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ABSTRACT

The dynamic flight stability of hovering insects includes the longitudinal and lateral motion. Research results
have shown that for the majority of hovering insects the same longitudinal natural modes are identified and the
hovering flight in longitudinal is unstable. However, in lateral, the modal structure for hovering insects could be
different and the stability property of lateral disturbance motion is not as robust as that of longitudinal motion.
The cranefly possesses larger aspect ratio and lower Reynolds number, and such differences in morphology
and kinematics may make the lateral dynamic stability different. In this paper, the lateral flight stability of the
cranefly in hover is investigated by numerical simulation. Firstly, the stability derivatives are acquired by solving
the incompressible Navier–Stokes equations. Subsequently, the dynamic stability characteristics are checked by
analyzing the eigenvalues and eigenvectors of the linearized system. Computational results indicate that the lateral
dynamicmodal structure of cranefly is different frommost other insects, consisting of three natural modes, and the
weakly oscillatorymode illustrates the hovering lateral flight is nearly neutral. This neutral stability ismainly caused
by the negative derivative of roll-moment vs. sideslip-velocity, which can be attributed to the weaker ‘changing-
LEV-axial-velocity’ effect. These results suggest that insects in nature may exhibit different dynamic stabilities with
different morphological and kinematic parameters, which should be considered in the designs of flapping wing air
vehicles.
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1 Introduction

Since the insects flying in nature are disturbed by the surroundings all the time, the problems
that how the insects change the flight attitude with the influence of external disturbances, how
they maintain a stable flight attitude and speed, and how they achieve the inspired performances,
such as an abrupt stop, turn, fast acceleration, should be investigated. To reveal the flight dynamic
stability and control mechanism of insects, extensive studies on these above problems have been
conducted in recent decades, which are available in the literature reviews [1,2]. Considering that
the flight dynamics of a flapping-wing flier is inherently complex, and only the dynamic stability
is thoroughly researched can the control problem be adequately understood, many investigations
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mainly focused on dynamic flight stability to examine the stability derivatives, dynamic modal
structure and quantitative stability properties [3–13].

In the above investigations [3–13], with the averaged model widely employed, the flapping-wing
fliers are approximately treated as rigid bodies with six degrees of freedom (6-DOF), the equations
of motion of which are similar to the conventional aircraft; then using the linear theory, the dis-
turbed flight in the longitudinal and lateral direction are treated separately after decoupling, and
in turn, the stability of the flapping-wing systems could be checked by techniques of eigenvalue
and eigenvector analyses. The disturbed flight includes longitudinal and lateral motion, and only
both longitudinal and lateral dynamics are figured out can the stability characteristics of insects
be known.

During the past two decades, many research work, employing different aerodynamic models,
the CFD method or the quasi-steady model, have been concentrated on the longitudinal dynamic
stability [4–6,9,10,12,13] for several hovering insects (e.g., bumblebee, hoverfly, dronefly, cranefly,
fruitfly, stalk-eyed fly, hawkmoth and mosquito) and the literatures reported that three longitudinal
natural modes (two stable subsidence modes and one unstable oscillatory mode) in hover were
identified, thus the hovering flight in longitudinal was unstable. In addition, the conclusions of
longitudinal dynamic stability mentioned above were consistent, although the mass of research
objects ranged from 1 to 1648 mg and wing-beat frequency from 26 to 800 Hz [2,13,14]. With the
wider range of weight and wing-beat frequency, the longitudinal dynamic stability characteristics
mentioned above may represent those of the majority of insects.

Researches on lateral dynamic stability of several hovering insects were carried out gradually,
and all the literatures pointed out the lateral disturbed flight was composed of three natural
modes of motion. However, the modal structure of lateral motion for different hovering insects
is not exactly the same. The works in Zhang et al. [8] and Xu et al. [11,15] reported that
the lateral motion of hovering insects (dronefly, hoverfly and bumblebee) was unstable, due to
the divergence mode; and works in Faruque et al. [7], Cheng et al. [9] and Kim et al. [12]
showed that all the natural modes of hovering insects (fruitfly, hawkmoth, stalk-eyed fly and
bumblebee) in lateral were stable. Hereafter, the study on the lateral dynamic stability of hovering
honeybee [16] pointed that the lateral disturbed motion consisted of a nearly neutrally stable
oscillatory mode and two stable subsidence modes, hence the flight was neutrally stable. The
difference in the modal structure of lateral motion could be attributed to the different sign of the
derivative of roll moment vs. sideslip velocity [11,12,16] (hereafter called as roll-moment/sideslip-
velocity derivative). Contributions on the generation of the roll-moment/sideslip-velocity derivative
included two flow effects: ‘changing-relative-velocity’ effect and ‘changing-LEV-axial-velocity’ effect
(hereafter abbreviated as CRV-effect and CLV-effect), and the relative sizes of which determined
the sign of the derivative [11,15,16].

As noted above, the researches on longitudinal dynamics in hover cover many kinds of insects,
additionally with various aspect ratios (AR, the ratio of wing length to mean chord length),
and the longitudinal dynamic stability characteristics mentioned are similar. However, the roll-
moment/sideslip-velocity derivative could be affected by certain parameters, e.g., the location of
the CG (the center of gravity), the stroke plane angle [15,16]. In addition, the recent study [17]
pointed out the wing-wing interaction had influence on the roll-moment/sideslip-velocity derivative
and the contralateral wing stabilized the hovering hawkmoth in lateral. In other words, the lateral
stability, which may have different modal structure, is not as robust as that of longitudinal.
Furthermore, the insects considered in the studies of lateral dynamic stability are mostly with
moderate aspect ratios (AR = 2–4), excluding the insects with a relatively large aspect ratio.
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Researches have showed that the change in AR have the influence on the flow structure of the
rotating and flapping wings [18–20] and hence the aerodynamic forces acting on the wings. This
situation may have impact on the aerodynamics of insects with a relatively large aspect ratio in
disturbed flight, especially the roll-moment/sideslip-velocity derivative that can result in the lateral
stability changing. For some insects, even without the wing-wing interaction, the CLV-effect may
decrease due to a relatively large aspect ratio, and the relative size of roll moments produced by
the two flow effects involved above which have opposite signs accordingly changed, and hence the
negative roll-moment/sideslip-velocity derivative and the flight stability would become different.
Recently, Liu et al. [13] have discussed the dynamic stability of mosquitoes in hover of which
the aspect ratio is indeed relatively large (AR = 5), and the results showed that the dynamic
modal structure of mosquitoes is similar to that of other insects, such as bumblebee and hoverfly.
However, the mosquitos used different mechanisms to generate aerodynamic forces due to the
rather short stroke amplitude [14], while much more insects considered above mainly use the same
delayed-stall mechanism. Among the insects studied above, the cranefly has a relatively large aspect
ratio (AR = 5.5) and also use the delayed-stall mechanism. From the foregoing discussion, it is
meaningful to investigate the lateral dynamic stability of hovering cranefly to see whether or not
it has similar dimensionless stability derivatives and dynamic modal structure with other insects.

In this paper, taking a model cranefly in hover as the research object, numerical research on
its lateral dynamic stability is conducted. First, the incompressible Navier-Stokes equations are
solved to acquire the stability derivatives, and then the eigenvalues and eigenvectors of the system
matrix are derived to characterize the lateral dynamics. The analysis results verify the previous
hypothesis: the roll-moment/sideslip-velocity derivative of the model cranefly is negative and a
different dynamic modal structure from most other insects is identified.

2 Materials and Methods

2.1 Morphology and Kinematics
In this study, the cranefly Tipula obsoleta is conducted as the research target based on

measurement data [21], the total weight of the cranefly m= 11.4 mg and the mass fraction of one
wing of the total weight m̂w = 2.14%. The major morphological parameters of wings and body
are detailed in Tab. 1. For wings, R denotes the wing length, c denotes the mean chord of one
wing, the aspect ratio of one wing AR equals to R/c, the radius r̂2 represents the ratio of the
second moment of wing area to wing length, and r̂1,m is the distance between wing root and its
center of mass. For the body, lb denotes the body length, l1 is the distance from the wing-root
pivot to CG, l2 is the radius of gyration for the moment of inertia about the wing-root axis and
χ0 is free body angle [21,22].

Table 1: Major morphological parameters of model insect

R (mm) c (mm) AR (-) r̂2 (-) r̂1,m (-) lb/R (-) l1/lb (-) l2/lb (-) χ0 (deg.)

12.7 2.32 5.46 0.602 0.41 0.85 0.21 0.34 70

In order to describe the definitions of the wing and body kinematics, two coordinate sys-
tems are introduced here: a right-handed body-fixed frame (obxbybzb) and a wing-fixed frame
(owxwywzw). The body-fixed frame is located at the CG with origin ob. Assuming the insect
bilateral symmetry, the xb–zb plane is arranged in the longitudinal symmetrical plane and yb-axis
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points to the right. The model cranefly considered here is hovering, thus the velocity of the body
is zero and body angle χ between body axis (longitudinal blue dash-dot line) and the horizontal
(Fig. 1A) determines its orientation.
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Figure 1: Schematics of the kinematics of model insect (A) the right-handed body-fixed frame,
(B) the wing-fixed frame

The origin of the wing-fixed frame ow is located at the wing pivot point (blue point in
Fig. 1B). The xw- and yw-axes are arranged in the stroke plane with yw-axis pointing to the
side of the insect (Fig. 1B). Based on the experimental measurements [22], the wing flaps within
the stroke plane when neglecting the motion of wingtip deviating from the stroke plane. Hence
adopting the convention in previous studies [4,11,23], the wing’s motion here is defined by two
angles φ and α, see Fig. 1B. φ is the stroke positional angle, defining the translation rotation
around zw-axis and α is the angle of attack, defining the rotation around the wing-span axis
(yw-axis).

When the wing flaps to its extreme position, the stroke positional angle φ reaches the
minimum and maximum values, recorded as φmin and φmax, respectively. The stroke amplitude
is denoted by the letter Φ (= φmax − φmin) and the mean stroke angle by the letter φ(=
(φmax+φmin) /2). The angle of attack (α) keeps unchanged in mid-downstroke and mid-upstroke
while it varies with time when the wing flips close to the extreme position. The unchanged value
of α in mid-downstroke and mid-upstroke herein are notated with αd and αu, respectively, and
taken the supination at k-th stroke cycle, the variation of φ and α are represented as the following
harmonic functions:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

φ = φ + �

2
cos (2π ft)

α = αd+
180◦ −αd−αu

�tr

[
(t− t1)− �tr

2π
sin

2π (t− t1)
�tr

]
, t1 ≤ t≤ t1 +�tr

t1 = kT − 0.5T − 0.5�tr

(1)

where f denotes the flapping frequency, t1 the time when the supination starts, �tr the duration
of wing’s supination and T (= 2�r̂2R/c) denotes the flapping period. The time behavior of α

in pronation is similar to that in supination. According to Eq. (1), it is certain that kinematic
parameters φ, Φ, f , αd, αu and Δtr should be determined to describe the flapping motion.
Considering that the angles φ and α are measured with respect to the stroke plane, the stroke
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plane angle β representing the inclination of the plane to the horizontal also needs to be given.
The angle that describes the motion deviating from the stroke plane herein is ignored.

All the kinematic parameters needed to describe the motions of body and wing are detailed
in Tab. 2 and determined from experimental data by Ellington [22], excluding φ, αd and αu. These
three angles will be calculated by finding the equilibrium flight conditions (see Section 2.4), due
to the difficulty in accurately measuring.

Table 2: Kinematic parameters of model insect

f (Hz) � (deg.) �tr/T φ (deg.) αd (deg.) αu (deg.) β (deg.) χ (deg.)

45.5 123 0.25 5.5 25.5 25.5 0 51

2.2 Equations of Motion
Referring to the earlier studies [3,4,8], the averaged model is applied in the present study.

Provided the model insect presents a relatively high wingbeat frequency, it is assumed that the
flapping flier can be treated like a 6-DOF rigid body (three in translation and three in rotation)
and use the mean aerodynamic forces and moments through the flapping period to represent
the role of wings in aerodynamics. Therefore, the motions of model insect are expressed by the
equations of motion of rigid body, commonly used for the airplane or helicopter.

For the convenience of describing the movements of model insect, the right-handed frame of
reference (obxbybzb) is used (see Fig. 1A); at the equilibrium flight, xb–zb plane is located in the
longitudinal plane of symmetry with xb-axis pointing to the front and yb-axis faces towards the
right (Fig. 2). Similar to the handling of an airplane, the motions of the insect’s body are assumed
to slightly deviate from a steady, symmetric reference flight condition and all flight parameters in
the equations can be written in the form of reference value plus disturbance. Using the small-
disturbance linearization theory, the lateral equations of motion can be considered in isolation
from the longitudinal ones. The variable statements involved in the lateral motion are listed as
follows: the motion variable v denotes the velocity in the yb direction; the angular velocities p is
called the roll velocity around the xb-axis and r called the yaw velocity around the zb-axis; and
the roll angle γ defines the inclination of yb-axis against the horizontal (Fig. 2).

Horizontal

zb

y b
v

γ

r

p

ob

Figure 2: Definition of the lateral state variables
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For the convenience in analyzing, the components of average aerodynamic forces through the
flapping period are recorded as X , Y and Z (forward, lateral and vertical force), respectively;
and the components of average moments about the CG be L, M and N (roll, pitch and yaw
moment), respectively. At hovering equilibrium flight, Y =L=N = 0 and v= p= r= γ = 0 (γ = 0
implies that the yb-axis lies in the horizontal plane at the equilibrium reference condition), and
the linearized lateral equations of motion are:⎡
⎢⎢⎣

δv̇+
δṗ+
δṙ+
δγ̇

⎤
⎥⎥⎦=A

⎡
⎢⎢⎣

δv+
δp+
δr+
δγ

⎤
⎥⎥⎦ (2)

where the matrix A is the stability system matrix, the prefix δ represents the small perturbation
value, the overdot “·” represents differentiation with respect to time:

A=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Y+
v

m+
Y+
p

m+
Y+
r

m+ g+

I+z L+
v + I+xzN+

v

I+x I+z − I+xz
2

I+z L+
p + I+xzN+

p

I+x I+z − I+xz
2

I+z L+
r + I+xzN+

r

I+x I+z − I+xz
2 0

I+xzL+
v + IxN+

v

I+x I+z − I+xz
2

I+xzL+
p + I+x N+

p

I+x I+z − I+xz
2

I+xzL+
r + I+x N+

r

I+x I+z − I+xz
2 0

0 1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3)

In the matrix A, the symbols (Yv, Lv, Nv), (Yp, Lp, Np), (Yr, Lr, Nr) denote the stability
derivatives of the aerodynamic forces (Y , L and N) with respect to the state variables (v, p
and r). The superscript “+” herein denotes the dimensionless quantity; using the mean chord
length c as the characteristic length, the flapping period tw (= 1/f ) as the characteristic time and
the mean flapping velocity U (= 2�r̂2Rf ) as the characteristic velocity, the dimensionless forms
are: aerodynamic force Y+ = Y/0.5ρU2St (hereafter St represents the total area of two wings),
aerodynamic moments L+ = L/0.5ρU2Stc, N+ = N/0.5ρU2Stc; translational velocity v+ = v/U ,
angular velocity p+ = ptw, r+ = rtw; total mass m+ = m/0.5ρUSttw; the acceleration of gravity
g+ = gtw/U ; time t+ = t/tw; the moments of inertia I+x = Ix/0.5ρU2Stctw2, I+z = Iz/0.5ρU2Stctw2,
the product of inertia I+xz = Ixz/0.5ρU2Stctw2.

The moments of inertia about xb and zb-axes and product of inertia (Ix, Iz and Ixz) of
the model cranefly in this study are estimated using the method similar to that of the earlier
study [8]. For the model cranefly at hovering, Ix = 7.346× 10−11 kgm2, Iz = 5.509× 10−11 kgm2,
Ixz = −4.221 × 10−11 kgm2. Now, in order to specify the system matrix A, only the stability
derivatives need to be determined.

2.3 Flow Computation and Grid Resolution Test
By solving the Navier–Stokes (N-S) equations, the equilibrium flight condition can be

obtained, and hence the determination of stability derivatives. In this study, the identical numerical
calculating method which Sun et al. [23] had given the detailed description in their work is
adopted for simulation and based on the artificial compressibility approach [24]. The earlier
research result [25] showed that the corrugation and deformation of wings in the flapping have
little effects on aerodynamic forces, and thus the wing of model insect can be dealt with as a
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rigid plate by neglecting the corrugation and deformation. By comparison with wings, the body
has very low velocity near hovering and thus the aerodynamic forces and moments generated by
the body are negligible; besides, the aerodynamic interference between the wings and body is so
weak that it can be neglected, as well as the interference between the right and left wings [26].
Thus, the flow around the right and left wing can be calculated separately.

In this study, the planform of wing model used here is taken from the scanned image of
the real wing [21] (Fig. 3, the solid line with an arrow indicates the pitching rotation axis). The
numerical calculation program used here has been validated and used many times in previous
studies (e.g., [8,11,23]). Reynolds number (Re) is defined as Re = Uc/ν, where the kinematic
viscosity ν is 1.44× 10−5 m2s−1 for the air and based on the morphology and kinematics data
given above Re for the model cranefly is approximately 240.

Figure 3: The planform of the wing and portions of the grid. The inset is the sectional plane at
the radius of gyration (r̂2)

In order to make sure that the flow simulations are grid independent, three grids are used
herein to conduct the grid resolution test before the simulations. The size of Grid 1 is 25 × 27 ×
34 (in the circumferential direction, the radial direction and the spanwise direction, respectively)
with the first layer spacing of 0.004c. Grid 2 and Grid 3 have dimensions 50 × 53 × 68 and 100
× 105 × 135 with the first layer spacing of 0.002c and 0.001c, respectively. The computational
domain size of these three grids is 20c away from the wing surface in the radial direction and 7c
in the spanwise direction. The lift and drag coefficients over a single flapping cycle calculated by
these three grids are showed in Fig. 4. It can be found from Fig. 4 that the first grid refinement
makes some differences in the aerodynamic force coefficients and almost no differences for the
second refinement. Based on the test results, Grid 3 is chosen for the flow simulations.
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Figure 4: Effects of grid density on the lift and drag coefficients over a single flapping cycle (A) for
the lift coefficient and (B) for the drag coefficient

2.4 Calculation of the Stability Derivatives

As aforementioned, φ, αd and αu will be calculated by satisfying the equilibrium conditions:
the mean vertical force of the wings equals the weight of insect (Ze = mg); the mean forward
force and pitch moment equal to zero (Xe = 0, Me = 0). Considering the difficulty in accurately
measuring wing kinematics, if the kinematics parameters of wings used for force balance are
all measured data, the equilibrium conditions could not be obtained. Meanwhile, there are three
equations to satisfy in equilibrium conditions, and the variation in φ is a sensitive effect on
aerodynamic moments, and the measurement errors of αd and αu are relatively large [27], thus
these three parameters φ, αd and αu are obtained by satisfying the equilibrium flight conditions,
instead of from experimental data. The solution process is briefly shown in Fig. 5, and the
corresponding φ, αd and αu to the equilibrium flight are listed in Tab. 2.

Compare the calculated results with the 
corresponding expected values 

Equilibrium conditions satisfied?

Obtain the corresponding αd, αu and φ

Solution completion

Yes

Adjust αd, αu and φ

No

Xe = 0, Me = 0 and Ze = mg

Guess a series of values for αd, αu and φ

Calculate Ze, Xe and Me by solving N-S equations

Figure 5: The solution process of equilibrium conditions achievements
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Once the equilibrium flight is determined, we can use it as the reference flight state to acquire
the stability derivatives. Adopting the same method as taken in the previous studies [8,11], three
series of flow computations are conducted. For each series, only one of the body velocities varies
near zero whilst the others keep the reference values unchanged. Take the v-series as an example,
the lateral translational velocity v is varied whilst p= r= γ = 0, and the varying wing-beat cycle
average forces and moments are calculated; then the curves that represent the variation of average
forces and moments with changes in the state variable v are fitted. The stability derivatives are
derived from the local tangents of the fitted curves in the equilibrium state. By definition, the
stability derivatives are partial derivatives, and hence represent the rates of change of forces and
moments when the corresponding body velocity is varied. The p and r-series stability derivatives
can be obtained by the same operation.

Once the derivatives are calculated, all the data needed in the system matrix A in Eq. (3)
are determined. Adopting the same eigenvalues and eigenvectors analysis method in previous
studies [4,8,11], the flight stability characteristics of the system are acquired from the linear small
disturbance equations.

3 Results and Discussion

3.1 Stability Derivatives
As described above, on the basis of the equilibrium flight of model cranefly, the body

velocities v, p and r vary around zero respectively and the corresponding aerodynamic forces
and moments are obtained, which are shown in Fig. 6. Y+, L+ and N+, by definition, are the
dimensionless quantities. The variations of aerodynamic forces and moments with body velocities
for model cranefly in Fig. 6 show that, for state variables in the range of −0.15 and 0.15, the
aerodynamic forces and moments vary approximately linearly with the body velocities, which
indicates that the theory of small-disturbance linearization is applicable for this range. The lateral
stability derivatives of hovering model cranefly, given by the slopes of the curves at the origin in
Fig. 6, are listed in Tab. 3.

According to the results of Tab. 3, the lateral stability derivatives Y+
v , L+

p and N+
r are

negative and have large values whilst those of N+
v , Y

+
p , N+

p , Y
+
r and L+

r are comparatively small.

The mainly stability derivatives, Y+
v , L+

p and N+
r , of cranefly resemble those of dronefly [8],

bumblebee [11] and hoverfly [15] investigated in the previous literature. The relatively large negative
values of Y+

v , L+
p and N+

r indicate that the body motions mainly produce the corresponding

large damping. More specifically, the lateral translational motion (v+) generates a lateral force
opposite to the direction of the translation, and the roll (p+) and yaw (r+) motion generate a
large moment in the direction opposite to the rotation. As expected, L+

v (roll moment induced by
the lateral translation) of cranefly is negative, presenting an opposite sign to those of dronefly [8],
bumblebee [11] and hoverfly [15]. The negative sign of L+

v describes the fact that the roll moment
induced by the lateral translational motion (v+) causes the insect to tilt toward the opposite
direction of translation, and makes the lateral dynamic stability of model cranefly different from
those of other insects above. Here, for comparative purposes, the data of bumblebee extracted
from the literature [11] are also given in Tab. 3.
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Figure 6: The variations of aerodynamic forces and moments with body velocities for model
cranefly (A) for the v-series, (B) for the p-series and (C) for the r-series

Table 3: Dimensionless stability derivatives

ID Y+
v L+

v N+
v Y+

p L+
p N+

p Y+
r L+

r N+
r

Cranefly −0.675 −0.967 0.015 −0.020 −1.094 −0.046 0.017 0.092 −1.425
Bumblebee −0.709 1.230 0.105 −0.075 1.228 −0.002 0.013 0.206 −1.412

3.2 Generation Mechanism of Stability Derivatives
As stated earlier, the generation of the mainly stability derivatives, Y+

v , L+
p and N+

r , of
cranefly can be attributed to the damping mechanism that is similar to other insects. Here we
focus on the negative derivative L+

v , the significant difference between the model cranefly and the
other insects involved above. The previous studies [11,16] of lateral dynamic stability of insects
have revealed that when the insect moves laterally (v+), the aerodynamic forces of flapping wings
will be affected by the CRV-effect and CLV-effect, and the mechanism of these two effects is
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summarized here. The insect sees a lateral wind when moving laterally (v+), and the lateral wind
can be decomposed into two components in the chordwise and spanwise direction, which are
herein denoted by vr+ (= v+ sinφ) and va+ (= v+ cosφ), respectively. The chordwise component of
lateral wind changes the relative velocity of flapping wings, causing the CRV-effect. It increases
or decreases the relative velocity of flapping wings by

∣∣v+ sinφ
∣∣, and the change of right and left

wing are opposite and have different signs in different stages of the flapping period; this leads
to a roughly opposite change in aerodynamic forces on the two contralateral wings. Meanwhile,
the lateral wind in spanwise direction changes the axial velocity of LEV on flapping wings by
v+ cosφ, causing the CLV-effect. During the lateral translation, one wing always sees a spanwise
flow from the wing base to tip and the other from tip to base, making the axial velocity increase
on the former and decrease on the latter, and hence, the concentration of LEV on two wings are
different. Due to the more concentrated vortex on one wing, a larger suction pressure above the
wing is produced and thus gives a higher lift, and the opposite situation happens with the other
wing; this also leads to the difference in aerodynamic forces of two wings. Here takes moving to
the right as an example, the CRV-effect produces a net lateral force in the opposite direction of
translation (v+) and the net lateral force induces a roll moment around the CG. Since the wing
base lies above CG, the arm of lateral force is approximate as the vertical distance between the
above two points (�z) (Fig. 1), the roll moment induced by the lateral force makes a negative
contribution to L+

v , and moreover, the negative contribution of the CRV-effect will augment with
the increasing vertical distance. However, the CLV-effect produces a force couple, the roll moment
of which makes a positive contribution to L+

v . For bumblebee [11] and hoverfly [16], the positive
contribution of CLV-effect is greater than the negative counterpart of CRV-effect. Thus a positive
L+
v is obtained.

To illuminate the reason why the derivative L+
v of model cranefly is opposite to that of model

bumblebee in reference [11], the results of these two model insects are compared, and two symbols
ΔY+

w and ΔZ+
w are introduced. Yw and Zw are the components of aerodynamic forces produced

by flapping wings, lateral force along the yb-axis and vertical force along the zb-axis, respectively;
the prefix ‘�’ represents the difference between the disturbance motion and the corresponding
equilibrium flight and the subscript ‘+’ represents the form of dimensionless force coefficients.
The time-variation of ΔY+

w and ΔZ+
w over a single flapping cycle when insects moving to the

right with dimensionless velocity v+ = 0.15 are showed in Fig. 7 (the data of model bumblebee
is extracted from reference [11], t̂ is the dimensionless time). From Figs. 7A1 and 7B1, it can
be seen that, under the lateral wind, the variation in ΔY+

w on the wings of cranefly is identical
with that of bumblebee [11], and ΔY+

w for each wing are negative over a single flapping cycle,
making a negative cycle averaged lateral force ΔY+. Although the variation tendency of ΔZ+

w
for cranefly and bumblebee [11] are the same: ΔZ+

w of the right and left wing basically have a
different sign in the whole wingbeat cycle and this produces a force couple around the roll axis,
namely cycle averaged roll moment ΔL+

LEV. However, there are indeed some differences in the
magnitude of ΔZ+

w between the model cranefly and bumblebee. For bumblebee in Fig. 7B2, during
the downstroke, the magnitude of ΔZ+

w in the first part (t̂ ≈ 0 − 0.25, the pale blue region) is
much smaller than that in the latter part (t̂≈ 0.25−0.5, the lavender region). Thus the net vertical
force on the left and right wing points upward and downward, respectively, as depicted in Fig. 8B,
producing a force couple that makes the insect incline towards the translational direction, and the
same is true for the upstroke. Hence, the net cycle averaged roll moment is positive [11]. Whereas,
for cranefly in Fig. 7A2, during the downstroke or upstroke, the difference in the magnitude of
ΔZ+

w between the first part (t̂≈ 0−0.25, the pale blue region or t̂≈ 0.5−0.75) and the latter part
(t̂≈ 0.25− 0.5, the lavender region or t̂≈ 0.75− 1) is relatively small. Take the downstroke for an
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example, there are few differences between the negative roll moment induced by the force couple
in the first part (the pale blue) and the positive counterpart in the latter part (the lavender), as
depicted in Fig. 8A. The same is true for the upstroke. Thus, the net cycle averaged roll moment
induced by the force couple tends to be very small, which indicates that the CLV-effect might be
weakened for model cranefly, comparing with that of model bumblebee. It can be seen from the
spanwise vorticity plots of the wings at three instants during the flapping cycle showing in Fig. 9.
Unlike the vorticity plots of bumblebee depicted in Fig. 8 in reference [11], it seems like there
is little difference between the LEV on the left wing and that on the right wing, indicating the
comparatively weak CLV-effect for the model cranefly.
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Figure 7: Time-variation of ΔY+
w and ΔZ+

w at v+ = 0.15 over a single flapping cycle for the model
cranefly and bumblebee (A for cranefly, B for bumblebee [11]; the red solid lines for right wings
and the blue dashed lines for left wings). The first and latter parts of downstroke are indicated
by the pale blue region and lavender region, respectively
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Figure 8: Schematics of roll moments produced by the force couple during the downstroke for
model cranefly and bumblebee (A) for cranefly, (B) for bumblebee; the pale blue for the first part
of the downstroke and the lavender for the latter part of the downstroke
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Figure 9: Spanwise vorticity plots at wing sections (0.3R, 0.5R, 0.7R from wing root, respectively)
when the insect moves to the right at v+ = 0.15. The red and blue lines indicate the positive and
negative vorticity, respectively. The magnitude of the nondimensional vorticity at the outer contour
is 2 and the interval is 2

Next, the CRV-effect and CLV-effect of model cranefly and those of model bumblebee [11]
will be quantitatively compared. Still take insects move to the right at v+ = 0.15 as an example, the
cycle averaged lateral force (ΔY+), the dimensionless vertical distance (Δz+), the cycle averaged
roll moment of the lateral force (ΔL+

RV, ΔL+
RV =Δz+×ΔY+) and of the couple (ΔL+

LEV), and the

total roll moment (ΔL+, ΔL+ =ΔL+
RV+ΔL+

LEV) are listed in Tab. 4 (the related data of bumblebee
is extracted from reference [11]). Comparing two sets of data in Tab. 4, the values of Δz+ and
ΔY+ of model cranefly are equivalent to those of model bumblebee, thus the negative ΔL+

RV
of cranefly and that of bumblebee are about the same. However, the roll moment induced by
the CLV-effect (ΔL+

LEV) of cranefly is much smaller than that of bumblebee, indicating that the
CLV-effect decreased for model cranefly and caused the total roll moment ΔL+ be negative.

Table 4: The vertical distance (Δz+), mean lateral force (ΔY+), roll moment of the lateral force
(ΔL+

RV), force-couple (ΔL+
LEV) and total roll moment (ΔL+) of the model insect at v+ = 0.15

ID Δz+ ΔY+ ΔL+
RV ΔL+

LEV ΔL+

Cranefly 0.92 −0.11 −0.101 0.027 −0.074
Bumblebee 0.95 −0.14 −0.133 0.242 0.109

According to the results of analysis above, under the side wind, for the model cranefly, the
CLV-effect is weaker than the CRV-effect, meaning the positive contribution given by the CLV-
effect is small; thus, the net roll moment is negative, and hence the negative derivative L+

v .
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3.3 Stability Properties
In this section, the lateral stability properties of the hovering model cranefly are investigated

here with the stability derivatives and morphological data given above. Based on the averaging
theorem, the dynamic stability could be examined via the eigenvalues and eigenvectors of its
matrix A. For the model cranefly, the results of eigenvalues and eigenvectors showed in Tab. 5
indicate three lateral motion modes.

Table 5: Eigenvalues and eigenvectors

Mode Eigenvalues Eigenvectors

δv+ δp+ δr+ δγ

Mode1(λ1) −1.079 0.144(180◦) 1.079(180◦) 0.639(180◦) 1.000(0◦)
Mode2(λ2,3) 0.008 ± 0.343i 0.410(−77.4◦) 0.343(88.7◦) 0.042(−31.8◦) 1.000(0◦)
Mode3(λ4) −5.701 0.030(180◦) 5.701(180◦) 7.303(0◦) 1.000(0◦)

Mode 1 corresponds to a stable subsidence mode with a negative real eigenvalue (λ1). In this
natural mode, the motion is a combination of δv+, δp+ and δr+, and the magnitudes of δv+ and
δr+ is much smaller than that of δp+, while the phase angle of three of them are the same. Mode
2 has a pair of complex conjugate eigenvalues with positive real part (λ2,3), indicating an unstable
oscillatory mode, in which the dominate state variables are δv+ and δp+, and the motion of v+
is in antiphase with that of p+. Noted that the positive real part is very small, the instability
of the unstable oscillatory mode is quite weak, which could be seen from the characteristic time
constant of Mode 2. Here, for the weakly unstable mode, the time for the initial disturbance to
double tdouble (tdouble = 0.693/n̂, n̂ is the real part of the complex eigenvalue) is up to tens of
times of wingbeat period, meaning it would take a relatively long time to double the amplitude.
Mode 3 also corresponds to a negative real eigenvalue (λ4), but a large magnitude compared to
that of eigenvalue λ1, resulting in that the stable subsidence mode would converge faster with an
extraordinary small time constant to reach half the value of initial disturbance. In this natural
mode of motion, the main state variables are δp+ and δr+, which are out of phase.

It can be seen from the above analysis that, comparing with the hovering bumblebee
model [11], the modal structure of cranefly is different. Due to the weakly unstable mode, the
lateral dynamics of hovering cranefly model is close to neutrally stable. Xu et al. [16] reported that
the weakly unstable mode is chiefly due to the derivative L+

v . Here, the sign of the derivative L+
v

is inverted from positive to negative (for bumblebee [11], the sign of L+
v is positive); additionally,

if the derivative L+
v is changed to be a larger positive value, and the other derivatives in the

system matrix remained unchanged, the recalculated eigenvalues would be similar with those of
bumblebee [11].

3.4 Discussion on the Stability Characterization
In the literatures, different aerodynamic models with different fidelity levels, the quasi-steady

model [7,9,12,17] and the CFD method [8,11,13,16], are commonly applied to acquire the stability
derivatives and identify the dynamic stability for various hovering insects in the lateral direction.
This section focuses on comparisons of the lateral stability characteristics in this paper and some
previous studies.



CMES, 2021, vol.128, no.2 683

For the quasi-steady aerodynamic models, the lateral motion of hovering insects is stable due
to the negative roll moment derivative [7,9,12,17]. Herein the sign of the roll moment derivative for
hovering cranefly is also negative, and the dynamic modal structure includes one weakly unstable
oscillatory mode. In other words, the lateral motion of hovering cranefly can be considered as
nearly neutral. The recent study [17] has pointed that the wing-wing interaction has the effect on
the roll moment derivative, which can turn to be negative compared with the case without the
wing-wing interaction and stabilize the hovering hawkmoth in lateral. Considering that the flows
around the right and left wing herein are calculated separately, therefore, the value of the negative
roll moment derivative L+

v of hovering cranefly may become larger if the wing-wing interaction
is taken into account. When changing the derivative L+

v from −0.967 to −1.230 artificially (the
absolute value is equal to that of the roll moment derivative of bumblebee, shown in Tab. 3), the
recalculated eigenvalues are −1.099, 0.023 ± 0.384i and −5.739. Therefore the dynamic modal
structure of hovering cranefly remains the same.

For the previous CFD studies, the dynamic modal structure of cranefly, including one weakly
unstable oscillatory mode and two subsidence modes, is different from those of hovering drone-
fly [8], bumblebee [11] and mosquito [13], while similar to that of hovering honeybee [16]. The
reason for the difference has been briefly discussed in the above section, which is the derivative
L+
v with different sign (for dronefly [8], bumblebee [11] and mosquito [13], the signs of L+

v
are positive) causing the modal structure to change. However, the signs of derivative L+

v of
hovering honeybee and cranefly are both negative, thus the same modal structures are possessed.
When insects moving laterally, the CLV-effect and the CRV-effect make positive and negative
contributions on the derivative L+

v , respectively, the relative strength of which determined the sign
of the derivative. For hovering dronefly, bumblebee and mosquito, the CLV-effect is stronger than
the CRV-effect, meaning the positive roll moment is bigger than the negative roll moment, and
hence the positive derivative L+

v [8,11,13]. For hovering honeybee, it is the relatively large vertical
distance (Δz+) that enhanced the CRV-effect, which makes the negative contribution bigger on
the derivative L+

v [16]. For hovering cranefly, the previous comparative analysis in Section 3.2
has pointed that the CLV-effect is weaker, meaning the positive contribution is smaller. Thus, the
net roll moment is negative, and hence the negative derivative L+

v . Note that the aspect ratio of
cranefly (AR = 5.5) is relatively large and the Reynolds number (Re = 240) is relatively small,
and the different morphological parameter and Reynolds number could have an impact on the
aerodynamic characteristics, and further influence the CLV-effect. Although the aspect ratio of
the mosquitoes is also relatively large (AR= 5), they use different aerodynamic mechanisms due
to the rather short stroke amplitude [14] while much more insects use the same delayed-stall
mechanism. Thus, for insects using the delayed-stall mechanism, when the lateral winds acting
on the flapping wings, the influence on the CLV-effect made by the different morphological and
kinematic parameters (Reynolds number) still unclear and need further investigation.

4 Conclusions

(1) This paper investigated the lateral dynamics of a model cranefly in hover. The lateral
disturbance motion of model cranefly in hover consists of three natural modes, and the flight in
lateral is nearly neutral, that is different from most other insects.

(2) The neutral stability is chiefly due to the stability derivative L+
v , the sign of which is

negative, quite different from most other insects. When model cranefly moving laterally, the relative
strength of the two flow effects acting on the flapping wings simultaneously is different from
that of bumblebee, and the CLV-effect is weaker than the CRV-effect, meaning the magnitude of
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positive roll moment contributed by the CLV-effect is much smaller than the negative counterpart
contributed by the CRV-effect, thus the sign of derivative L+

v is inverted from normal positive to
negative.

(3) The stability analysis on model cranefly shows that, during normal-hovering flight, the sta-
bility property of lateral disturbance motions is not as robust as that of longitudinal motion, and
owing to the opposite sign of L+

v , insects with different morphological and kinematic parameters
in the natural world may possess different modal structure and stability characteristics.
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