 and m3, and its
compliance is 207.17 Nm; (c) the multi-material design using m1 and m2, and its compliance is
195.49 Nm; (d) the multi-material design using m1 and m2, and its compliance is 208.17 Nm; (e)
the solid-void design using m1, and its compliance is 264.08 Nm; (f) the solid-void design using
m2, and its compliance is 221.63 Nm; (g) the solid-void design using m3, and its compliance is
232.03 Nm

Different from the ordered SIMP method, the structural topology is formed by the floating
projection constraint in the proposed multi-material topology optimization algorithm. For the
comparison, the above example is re-calculated using 100× 50 rectangular elements and F = 1,
which are the same to that in the reference [37]. The properties of the candidate materials are
listed in Tab. 2 and the constraint of the mass fraction (the ratio between the total mass and
its possible maximum) is 0.4. Fig. 8a shows the optimized result by the proposed multi-material
topology optimization algorithm and Fig. 8b is reproduced from the reference [37] by using the
ordered SIMP model. The compliance of the current design, 194.4, is much lower than that using
the ordered SIMP model, 217.2. It can be seen that the distributions and volumes of candidate
materials are totally different. This example further demonstrates the effectiveness of the proposed
algorithm, which could achieve a better solution compared with the existing order-SIMP method.
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Table 2: Material properties of three candidate materials in Section 5.1 of the reference [37]

Material ρi (kg/m3) Ei (GPa) Color

m1 (solid) 0.4 0.2 Blue
m2 (solid) 0.7 0.6 Red
m3 (solid) 1 1 Black

Figure 8: Optimized designs resulting from different material models: (a) the multi-material opti-
mized design from the proposed algorithm using the order-ersatz material model, and its com-
pliance is 194.4; (b) the optimized multi-material design using the ordered SIMP model in the
reference [37], and its compliance is 217.2

4.3 Lightweight Designs of a Simply Supported Beam Subject to Displacement Constraints
In practice, it preferably achieves a lightweight structure under single or multiple displacement

constraints. The proposed multi-material topology optimization, similar to the FPTO method [39],
can be easily extended to solve such a problem, which can be mathematically stated as
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

min
x
MT

s.b. K(x)u= F
uk ≤ u∗k k= 1, . . . ,Nc⎧⎨
⎩
xe = xi when xe ∈�i

xe = xi−1 when xe ∈�i−1

xi−1 < xe < xi when xe ∈ ∂�i−1,i
i= 1, . . . ,M

(22)

where uk and u∗k are the nodal displacement at point k and its corresponding upper constraint. Nc
is the number of specified displacement constraints.

Taking the simply supported beam shown in Fig. 6 as an example, the vertical displacements
at the point A, B and C are restricted as uA = uC ≤ 4 mm and uB ≤ 5 mm. Fig. 9 shows the
optimized designs under the various combinations of the candidate materials listed in Tab. 1: (a)
void, m1, m2 and m3; (b) void, m2 and m3; (c) void, m1 and m3; (d) void, m1 and m2; (e) void
and m2; (f) void and m3. The final minimized mass of those optimized designs is also listed in
Fig. 9, where the specified displacement constraints are strictly satisfied. The results show that the
total mass from the optimized design in Fig. 9a has the least one compared with other optimized
designs shown in Figs. 9b–9f. This result is reasonable because the optimized design in Fig. 9a
allows using all candidate materials so that the design space is maximum compared with other
cases. Comparably, the total mass of the traditional solid-void designs shown in Figs. 9e and 9f
is larger than that of the multi-material designs, which demonstrates the advantage of designing
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structures using multiple materials. In all multi-material designs, the stiffest material is always
allocated near the locations of the concentrated loads and supports to resist high stresses. The
material with the highest stiffness-density ratio has the maximum volume fractions compared with
that of other solid materials. In all cases, the FPTO method provides smooth interfaces between
adjacent materials in the optimized designs.

Figure 9: Optimized designs for minimizing the mass subject to three displacement constraints,
uA = uC ≤ 4 and uB ≤ 5. (a) the multi-material design using void, m1, m2 and m3, and the final
mass is 6.04× 103 kg; (b) the multi-material design using void, m2 and m3 and the final mass is
6.63× 103 kg; (c) the multi-material design using void, m1 and m3, and the final mass is 6.15×
103 kg; (d) the multi-material design with void, m1 and m2, and the final mass is 7.12× 103 kg;
(e) the solid-void design using void and m2, and the final mass is 7.77× 103 kg; (f) the solid-void
design using void and m3, and the final mass is 7.61× 103 kg

4.4 Multi-Material Designs of a 3D Cantilever
This example shows the multi-material designs for a 3D cantilever shown in Fig. 10, where a

vertical load F = 10 kN is acted at the center of the free end. The design domain is discretized
with 48×32×16 eight-node brick elements. The mechanical properties of the candidate materials
are listed in Tab. 3.

Figure 10: Design domain, dimensions and boundary condition of a 3D cantilever
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Table 3: Material properties of four materials within the 3D cantilever

Material ρi (kg/m3) Ei (GPa) Color phase

m1 (solid) 300 40 Blue
m2 (solid) 600 70 Red
m3 (solid) 1000 100 Black

When the compliance is minimized subject to the total mass constraint, M̄T = 7.2× 103 kg,
Fig. 11 shows the optimized multi-material designs under various combinations of materials: (a)
void, m1, m2 and m3; (b) void, m2 and m3; (c) void, m1 and m3; (d) void, m1 and m2. The
corresponding compliances of the optimized multi-material designs are 4.01 Nm, 4.46 Nm, 4.06
Nm and 4.80 Nm, respectively. The compliance from the optimized design in Fig. 11a containing
three solid materials is the minimum compared to other multi-material designs in Figs. 11b–
11d, which only contain two solid materials. This also indicates that the performance of the
multi-material design can be improved as more candidate materials are involved in optimization.
Meanwhile, the proposed FPTO algorithm gives smooth interfaces between adjacent materials of
the optimized 3D multi-material designs.

Next, the multi-material lightweight design is applied by specifying the displacement constraint
at point A, uA ≤ 0.6mm. Fig. 12 shows the optimized multi-material designs and the final masses
under the various combinations of materials: (a) void, m1, m2 and m3; (b) void, m2 and m3; (c)
void, m1 and m3; (d) void, m1 and m2. Compared with two-material designs in Figs. 12b–12d,
the three-material design in Fig. 12a achieves the lowest mass to satisfy the specified displacement
constraint.
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Figure 11: 3D Multi-material designs for minimizing compliance under a mass constraint, M̄ =
7.2×103 kg: (a) the optimized design using void, m1, m2 and m3, and its compliance is 4.01 Nm;
(b) the optimized design using void, m2 and m3, and its compliance is 4.46 Nm; (c) the optimized
design using void, m1 and m3, and its compliance is 4.06 Nm; (d) the optimized design using
void, m1 and m2, and its compliance is 4.80 Nm

(a) (b)

(c) (d)

Figure 12: 3D multi-material designs for minimizing mass under a displacement constraint, uA ≤
0.6mm: (a) the optimized design using void, m1, m2 and m3, and the final mass is 3.768×103 kg;
(b) the optimized design using void, m2 and m3, and the final mass is 4.368× 103 kg; (c) the
optimized design using void, m1 and m3, and the final mass is 3.792× 103 kg; (d) the optimized
design using void, m1 and m2, and the final mass is 4.56× 103 kg
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5 Conclusion

This paper proposed a new and simple multi-material topology optimization algorithm for
minimizing compliance subject to a single mass constraint based on the FPTO method. Under
the framework of the finite element analysis, the elemental normalized density is used as a single
variable for designing structures composed of multiple materials without the increase of the
computational burden. The ordered ersatz material model is proposed to interpolate the material
property for the relaxed design variables linearly. Some 2D and 3D examples are presented to
demonstrate the effectiveness of the proposed multi-material topology optimization algorithm
and optimized multi-material designs are represented by the smooth interfaces between any two
adjacent materials. Besides, the proposed algorithm can be extended to minimizing the total
mass subject to single or multiple displacement constraints for a lightweight design of structures.
Numerical results show that the multi-material designs could outperform the traditional solid/void
designs, and this performance improvement increases when more candidate materials are involved
in optimization.
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