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ABSTRACT

This paper presents a novel framework for stochastic analysis of linear elastic fracture problems. Monte Carlo
simulation (MCs) is adopted to address themulti-dimensional uncertainties, whose computation cost is reduced by
combination of Proper Orthogonal Decomposition (POD) and the Radial Basis Function (RBF). In order to avoid
re-meshing and retain the geometric exactness, isogeometric boundary element method (IGABEM) is employed
for simulation, in which the Non-Uniform Rational B-splines (NURBS) are employed for representing the crack
surfaces and discretizing dual boundary integral equations. The stress intensity factors (SIFs) are extracted byM
integral method. The numerical examples simulate several cracked structures with various uncertain parameters
such as load effects, materials, geometric dimensions, and the results are verified by comparison with the analytical
solutions.
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1 Introduction

Uncertainties are ubiquitous in engineering applications that may arise from different sources
such as inherent material randomness, geometric dimensions, manufacturing errors, and dynamic
loading. Because deterministic analysis fails to characterize randomness field, stochastic analysis
techniques have been extensively studied to strengthen the credibility of computational prediction
of uncertainty problems [1]. There are three main variants of stochastic analysis: perturba-
tion based techniques [2], stochastic spectral approaches [3,4], and Monte Carlo simulation
(MCs) [5–7]. Among them, the MCs is regarded as the most versatile and simplest approach, and
often used as the reference solution to verify the results of Perturbation method and Spectral
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method, but the exhaustive sampling in MCs leads to a heavy computational burden arising from
both solving physical problems and constructing analysis-suitable geometric models that must be
addressed carefully.

Combining Proper Orthogonal Decomposition (POD) and Radial Basis Functions
(RBF) [8–11] is an effective technique of model order reduction [12–14]. The POD represents the
solution field with the special ordered orthogonal functions in a low-dimensional subspace, which
is constructed based on a discrete number of system responses obtained from the evaluation of
the full order models (FOM) [15]. POD reduces the degrees of freedom by capturing the dominant
components of high-dimensional processes because it offers the optimal basis in the sense that the
approximation error is minimal in L2 norm. On the other hand, the RBF builds a surrogate model
through interpolating the data in the reduced space, whereby it admits continuous approximation
of system responses for any arbitrary combination of input parameters [16] and thus does not
need to solve partial differential equation for each sample.

The pre-processing time of MCs in constructing geometric models can be reduced with
isogeometric analysis (IGA) [17]. The key idea of IGA is employing spline functions used to
construct geometric models in Computer Aided Design (CAD), for example Non-Uniform Ratio-
nal B-splines (NURBS), T-splines [18], PHT-splines [19,20], and subdivision surfaces [21], as the
basis functions to discretize physical fields. Compared to traditional Lagrange polynomial based
methods, the main advantage of IGA lies in its ability of integrating numerical analysis and CAD.
IGA enables one to perform numerical analysis directly from CAD models without meshing,
which is particularly beneficial to uncertainty qualification since it requires fast generation of a
large number of models. IGA also offers the benefits of geometric exactness, flexible refinement
scheme and high order continuity that are amenable to numerical analysis.

Fracture mechanics is crucial in structural integrity assessment and damage tolerance analyses,
but simulation of fracture behaviors poses significant challenges to Finite Element Methods
(FEM) for the following reasons: (1) the mesh in proximity to cracks should be several orders
of magnitude finer than that used for stress analysis; (2) a remeshing procedure is inevitable
when cracks extend; (3) stress singularity or high stress gradients need to be captured. The
extended finite element method (XFEM) incorporates enrichment functions to solution space and
thus allows for crack propagation in a fixed mesh, but it still relies on a fine and good-quality
mesh and necessitates special techniques to represent crack surfaces like Level Set Method. In
comparison, Boundary Element Method (BEM) [22–26] has proven a useful tool for fracture
simulation. Since BEM only discretizes the boundary of the domain, it not only reduces the
degrees of freedom and facilities mesh generation, but more importantly, extends the crack by
simply adding new elements at the front of cracks. In addition, as a semi-analytical method, BEM
evaluates stress more accurately which is critical in extracting stress intensity factors. Furthermore,
isogeometric analysis within the context of boundary element method (IGABEM) inherits the
advantage of IGA in integration of CAD and numerical analysis and that of BEM in dimension
reduction. IGA with BEM is also natural because both of them are boundary-represented. Since
its inception, IGABEM has been successfully applied to potential [27–31], linear elasticity [32–36],
acoustics [37–44], electromagnetics [45], structural optimization [40,46–49], etc., Peng et al. [50,51]
applied IGABEM to two dimensional and three dimensional linear elasticity fracture mechanics,
and demonstrates the accuracy and efficiency of IGABEM in this area.
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This paper presents a novel procedure for solving uncertainty problems of fracture mechanics.
In this method, the IGABEM is employed for fracture analysis, and MCs for addressing multiple
random parameters. The computational cost is reduced by combination of POD and RBF. The
remaining of this paper is structured as follows. Section 2 introduces the fundamentals of MCs in
stochastic analysis. Section 3 illustrates how to apply POD and RBF to MCs. Section 4 formulates
IGABEM in linear elasticity fracture mechanics. Several numerical examples are given in Section 5
to test the reliability, accuracy and efficiency of the proposed method, followed by conclusions in
Section 6.

2 Stochastic Analysis with Monte Carlo Simulation

Monte Carlo simulation (MCs) directly characterizes uncertainties by calculating expectations
and variances from a large number of samples. For a random variable X associated with the
probability density function p(x), the two probabilistic moments are defined as

E[X ]=
∫ +∞

−∞
xp(x)dx

D[X ]=
∫ +∞

−∞
(x−E[X ])2p(x)dx (1)

where E[X ] is the expectation of the random variable X , and D(X) represents its variance, whose
square root is the standard deviation.

According to the law of large numbers, the average of the results obtained from a number
of samples should converge to the expectation as more sampling points are selected, which is the
theoretical basis of MCs. Suppose g(X) is an arbitrary function of the random variable X . The
expectation and variance of g(X) can be approximated by

E[g(X)]≈ 1
N

N∑
i=1

g(xi) (2)

D[g(X)]≈ 1
N − 1

[
N∑
i=1

(g(xi)−E[g(x)])

]2

(3)

where N is the sample size, and the order of convergence rate is O(N−1/2).

MCs in structural analysis can be conducted in the following steps [15]: (1) Identify the
random variables that are the source of the uncertainties in the system. (2) Determine the proba-
bility density functions of the random variables. (3) Use a random number generator to produce
a set of samples which are adopted as the input parameters. (4) Employ a numerical method
in deterministic analysis to evaluate the solution for each sample. (5) Based on the outputs of
numerical analysis for all of the samples, we calculate the expectation and variance of the system
using Eqs. (2) and (3) [52]. From the above, it can be seen that MCs is easy to implement because
the existing numerical simulation codes can be directly used without modification. In addition,
MCs is versatile and is suitable for complex uncertainty problems. However, Step 3 of MCs is
very time consuming because the numerical simulation needs to be conducted as many times as
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the number of sampling points. The large sample size can enhance the accuracy but may lead to
higher computational cost.

3 Proper Orthogonal Decomposition (POD) and Radial Basis Functions (RBF)

As mentioned above, MCs is prohibitively expensive because it needs to solve the physical
problems at many samples. This procedure can be accelerated by the reduced-order moeling based
on POD and RBF. Let α be an input random variable that has an influence on the structural
responses. At the first step, we solve the FOM for a series of samples αi of the random variable.
The system responses λ(αi) corresponding to the i-th sample point is called snapshots, which can
be collected to form the following snapshot matrix �:

�= [λ(α1), λ(α2), . . . ,λ(αm)]

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

λ11 λ12 . . . λ1m

λ21 λ22 . . . λ2m

...
...

. . .
...

λn1 λn2 . . . λnm

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(4)

where � ∈ Rn×m, n indicates the number of responses for any input variable, and m the number
of samples. λi, j is the i-th response of the structure for the j-th sample. Decomposing the matrix
� through Singular Value Decomposition (SVD), we arrive at

�=U�VT =
r∑
j=1

ujσjvTj (5)

where r=min (m, n). U ∈Rn×n and V ∈Rm×m are orthogonal matrices whose entries are denoted
by uij and vij, respectively. uj and vj are the eigenvectors of ��T and �T�, respectively. The two
eigenvectors are also called the left and right singular matrices of matrix �, respectively. � ∈Rn×m
is a diagonal matrix in which the diagonal elements σj (also called singular values) are arranged
in descending order.

By defining ϕj = uj and aj(αi)= σjvij, Eq. (5) can be rewritten as

λ(αi)=
r∑
j=1

ϕjaj(αi) (6)

where ϕj is defined as the orthogonal basis, and aj(αi) is the corresponding amplitude. Using
Eq. (6), the system responses at the selected samples can be expressed by a linear combination of
ϕj and aj(αi), which constitutes a reduced-order model (ROM) with less degrees of freedom than
the FOM.

Eq. (6) only approximates a discrete number of system responses that are already computed
using the FOM. To achieve a continuous approximation of system responses for any arbitrary



CMES, 2021, vol.128, no.1 5

input parameters, the radial basis functions (RBF) are used to interpolate the amplitudes in the
reduced subspace

a(α)≈ â(α)=
N∑
i=1

ηiφi(α) (7)

where N is the number of samples, φi is the i-th RBF and ηi the corresponding coefficient. φ(α)

takes the form of Gaussian kernel function

φi(α)= e−(1/γ 2
i )‖α−αi‖ (8)

in which the symbol ‖·‖ represents the Euclidean norm, and the coefficient γi determines the width
of the basis functions.

By letting a(αj)= â(αj), the values of the coefficient η can be determined by solving Eq. (7).
Substituting Eq. (7) into Eq. (6) gives rise to

λ(α)=
r∑
j=1

ϕjâj(α) (9)

Figure 1: Th flow chart

Hence, the system response for any sample of the stochastic variable can be obtained straight-
forwardly by Eq. (9) without needing to solve the partial differential equations repeatedly. The
algorithm mentioned above is illustrated in the Fig. 1. The POD-RBF enable us to conduct MCs
without needing to perform FOM simulation for all of the sample points. However, the FOM is
still essential for getting snapshots which is solved by IGABEM in our work as detailed in the
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following section. Therefore, the number of the samples or snapshots should be selected carefully
to strike a balance between the accuracy and efficiency. In the future, we will introduce error
estimation technique to improve the performance of our method. In addition, it is highlighted
that in order to further enhance the computational efficiency, the number of basis functions in
Eqs. (5) and (9) can be decreased by selecting the basis functions corresponding to the elements
with larger values in �.

4 Fracture Modeling with IGABEM

4.1 Boundary Integral Equations in Fracture Mechanics
Consider an arbitrary domain 	 enclosed by boundary 
, where the portion of boundary 
ū

is prescribed displacement boundary condition, 
t̄ is imposed traction boundary condition, and

c is a traction free crack with the upper surface 
c+ and the lower surface 
c− (Fig. 2).
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c
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Figure 2: A crack model (a) a cracked elastic body; (b) crack surfaces

Because the crack upper surfaces and lower surfaces are geometrically overlapping, the source
points on the two surfaces will coincide and thus the boundary integral equations (BIE) corre-
sponding to them are identical to each other, which leads to the degradation of the system matrix.
An effective approach—dual boundary element method (DBEM) [53] can overcome this difficulty
by using the traction BIE on one of the crack surface (
c+ ), and the displacement BIE on the
other crack surface (
c− ) and the rest of the boundary (
) (Fig. 2b) [53], i.e.,

cij(s)uj(s)=
∫




[
U∗
ij (s,x)tj(x)−T∗

ij (s,x)uj(x)
]
d
(x), for s ∈
c−

cij(s)tj(s)=
∫




[D∗
ijk(s,x)tj(x)−S∗ijk(s,x)uj(x)]d
(x), for s ∈
c+ (10)

where s and x are the source point and the field point, respectively. U∗
ij and T∗

ij are the funda-

mental solutions of displacement boundary integral equations, and D∗
ijk and S∗ijk are fundamental

solutions of traction boundary integral equations (Appendix A). cij(s) denotes the jump term and
equals 0.5 δij for smooth boundaries.
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4.2 IGABEM for Fracture Mechanics
As a powerful geometric modeling technique, NURBS is the industrial standard of CAD and

also central to isogeometric analysis. Given a knot vector � = [ξ0, ξ1, . . . , ξm], which is a non-
decreasing set of coordinates in parametric space, a B-spline basis function is defined as follows:

Ni, 0 =
⎧⎨
⎩
1, if ξi ≤ ξ < ξi+1

0, otherwise
(11)

Ni,p(ξ)= ξ − ξi

ξi+p− ξi
Ni,p−1(ξ)+ ξi+p+1− ξ

ξi+p+1− ξi+1
Ni+1,p−1(ξ) (12)

where n denotes the order of basis functions and ξ the parametric coordinate. As an extension
of B-splines, NURBS basis function is written as

Ri,p(ξ)= Ni,p(ξ)wi∑n
k=1Nk,p(ξ)wk

(13)

where Ri,p(ξ) is the NURBS basis function and wi the weight. A NURBS curve can be
constructed by linear combination of NURBS basis functions and the associated coefficients

x(ξ)=
n∑
i=1

Ri,p(ξ)Pi (14)

where x stands for the Cartesian coordinate of a point and ξ is its parametric coordinate. Pi
represents the Cartesian coordinates of control points in the physical space.

In IGABEM, NURBS are used not only for building geometries but also discretizing the
boundary integral equations. Hence, the displacement and traction around the boundary can
be expressed piecewisely as a linear combination of the NURBS basis function and the nodal
parameters,

uj(ξ)=
p+1∑
l=1

Rl,p(ξ)dlj

tj(ξ)=
p+1∑
l=1

Rl,p(ξ)qlj (15)

where dlj and qlj are the coefficients for discretizing the displacements and the tractions, respec-

tively. It is noteworthy that they are not the nodal displacements or tractions because the NURBS
basis functions lack the Kronecker-delta property.

By substituting Eq. (15) into the boundary integral equation (10), we can get the following
discretization formulation of Eq. (10)

cij(s)
p+1∑
I=1

Nē
I (ξ̂

′)dIēj =
Ne∑
e=1

p+1∑
I=1

[∫ 1

−1
U∗
ij(x(ξ̂ ), s)Ne

I (ξ̂ )J(ξ̂ )d ξ̂

]
qIej
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−
Ne∑
e=1

p+1∑
I=1

[∫ 1

−1
T∗
ij(x(ξ̂ ), s)Ne

I (ξ̂ )J(ξ̂ )d ξ̂

]
dIej (16)

cij(s)
p+1∑
I=1

Nē
I (ξ̂

′)tIēj =
Ne∑
e=1

p+1∑
I=1

[∫ 1

−1
D∗
ijk(x(ξ̂ ), s)Ne

I (ξ̂ )J(ξ̂ )d ξ̂

]
qIej

−
Ne∑
e=1

p+1∑
I=1

[∫ 1

−1
S∗ijk(x(ξ̂ ), s)Ne

I (ξ̂ )J(ξ̂ )d ξ̂

]
dIej (17)

where ē represents the ē-th NURBS element, and ξ̂ ′ is the local coordinate of the collocation
point. In order to perform Gaussian quadrature, we map all the variables from physical space to
local coordinate space ξ̂ ∈ (−1, 1), and the Jacobian transformation matrix J(ξ̂ ) is calculated as
follows:

J(ξ̂ )= d


dξ̂
= d


dξ

dξ

dξ̂
(18)

The boundary element method involves weakly singular, strongly singular and hyper singular
integrals, which have to be addressed carefully. For this purpose, the subtraction of singularity
technique is used, whose implementation details can be seen in [50]. After solving the governing
linear equations of IGABEM, we can obtain the displacement and traction field around the
boundary. Then, we are able to evaluate the stress intensity factors (SIFs) with M integral [54] and
predict the crack propagation direction with maximum hoop stress criterion [55]. See Appendix B
for details.

5 Numerical Examples

In the following examples, the input random variables are supposed to follow the Gaussian
distribution with the expectation being 0.5 and the standard deviation being 0.033. The sampling
method for Gaussian distribution function used in this paper is to select sample points in the
interval [E − 3D, E + 3D]. It is noted that only the problems with a single random input vari-
able are considered in the present paper.The application of the method for the problems with
multidimensional random input variables will be investigated in the future.

5.1 Inclined Center Crack Problem
A plate model with an inclined center crack under remote biaxial tension is considered in

this section, as shown in Fig. 3. The crack inclination angle is β ∈ [0, π/2], edge length L = 1,
and crack length 2a= 0.02. The load σ0 is applied in the X2-direction and λσ0 is applied in the
X1-direction, in which λ is the load ratio that varies from 0 to 1 and σ0 = 1. The Young’s modulus
is E = 1 and Poisson’s ratio υ = 0.3. The M integral method is used for evaluating SIFs in this
example. The analytical solution of the SIFs for the inclined center crack problem is available, as
follows [56]:

K1 = σ
√

πa(cos2β +λsin2β)

K2 = σ
√

πa(1−λ) cosβ sinβ (19)
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Figure 3: Structural model for an inclined center crack problem

The number of NURBS elements on the initial crack surface is set as 3, and the total DOFs
is 86. We fix the crack angle β to be π/4, and set the load ratio λ as the input parameter. The
response vector consists of 48 nodal displacements in X2-direction and two SIFs (K1 and K2).
Before MCs is carried out we firstly test the accuracy of ROM in evaluating SIFs. We select
21 sample points of λ that are evenly distributed in the interval [0, 1] to get the reduced bases
of POD and interpolate the system responses with RBF. It is found that the values of K1 and
K2 computed by the numerical solution with ROM have a good agreement with the analytical
solutions, as shown in Fig. 4.

Figure 4: The variation of SIFs with the load ratio λ

Tab. 1 lists the normalized values of SIFs (the values divided by the exact solution) calculated
by the FOM with IGABEM and that by the ROM with POD-RBF. The normalized value of
K1 changes slightly with the increase of λ, while the normalized value of K2 increases steadily.
Generally, both the results of the FOM and ROM are in good agreement with the analytical
solutions. It is worth noting that the width γ of Gaussian kernel function has an important
influence on the accuracy of RBF interpolation. According to the literature [57], the parameter
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γ can be determined via γ =N− 1
m , where N represents the number of samples and m represents

the dimension of the random variable.

Table 1: Normalized results of the FOM and ROM

λ K/Kexact

FOM, K1 ROM, K1 FOR, K2 ROM, K2

0.12 1.001109 1.001109 1.001169 1.001167
0.14 1.001109 1.001109 1.001170 1.001169
0.16 1.001110 1.001109 1.001171 1.001170
0.18 1.001109 1.001110 1.001172 1.001171
0.42 1.001110 1.001109 1.001196 1.001193
0.44 1.001109 1.001110 1.001199 1.001196
0.46 1.001110 1.001109 1.001202 1.001199
0.48 1.001109 1.001110 1.001205 1.001202
0.82 1.001109 1.001110 1.001374 1.001348
0.84 1.001110 1.001109 1.001406 1.001374
0.86 1.001109 1.001110 1.001447 1.001406
0.88 1.001110 1.001109 1.001502 1.001446

To investigate the influence of the sample size on the accuracy of ROM, we construct a vector,
0.02, 0.04, . . . , 1, for different values of λ. From the vector, 20, 40, 60 and 80 samples are selected
to form the reduced space, respectively, and the remaining points of the vector are used as the
prediction points whose SIFs are computed with the ROM based on POD-RBF. We introduce
R-squared method to quantify the accuracy of numerical results, as follows:

R2 = 1−
∑n

i=1
(
yi− ŷi

)2∑n
i=1 (yi− ȳi)2

(20)

where n is the total number of the predication points, the subscript i the i-th prediction point,
yi the numerical value of the SIF, ŷi the analytical solution of the SIF, and ȳi the average
of the analytical solutions of the SIFs over these prediction points. The value of evaluation
coefficient R2 is between 0 and 1, which indicates the deviation of numerical solutions and the
exact solutions. The closer its value is to 1, the higher the accuracy of the numerical result is. As
shown in Tab. 2, the evaluation coefficient R2 gradually increases with the sample number. When
the sample number is 80, the evaluation coefficient R2 is 1.000, suggesting that the result of ROM
is consistent with the analytical solution. It is also noted that R2 = 0.859 when the sample size is
20, so a good accuracy can still be reached with moderate sample size.

Table 2: Comparison of the results of four different schemes

Number of samples 80 60 40 20
Number of prediction points 20 40 60 80
R2 for K1 1.000 1.000 0.995 0.859
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Next, we conduct MCs to evaluate the expectation and standard deviation of stress intensity
factors. The following three different schemes are adopted for comparison.

1. Stochastic fracture analysis with MCs using FOM is conducted based on 51 samples of λ

that are evenly distributed between 0 and 1. Correspondingly the system equations need to
be solved with IGABEM 51 times.

2. We build the ROM with 10, 20, 30, and 40 samples, respectively, and then perform MCs
using the 51 samples. In this case, the dimension of the matrix � in Eq. (5) is selected as
min(m, n).

3. Similar to Case 2, the MCs is performed with the ROM that is established with 10, 20, 30
and 40 samples, respectively. However, we will further decrease the number of the reduced
bases of the ROM by truncating the � matrix by 10−0.22 σmax.

As can be seen from Figs. 5 and 6, when the number of samples for reduced-order modeling
is small, the results of Cases 2 and 3 have large deviation from that of Case 1. However, with
the increase of samples, the solutions of Cases 2 and 3 approach that of Case 1 rapidly. With 30
samples, the solutions of Cases 2 agree with Case 1 well, which demonstrates that the combination
of POD and RBF can evaluate the expectation and standard deviation in stochastic analysis
accurately. In addition, because the number of reduced bases in Case 3 is decreased, a larger error
occurs compared to Case 2 although the computational time is further accelerated. Therefore, it
is very important to select an appropriate order for the ROM based on POD-RBF to strike a
balance between its accuracy and efficiency.

Number of samples

St
an

da
rd

 d
ev

ia
ti

on
 o

f 
 K

1

10

Case 1
Case 2
Case 3

20 30 5040
0.0245

0.0250

0.0255

0.0260

0.0265

0.0270

0.0275

0.0280

Figure 5: Standard deviation of K1

Now we fix the load ratio λ at 0.5, and study the influence of the crack inclination angle β

on the fracture analysis results. 50 samples of the input parameter β ∈
(
0,

π

2

)
are used for Monte

Carlo simulation, in which 25 samples are used for ROM. The SIFs in terms of different input
variables are evaluated by POD-RBF and FOM, respectively (Fig. 7). Tab. 3 lists the values of the
expectation and standard deviation of SIFs computed by MCs with FOM and ROM, respectively.
It can be found from this table that the results of ROM and the FOM have good agreement to
each other, which verifies the correctness and effectiveness of the algorithm.
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Figure 6: Expectation of K1

Full model K1

Full model, K2

Reduced model, K1

Reduced model K2

Figure 7: The value of SIFs obtained by using FOM and ROM

Table 3: Expectation, standard deviation and the corresponding calculation time with 50 samples

SIFs Expectation Standard deviation Time (s)

ROM FOM ROM FOM ROM FOM

K1 0.13694 0.13694 4.0413E-04 4.0419E-04 402 800
K2 0.03880 0.03880 5.2915E-05 5.2922E-05

5.2 Cracks at Rivet Holes
In this section, we further test the performance of this algorithm using an example of a plate

with two rivet holes, as shown in Fig. 8. The Young’s modulus is E = 1000 and Poisson’s ratio
υ = 0.3. The load is σy = 1 and σx = 0. The crack inclination angle θ = π/4, initial crack length
a= 0.1, and the number of NURBS elements on the crack surface is 3.
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Figure 8: A plate with initial cracks emanating from the holes [58]

Suppose the radius r ∈ (0.041, 0.286) of the right circular hole is a random variable and
follows a Gaussian distribution. Based on the FOM simulation with IGABEM, Fig. 9 shows that
the K1 of the right crack increases significantly with r. We select 20 samples to construct ROM,
and conduct MCs with 40 sampling points. Tab. 4 shows the expectation, standard deviation and
calculation time of MCs with FOM and ROM. It can be seen that the ROM leads to the results
that are consistent with the FOM, and meanwhile reduces computational time.

Figure 9: The value of SIFs for two crack surface with the input parameter

Now we consider the influence of material parameter on displacement of cracks. The elastic
modulus E ∈ (500, 1500) is set as the input variable, which follows Gaussian distribution. 51
samples are used for MCs, and 25 samples are used to construct the ROM based on POD and
RBF. We choose the displacements of four collocation points on the crack surface as the response
functions, whose coordinates are (2.91598244, 2.49410744), (2.85147368, 2.42959868), (2.08401756,
2.50589256), and (2.14852632, 2.57040132), respectively. Tab. 5 shows the expectation, relative
standard deviation (RSD) of the displacement in y direction and calculation time corresponding
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to reduced-order and full-order MCs, respectively. It can be found from Tab. 5 that the stochastic
analysis results of ROM are consistent with that of FOM.

Table 4: Expectation, standard deviation and calculation time

SIFs Expectation Standard deviation Time (s)

ROM FOM ROM FOM ROM FOM

K1(R) 0.6096 0.6245 2.6300E-02 1.7400E-02 1204 2400
K2(R) 0.3177 0.3264 9.3163E-05 9.3163E-05
K1(L) 0.4154 0.4154 1.6547E-04 1.6674E-04
K1(L) 0.3214 0.3213 5.1318E-07 5.0032E-07

Table 5: Expectation, relative standard deviation and calculation time with MCs

No. Expectation RSD Time (s)

ROM FOM ROM FOM ROM FOM

1 −2.6105E-04 −2.6458E-04 1.0394 1.0593 1002 2040
2 −9.9653E-05 −1.0093E-04 1.0367 1.0590
3 2.6069E-04 2.6417E-04 1.0389 1.0593
4 9.9116E-05 1.0051E-04 1.0421 1.0591

xx

xx

xx

xx

xx

xx

Figure 10: Crack propagation path under different loads

We also study how the crack propagation path is influenced by the input parameter of σx.
The crack propagation distance is fixed at 0.05 for each iteration step. A total of 16 steps are
solved here. The path of crack propagation for σx =−0.5, 0, 0.5 is depicted in Fig. 10. Supposing
the input parameter σx follows Gaussian distribution, we calculate the expectation and standard
deviation of crack propagation path, which are represented by the coordinates of a series of crack
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tip positions. 10 samples are employed for reduced-order modeling and and 20 samples for MCs.
It can be seen from Tab. 6 that the expectation and standard deviation of the crack extension
path obtained from the ROM and that from the FOM have good consistency. It demonstrates the
correctness and effectiveness of the stochastic analysis method proposed in this work.

Table 6: Expectation and standard deviation for Y coordinate of crack tip positions

Step Expectation Standard deviation

FOM ROM Error FOM ROM Error

2 2.42287 2.42288 3.30E-06 6.6115E-04 6.6897E-04 1.18E-02
3 2.41983 2.41985 6.41E-06 1.3728E-03 1.3890E-03 1.18E-02
4 2.41602 2.41603 6.00E-06 1.8918E-03 1.9118E-03 1.06E-02
5 2.41176 2.41177 2.49E-06 2.3191E-03 2.3318E-03 5.47E-03
6 2.40707 2.40708 3.12E-06 2.6087E-03 2.6176E-03 3.43E-03
7 2.40314 2.40313 3.33E-06 2.6894E-03 2.6835E-03 2.17E-03
8 2.40401 2.40401 – 2.6265E-03 2.6329E-03 2.42E-03
9 2.41523 2.41524 3.93E-06 2.7772E-03 2.7868E-03 3.47E-03
10 2.43724 2.43725 3.69E-06 3.0894E-03 3.0978E-03 2.73E-03
11 2.46494 2.46494 – 3.1653E-03 3.1687E-03 1.07E-03
12 2.49044 2.49043 3.21E-06 2.4434E-03 2.4303E-03 5.38E-03
13 2.50285 2.50285 – 4.0373E-04 4.0756E-04 9.50E-03

6 Conclusion

The paper presents a novel framework for Monte Carlo simulation of multi-dimensional
uncertainties of two-dimensional linear fracture mechanics. We use the NURBS to build the
geometric model and discretize boundary integral equations. The IGABEM eliminates the repeat-
edly meshing procedure in uncertainty quantification, and retains the geometric exactness. The
combination of POD and RBF accelerates the stochastic analysis and maintains good accuracy
at low frequencies. In this work, the POD-RBF is used to approximate the structural response
of a single random input variable. The method can also be extended to the problems with
multidimensional random input variables, which will be investigated in the future. In addition,
the present method will be applied to three dimensional problems and multi-physics coupling
problems.
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Appendix A: Fundamental Solution

The fundamental solutions of displacement integral equation U∗
ij and T∗

ij are

U∗
ij =

1
8π(1−υ)μ

[(3− 4υ)δij ln(
1
r
)+ r,ir,j] (A.1)

T∗
ij =

−2
8π(1−υ)r

[A(nir,j− njr,i)+ nmr,m(Aδij + 2r,ir,j)] (A.2)

The fundamental solutions of traction integral equation D∗
ijk and S∗ijk are

D∗
ijk =

1
4π(1−υ)

1
r

[
(1− 2ν)(δkir,j + δkjr,i− δijr,k)+ 2r,ir,jr,k

]
nk(s) (A.3)

S∗ijk =
μ

2π(1−υ)

1
r2
{2r,mn,m[(1− 2ν)δijr,k+υ(δikr,j+ δjkr,i)− 4r,ir,jr,k]

+ 2υ(nir,jr,k+ njr,ir,k)+ (1− 2ν)(2nkr,ir,j + njδik+ niδjk)− (1− 4υ)nkδij}nk(s) (A.4)

Appendix B: Evaluation of Stress Intensity Factors

The M integral based on the J integral is an effective method to extract SIFs. The Jk integral
is defined as follows:

Jk := lim

ε→0

∫

ε

(Wδjk− σijui,k)njd
 = lim

ε→0

∫

ε

Pkjnjd
 (B.1)

where Pkj is the Eshelby tensor, strain energy density W = 1/2σijεij. The center point of polar
coordinate system is located at the crack tip. The limited integral boundary 
ε is an open circle
with a center at the crack tip, as shown in Fig. A.1.
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Figure A.1: J integral

Now, consider two independent equilibrium states of an elastically deformable object, the
actual state (superscript ‘1’) and the auxiliary state (superscript ‘2’). Superimpose these two equi-
librium states into one equilibrium state. It is assumed that the crack surface is flat in a sufficiently
small radius of the contour circle. The conservation law can be reduced to the path-independent J
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integral along an arbitrary path 
ε enclosing the crack tip located at the origin of the coordinates.
Thus, the J integral of the superposition state can be expressed as

J(1+2) =
∫


ε

[
1
2

(
σ

(1)
ij + σ

(2)
ij

) (
ε
(1)
ij + ε

(2)
ij

)
δ1j−

(
σ

(1)
ij + σ

(2)
ij

) ∂(u(1)
i + u(2)

i )

∂x1

]
njd
 (B.2)

Rearranging Eq. (B.2) into the following formulas:

J(1+2) = J(1) + J(2) +M(1,2) (B.3)

where

M(1,2) =
∫


ε

[
W (1,2)δ1j− σ

(1)
ij

∂u(2)
i

∂x1
− σ

(2)
ij

∂u(1)
i

∂x1

]
njd
 (B.4)

with W (1,2) being the mutual potential energy density of the elastic body.

The J integral under two states can be expressed as a function associated with K, as follows:

J(1+2) = J(1) + J(2) + 2α
(
K(1)
1 K(2)

1 +K(1)
2 K(2)

2

)
(B.5)

where α = (1−υ2)
E for plane strain problem, otherwise α = 1

E for plane stress problem.

Upon substitution of Eq. (B.3) into (B.5), we can obtain new expression of the M integral,
as follows:

M(1,2) = 2α
(
K(1)
1 K(2)

1 +K(1)
2 K(2)

2

)
(B.6)

The M integral shown in Eqs. (B.4) and (B.6) only involves interaction terms, which can be
directly used to solve the mixed mode crack problem of linear elastic solids.

After SIFs are calculated, the direction of crack propagation can be determined by the
maximum hoop stress criterion, the discriminant equation is as follows:

θc = 2arctan

⎡
⎣ −2(K2/K1)

1+
√
1+ 8(K2/K1)

2

⎤
⎦ (B.7)

where θc is the direction of crack propagation, in which the hoop stress is maximum. It can be
seen that the accuracy of crack propagation simulation is mainly determined by K2/K1.


