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ABSTRACT

Anomaly detection is an important method for intrusion detection. In recent years, unsupervised methods have
been widely researched because they do not require labeling. For example, a nonlinear autoencoder can use recon-
struction errors to attain the discrimination threshold. This method is not effective when the model complexity is
high or the data contains noise. The method for detecting the density of compressed features in a hidden layer can
be used to reduce the influence of noise on the selection of the threshold because the density of abnormal data in
hidden layers is smaller than normal data. However, compressed features may lose some of the high-dimensional
distribution information of the original data. In this paper, we present an efficient anomaly detection framework
for unsupervised anomaly detection, which includes network data capturing, processing, feature extraction, and
anomaly detection. We employ a deep autoencoder to obtain compressed features and multi-layer reconstruction
errors, and feeds them the same to the Gaussian mixture model to estimate the density. The proposed approach
is trained and tested on multiple current intrusion detection datasets and real network scenes, and performance
indicators, namely accuracy, recall, and F1-score, are better than other autoencoder models.
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1 Introduction

In the last few years, numerous network attacks have emerged. An intrusion detection system
acts as a barrier for a computer system, and can detect network anomalies. A typical intrusion
detection method includes anomaly detection and misuse detection. The latter monitors network
traffic or system activities for known misuse behaviors and can add known simple attacks to
the model; however, it cannot detect unknown attacks. Anomaly detection identifies anomalies
by establishing rules for normal behavior. With the extensive application of deep learning, unsu-
pervised anomaly detection method is gaining increasing prominence [1,2] because it can train
samples without labels and detect unknown attacks.
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Normal behavior rules can be established without labeling by using unsupervised anomaly
detection, and an appropriate value can be set as a detection threshold. Supervised learning has
a number of shortcomings, which can be enumerated as follows: 1) it requires manual label-
ing, which is time-consuming and costly; 2) manually labeled data may be misclassi�ed, which
can potentially affect the effect of training; 3) training data for supervised model classi�cation
cannot cover huge types of attacks, which makes it challenging to identify new types of attack
methods [3,4].

Although unsupervised models can detect unknown attack behavior, it is dif�cult to select the
threshold to detect anomalies with low accuracy and high false alarm rate. Such models therefore
cannot attain the requisite effect and need improvement.

Owing to the stated limitations, we propose a lightweight and network-based anomaly detec-
tion framework MEAEDE, which comprises a deep autoencoder (DAE) and density estimate
network (DEN). To estimate the density of data for anomaly detection, we derive multi-layer
reconstruction errors (MRE), which is the correlation coef�cient of input and output from DAE.
As the data in the latent layer has a low dimension to compute density, we can use normal data
in the latent layer to form a standard feature space, while abnormal data in the latent can form
another feature space, and thus it can be easily distinguished. The modules of our framework
include network data capturing, managing, feature extraction, and anomaly detector. DAE is
deployed in the detector for data compression and reconstruction, and then a Gaussian mixture
model (GMM) is used to calculate the energy of features from DAE to obtain the detection
threshold. Our framework has the following characteristics:

1) Packet capture: We use network cards to capture packets to obtain real-time data; to avoid
data accumulation in memory, we quickly process and discard the processed data.

2) Unsupervised model: Compressed features, MRE, and correlation coef�cients between input
and reconstruction of DAE are �rst gathered, and then fed to GMM for energy detection;
data can be then classi�ed as anomalous if energy exceeds a threshold. Our experimental
results prove that MRE can compensate for the loss of information for a latent layer, which
can in turn enhance the performance of anomaly detection.

In DAE, abnormal data cannot represent compressed features effectively; therefore, reconstruc-
tion error is generally used to detect the anomaly. However, samples used for model training may
contain noise, which could introduce problems during threshold acquisition. Density estimation
in a hidden layer can decelerate this impact and also cause loss of pertinent sample information.
With the aim of feature compensation in hidden layer of autoencoder for density estimation in
GMM, we gather compressed features, MRE, and the correlation coef�cient between the raw input
and reconstruction features, feed them to GMM for density detection, and �nally construct an
appropriate objective function to jointly optimize sample loss. Furthermore, we adopt the acquired
energy value as the standard for obtaining a discrimination threshold. The experimental results
show that there is a strong correlation between these factors, which can effectively classify normal
and abnormal data.

In brief, the contributions of this paper can be enumerated as follows:

1. We propose a lightweight network-based anomaly detection framework MEAEDE, which
includes data capturing, ef�cient data processing, feature extraction, and anomaly detection.
First, packets in the network are captured and parsed to bidirectional �ows by a Packet
Capturer module; next, time-related features are extracted by a Feature Extractor module,
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which are further sent to an Anomaly Detector module to detect whether the data is nor-
mal. During this entire procedure, a Data Manager module is responsible for continuously
capturing packets and removing processed packets.

2. Our framework can ef�ciently process and manage data including rapid feature extraction
and prompt discarding of processed data; the experiment results show that MEAEDE has
a high speed in training the model and easy deployment of the network.

3. MRE and other features from DAE are employed to form new features c, which are further
fed into GMM to calculate energy and acquire the detection threshold. Our experimental
results show that these features can greatly improve the performance of network anomaly
detectors. We will discuss how MRE can improve the detection results of the autoencoder
in Section 3.

The rest of this paper is organized as follows: Section 2 discusses related work in the domain
of unsupervised anomaly detection. Section 3 describes the architecture of MEAEDE and details
of its components. Section 4 presents the evaluation and includes experimental settings and test
results. Section 5 outlines the conclusion and future work.

2 Related Work

There is two mainstream intrusion detection that is based on supervised and unsupervised
methods. In the past, supervised learning methods have been widely researched because of their
high accuracy, but they also have obvious shortcomings. First, the training data used to feed
needs to be manually labeled; it is dif�cult to de�ne abnormal and normal data and differentiate
between them. Moreover, they have a low performance for the detection of unseen attacks, and
thus unsupervised methods have been extensively researched in the past few years.

2.1 Conventional Anomaly Detection
Previous studies based on unsupervised anomaly detection have various approaches, which

can be brie�y categorized into distance-based, reconstruction-based and probabilistic-based meth-
ods [2]. Probabilistic-based methods such as GMM [5] and Kernal density estimate (KDE) [6] are
used to estimate the density of normal points; a point will be classi�ed as an anomaly if it has
a lower density than a prede�ned value. Reconstruction-based method, such as principal com-
ponent analysis (PCA) and autoencoder methods, assumes that the anomalies cannot effectively
reconstruct from a compressed representation in a low dimension; therefore, higher reconstruction
error may be detected as anomalies. PCA is used to reduce the dimension of input data when
the sample has a high dimension [7,8]. This method can reduce the cost when data has a high
complexity. However, a drawback of PCA is that the new features obtained after dimension
reduction do not acquire all information from the original space, and it’s hard to determine the
dimension of subspace and detection threshold. Distance-based methods assume that abnormal
data is far from a clustered set, while normal data is gathered within an acceptable cluster. In [9],
the authors use an unsupervised clustering method to establish a classi�cation center for data and
calculates the distance of samples from the center to detect anomalies. However, the feature vector
with a higher dimension has a high computational complexity, and it is not advisable to represent
features simply by computing distance.

2.2 Autoencoder-Based Approaches
The state-of-the-art machine learning methods are widely used in anomaly detection [10].

With developments in deep learning, a few unsupervised methods, such as generative adversarial
networks (GANs) and autoencoders, have been used in anomaly detection. In [11], the authors
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apply a GAN model for anomaly detection and detect anomalies on a trained generator. In [12],
anomaly detection is accomplished using a variational autoencoder predicated on a gradient-based
�ngerprinting technique. In [13], the authors use layers of autoencoders to calculate the mean
square error of sample and reconstructed features in order to capture the data of real environment
and obtain advantages in an effective way.

In the last few years, methods for obtaining reconstruction error from DAE have achieved
effective results [14,15]. In these methods, normal data is �rst trained and its reconstruction is
obtained, and then test data is used to get the deviation from normal data of a trained model;
if the deviation exceeds the predetermined threshold, the data is classi�ed as anomaly. However,
these methods rely only upon reconstruction errors, and the effect is not ideal when the training
sample contains noise or the model has a high complexity. The reconstruction error of anomalies
may be hidden within the established threshold range because of the presence of noise. Therefore,
some scholars have proposed a hidden layer density estimate method because the density of
abnormal data in the hidden layer is lower than normal data. In [16], the authors combine
autoencoder and density estimate for anomaly detection; their approach is based on the feature
density of the hidden layer in the autoencoding network. First, the DAE network is utilized to
acquire the subspace of original data; next, a Gaussian kernel function is used to obtain the
likelihood of data points. This method can ef�ciently estimate the density of the sample in the
hidden layer in a low dimension.

2.3 Mixed Approaches Combine Autoencoder and Density Estimate
The aforementioned methods either consider only the density of the hidden layer or the

reconstruction error and fail to realize the effect of their inter-relation on the prediction of
the sample density, and thus the resultant effect is not ideal when the training sample contains
noises. In [17], the authors propose a deep autoencoding Gaussian mixture model (DAGMM) by
combining DAE with GMM. The reconstruction error and compressed features in the hidden layer
are adopted to construct new features, energy is acquired after feeding new features into GMM,
and desirable results are obtained. However, the threshold of discrimination needs to be set in
accordance with the prior knowledge of the dataset, and thereby the approach lacks generalization
ability; In addition density estimation on compressed layer loses some high-level information, and
thus the method needs to be improved in the actual scenario.

Inspired by the density estimation method, we adopt DAE and gather compressed features,
MRE, and the correlation coef�cient of input and reconstruction as new features, and then
construct a suitable energy detection network to calculate the energy of the new features. Because
normal data has lower energy (i.e., higher density) during training, the energy value is considered
a part of the loss function, so the threshold for judging anomalies is obtained through joint
optimization. One can infer from Section 3 why we adopt MRE, coef�cient correlation and
compressed features. In addition, we propose a complete and ef�cient network-based anomaly
detection framework, optimized in data capturing, package management, feature extraction and
anomaly detection. Precision, Recall, and F1-score are used as indicators for evaluating the
proposed model’s performance. The obtained experimental results con�rm the advantages of our
model.

3 Proposed Model

The framework of anomaly detection in this paper includes several modules of Data Capturer,
Data Manager, Feature Extractor and Anomaly Detector and is depicted in Fig. 1.
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3.1 Data Capturer
Data Capturer can continuously capture data from real network. The captured data can re�ect

information such as the source and purpose of the user. For example, the attacker who wants to
attack the server using a denial-of-service (DoS) attack or a distributed-of-service (DDoS) attack
will create a fake IP address, and then send a TCP SYN packet to the server. The server then
sends an SYN as a response but fails. Receipt of subsequent con�rmation packets causes the
server to wait, consume resources, and evently achieve the purpose of DoS.

Figure 1: The framework and components of MEAEDE

The characteristics of the package can re�ect its purpose to a certain extent, so it is possible
to analyze whether the data is abnormal by analyzing the package. In this paper, libpcap is used
to capture the original binary package, and then tcpdump can call the interface of libpcap and
parse acquired raw packet into a standard package format for use by Data Manager.

3.2 Data Manager
The captured packet is saved in the “.pcap” �les after parsing. In order to improve the

ef�ciency of memory management and feature extraction, we revise the tcpdump source code so
that it not only can capture packets continuously but also discard the processed data in time after
feature extraction. In our experimental results in Section 4, average extraction time of 14s for
every 100 k “.pcap” �le is obtained.

3.3 Feature Extractor
Changes in applications and services pose challenges to traf�c analysis, and thereby make

it dif�cult to handle encrypted information such as in VPN. There are various protocols or
services used for different applications. Time-related feature extraction is well adapted to the
changes of network services [18] and can be used to distinguish between different applications. We
extract bidirectional �ows from the parsed packets, which are de�ned as the same packet sequence
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(source IP, destination IP, source port, destination port, and protocol) and then estimate the time-
related information from the �ows as features. In a bidirectional �ow, the �rst packet determines
the forward (source to destination) and backward (destination to source) directions, so statistical
analysis based on time-related features can be calculated separately. Since TCP and UDP �ows
end upon receiving a FIN packet and with �ow timeout, the timeout of �ow is uni�ed to 15s in
this paper.

The collective procedure of Data Capturer and Feature Extractor is illustrated in Fig. 2, where
t1 ∼ tn is the start time of a �ow, and the packet vector is a “.pcap” �le. If the time interval
exceeds 15s or a FIN �ag is received, the �ow will be sent to Feature Extractor for further analysis.

Figure 2: The procedure of data capturer and feature extractor

At the beginning, we initialize n �ows in the �ow vector F = (f1, f2, . . . , fn) and then use
revised tcpdump to capture packets continuously; if the size of packet vector exceeds 10 k, the
packet �le is moved, and a new vector is created with the same name, while packet is sent to
its own �ow. A time vector is also created to record the previous time of a �ow; if the current
timeout exceeds 15 s or a FIN �ag of a TCP packet is received, then the �ow is sent to Feature
Extractor for further analysis.

Finally, we extract the features including time-related statistical information (mean and vari-
ance of packet length), packet number, packet length, and TCP �ag bit from the �ows to form
input features of the anomaly detector. Finally, we acquire 49 features showed in Tab. 1, and the
extracted features are normalized to 0-1 for training and testing of anomaly detector.

3.4 Anomaly Detector
Owing to the merits of the unsupervised model summarized in Section 1, DAE is used in

this paper. However, the method of acquiring the threshold on the basis of reconstruction error is
sensitive to the selection of parameters and can be easily affected by noise. Moreover, compressed
features are not taken into account, which in turn hinders the detection effect. Therefore, MRE,
compressed features in the hidden layer, and correlation coef�cients of input and reconstruction
are gathered to form new features. GMM is further used to calculate sample energy, and we design
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appropriate loss functions, and use the random gradient descent method (SGD) to jointly optimize
the loss of each component. Details will be introduced in the following sections.

Table 1: Description and value of features in a bidirectional �ow

Features Value

Duration (time duration of a �ow) –
sdt (src to dst time of a �ow) Mean, max, min, std
dst (dst to src time of a �ow) Mean, max, min, std
a2in (packet num from active to idle) Mean, max, min, std
i2an (packet num from idle to active) Mean, max, min, std
tfbn (tcp �ag bit num) SYN, FIN, RST, PSH, ACK, URG
lph (length of packet head) Mean, max, min, std
lpd (length of packet data) Mean, max, min, std
ps (packet size in a �ow) Mean, max, min, std
idt, act (idle time and active time) Mean, max, min, std
noss2d (number of sequence from src to dst) Mean, max, min, std
nosd2s (number of sequence from dst to src) Mean, max, min, std
fps (�ow packet number/s) –
fbs (�ow byte number/s) –

The procedure of acquiring MRE from autoencoder is illustrated in Fig. 3, wherein the green
neurons denote hidden layer neurons, yellow neurons are compressed features, and blue neurons
are input and output data points. In Figs. 4 and 5, MRE distribution of KDDCUP99 and NSL-
KDD datasets in a seven-layer autoencoder (including four layers of the encoder and three layers
of the decoder) shows that symmetry reconstruction errors can clearly divide normal points and
anomalies. In Figs. 4 and 5, cost1 represents the error of the �rst hidden layer of the encoder
and the second layer of the decoder, cost2 represents the error of the second hidden layer of the
encoder and the �rst hidden layer, and cost3 is the error of input data and output data of the
decoder. Therefore, in our experiment, described in Section 4, we derive MRE and other features
to acquire a new feature vector for density estimation of GMM in the last epoch of the training
procedure, and the results reveal that MRE is a powerful feature in our network-based anomaly
detection framework.

3.4.1 Loss of DAE
Generally, DAE consists of an encoder and a decoder; the encoder can compress original

data into latent representation, while the decoder tries to reconstruct original data from latent
layer. Let mark xi be an original data point; we can then get a latent representation hi by encoder
function enc(xi, θ), where θ denotes parameters of the encoder. Furthermore, the reconstruction
vector can be expressed as yi = dec(γ ; hi), where γ is the parameters of the decoder. We de�ne
the objective function of DAE as

L1 (θ, γ)=
1
m

m∑
i=1

(
1
2
‖xi− yi‖2

)
(1)

where m represents the count of input data.
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Figure 3: The procedure of MRE, where green points denote hidden layer neuros, yellow points
are compressed features, and blue points are input and output data point

Figure 4: Reconstruction error distribution under KDDCUP99 with two hidden layers of the
encoder and the decoder

3.4.2 New Features
To represent the reconstruction error, we use the root mean square error (RMSE), which

represents the arithmetic square root of the difference between input and reconstruction and is
de�ned as

ei =

√∑d
j=1(x

(j)
i − y

(j)
i )

2

d
(2)

where d denotes the dimension of input, i is the i-th data point, and j is the j-th dimension of
a layer. Pearson’s correlation coef�cient is obtained by dividing the covariance between input and
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reconstruction by the product of the standard deviations between variables and is expressed as

ρi =
cov(xi, yi)
σxi .σyi

(3)

where cov(.) is the covariance of xi and yi, σ is the standard deviation of a vector. Further, we
can get MRE using Algorithm 1.

Figure 5: Reconstruction error distribution under NSL-KDD with two hidden layers of the
encoder and the decoder

We can then acquire ci = [hi, ei, ρi, mi], where hi denotes compressed feature, and mi is MRE.

We build a DEN to calculate the density of sample, which can receive a new feature c from
DAE, and generate a K-dimensional distribution named π̂ . K denotes the number of components
of GMM; note that to calculate the energy value, we feed π̂ into the GMM. In addition, we
adopt GELU [19] as the activation function for DAE and DEN; it can be de�ned as

GELU (x)= xP (X ≤ x)= x8(x) (4)

As x decreases, the probability of it being classi�ed becomes 0. As x increases, the activation
value also increases. This type of activation method not only retains the probability, but also
retains the dependence on the input.

3.4.3 GMM
GMM is a linear combination of multiple Gaussian functions. Assuming the density of

anomalies to be lower than that of normal data, we train the energy threshold of normal data,
and the input data will be classi�ed as abnormal if energy exceeds the threshold. Fig. 6 shows
energy distribution between normal data and anomalies under DDoS.
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Figure 6: Energy distribution of normal data and anomalies under DDoS attack, where yellow
points are anomalies, while purple points denote normal data

For input c, the probability prediction of components generated by GMM is expressed as

π̂ = softmax(DEN (c; ω)) (5)

where ω is the parameter of DEN. Thus, we de�ne the probability of c as

p (c)=
K∑
k=1

ϕ̂k ·N (c |µk, 6k) (6)

where N (c |µk, 6k) is the k-th component of GMM, ϕ̂k is mixture coef�cient with limitation

K∑
k=1

ϕ̂k = 1 (7)

Given m samples from DAE, we can get the average probability, mean value and covariance
of each component using DEN and GMM as

ϕ̂k =

m∑
i=1

π̂ik

m
, µ̂k =

∑m
i=1 π̂ik · ci
π̂ik

, 6̂k =

∑m
i=1 π̂ik(ci− µ̂k)(ci− µ̂k)

T∑m
i=1 π̂ik

(8)

Furthermore, we can de�ne sample energy as

E (z)=− log

 K∑
k=1

ϕ̂k
exp(−1

2(c− µ̂k)
T6̂−1

k (c− µ̂k))√
|2π6̂k|

 (9)

Finally, we get the objective function as

L(θ , γ , ω, µ̂, ϕ̂, 6̂)=L1+
λ1

m

m∑
i=1

E(zi)+ λ2P(6̂) (10)
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where θ, γ, and ω denote parameters of DAE, DEN, and GMM, P
(
6̂
)
=
∑K

k=1
∑d

i=1 6̂
−1
kjj , and

d is the dimension of compressed features. Finally, the training object is to be minimized using
Eq. (10).

In order to select a suitable threshold, we adopt ϕ as an energy parameter with the initial
value −Inf, which represents the max energy during the process of training. We then set the
adjustment factor ε ∈ (0,∞). Hence, the threshold T= εϕ. The training procedure of the anomaly
detector is presented in Algorithm 2, and the testing process is shown in Algorithm 3.

Algorithm 1: The computing procedure of MRE
Input: Training data set S, epochs N, layer of DAE L, θi, γi for encoder and decoder of DAE
Output: MRE set M
Set M =∅
for epoch from 1 to N

if epoch==N:
for xi ∈ S do

for j from 2 to L
xij = enc(xi(j−1); θi), yij = dec(xi [L−1

2 −j]
; γi)

ei =

√∑d
j=1(xij,yij)

2

d
Append ei into M

4 Evaluation

In this section, we evaluate the proposed MEAEDE using three classical intrusion detection
datasets: KDDCUP99 10% [20], NSL-KDD [21], and CIC-IDS-2017 [22]. At the same time,
our network model is compared with other autoencoder-based approaches, including DAE and
DAGMM. In our experiment, reconstruction error is used only in DAE to derive threshold.

4.1 Datasets
1) KDDCUP99 contains 41 dimensions, of which 34 are continuous and 7 are categorical

attributes. Each data point in KDDCUP is labeled as either normal or a speci�c attack group for
big categories, including DoS, user to local (U2L), remote to local (R2L) and probe.

2) NSL-KDD has the same features as KDDCUP99, except that redundant data is �ltered.
The dataset consists of two �les: KDDTrain+ and KDDTest+.

3) CIC-IDS-2017 was generated by CIC Laboratory of Canada, and the types of attacks
collected are very extensive. From Monday to Friday, the network data was captured for �ve days,
with nearly 80 dimensions. The dataset consists of eight �les, including Monday benign sample,
Tuesday BForce, SFTP and SSH sample, Wednesday DoS and Heartbleed Attacks, Slowloris,
Slowhttptest, Hulk and GoldenEye, Thursday Web and In�ltration Attacks, Web BForce, XSS and
Sql Inject, In�ltration Dropbox Download and Cool disk, Friday DDoS LOIT, Botnet ARES,
and PortScans (sS, sT, sF, sX, sN, sP, sV, sU, sO, sA, sW, sR, sL and B) sample.
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4.2 Metrics
To evaluate our model, we use the following three common information retrieval evaluation

metrics:

1) Precision (Pr): It is the ratio of correctly classi�ed attack �ows (TP) to all the classi�ed
�ows (TP + FP).

2) Recall (Rc): It is the ratio of correctly classi�ed attack �ows (TP) to all generated �ows
(TP + FN).

3) F-Measure (F1): It is a harmonic combination of the Pr and Rc into a single measure.
These metrics can be de�ned as

Pr =
TP

TP+FP
(11)

Rc =
TP

TP+FN
(12)

F1=
2

1
Pr
+

1
Rc

(13)

Algorithm 2: The procedure for training the anomaly detector
Input: Training data set S, epochs N
Output: MEAEDE model, ϕ
θ, γ← parameters of encoder and decoder of DAE
ω← parameters of DEN
for epoch from 1 to N
for xi ∈ S do Minimize L(θ, γ, ω, µ̂, ϕ̂, 6̂)

hi = enc (xi; θ) , yi = dec (hi; γ )

ρi =
cov(xi, yi)
σxi .σyi

, ei =

√∑d
j=1(x

(j)
i − y

(j)
i )

2

d
compute mi as Algorithm 1
ci← [hi, ei, ρi, mi]
π̂ =DEN(ci; ω)
µ̂, ϕ̂, 6̂← update parameters for GMM as Eq. (8)
if ei >ϕ : ϕ← ei

θ, γ, ω← update parameters using SGD

4.3 Parameter Discussion
In order to optimally �t these datasets, we use slightly different parameters for data of

different dimensions. Owing to the existence of categorical values, KDDCUP99 10% and NSL-
KDD use unique one-hot encoding, and their inputs have 118 and 122 dimensions, respectively.
After discarding the “�ow packet number/s” and “�ow byte number/s” features, 77 features are
selected from CIC-IDS-2017. We �nd in the exploration that with four hidden layers in the
encoder, the DAE yields the expected result when the number of layer increases, and the effect
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does not rise signi�cantly or even decreases; thus, the parameters of different networks set as
follows:

KDDCUP99(NSL-KDD):

DAE:FC (118(122), 60, GELU)-FC (60, 30, GELU)-FC (30, 10, GELU)-FC (10, 3, none)-FC
(3, 10, GELU)-FC (10, 30, GELU)-FC (30, 60, GELU)-FC (60, 118(122), none).

DEN: FC (5,10, GELU)-Drop (0.5)-FC (10, 5, softmax).

CIC-IDS-2017:

DAE:FC (77, 40, GELU)-FC (40, 20, GELU)-FC (20, 10, GELU)-FC (10, 3, none)-FC (3,
10, GELU)-FC (10, 20, GELU)-FC (20, 40, GELU)-FC (40, 77, none).

DEN: FC (5,10, GELU)-Drop (0.5)-FC (10, 5, softmax).

We uniformly set λ1 = 0.1, and λ2 = 0.0001, and the learning rate as 0.0001 in every model.
As can be seen in Eq. (10), the objective loss function of MEAEDE has three components: L1
represents reconstruction error from the DAE, the second component represents energy function,
and the third represents the penalty function for covariance matrices. A large value of λ1 may
impact L1 and make Eq. (10) getting unimportant, thus the expected representation of input data
cannot be derived. When λ1 has a small value, the GMM will not be trained well for the small
weight of the estimated network. When λ2 has a large value, the covariance of the GMM has
a large value, which is not desirable as most samples have large values. When λ2 has a small
value, the regularization is weak in countering the singularity effect. In our experiment, we �nd
that setting the values of the said hyper-parameters as 1, 0.1, and 0.0001 leads to a remarkable
performance across the three datasets.

Algorithm 3: The procedure of executing anomaly detector
Input: Testing data set S, ε
Output: Anomalies
Set T = εϕ
for xi in data set S do
hi = enc (xi; θ) , yi = dec (hi; γ )
ci← [hi, ei, ρi, mi]
π̂ =DEN(ci; ω)
ei =E

(
ci; µ̂, ϕ̂, 6̂

)
If ei >T :
Alert

4.4 Detection Results
For KDDCUP99 and NSL-KDD, we calculated the average of each indicator. The experi-

mental results are encapsulated in Tabs. 2 and 3. The results show that DEAEME outperforms
other autoencoder-based models. With a simple threshold selection, it is hard for the DAE model
to be compressed with other two models because of information loss in the hidden layer. The
DAGMM uses cosine similarity and Euclidean distance of input and output data of DAE, and
thus it outperforms DAE. While MEAEDE derives MRE, coef�cient correlation and compressed
features, it has a sharp increase in comparison with DAGMM, so MRE has a powerful effect to
compensate for the loss of information in the hidden layer.
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It is worth mentioning that the threshold of each model is set according to their optimal
results. For DAE, we set threshold T as maximum reconstruction error multiplied by a value
between 0 and 1, and for DAGMM and MEAEDE, we select threshold parameters according to
different datasets to adapt to optimal results.

Table 2: Detection results on KDDCUP99 10% dataset

DAE DAGMM MEAEDE

Precision 0.770 0.929 0.993
Recall 0.840 0.944 0.996
F1-score 0.770 0.936 0.995

Table 3: Detection results on NSL-KDD dataset

DAE DAGMM MEAEDE

Precision 0.846 0.898 0.939
Recall 0.833 0.895 0.935
F1-score 0.839 0.896 0.937

In CIC-IDS-2017, we select six �les from the entire datasets. A 1:1 training and testing ratio
was adopted as data is imbalanced in the other two �les. Unfortunately, due to the existence
of in�nite data, we remove the “�ow bytes/s” and “�ow packets/s” attributes, and �nally 77
features of each data point are selected in the samples, and the results are shown in Tabs. 4–6.
Upon encountering Friday’s DDoS attack, MEAEDE and DAGMM perform equally well, while
DAGMM has an inadequate performance when encountering Friday-PortScan and web-attacks.
On the contrary, MEAEDE performs more satisfactorily most of the time. It is worth noting that
DAE is stable for all datasets, and the average value of the three metrics is better than DAGMM,
but the recognition accuracy is not commensurate to the expectations.

Table 4: MEAEDE detection results on CIC-IDS2017 dataset

Precision Recall F1-score

Tuesday 0.977 0.958 0.967
Thursday-WebAttacks 0.987 0.990 0.988
Thursday-In�ltration 1.000 0.990 0.995
Wednesday 0.999 0.472 0.641
Friday-PortScan 0.643 0.882 0.744
Friday-DDoS 0.991 0.963 0.977

To evaluate the training time of MEAEDE, we compute the average time consumed during
training of 50 epochs. Tab. 7 presents details of each dataset. Evidently, MEAEDE has an average
training time of about 200 s in every dataset, which can be deployed and reset ef�ciently in a
number of applications.
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Table 5: DAGMM detection results on CIC-IDS2017 dataset

Precision Recall F1-score

Tuesday 0.980 0.040 0.078
Thursday-WebAttacks 0.476 0.484 0.478
Thursday-In�ltration 0.983 0.700 0.818
Wednesday 0.527 0.582 0.554
Friday-PortScan 0.198 0.170 0.183
Friday-DDoS 0.999 0.901 0.948

Table 6: DAE detection results on CIC-IDS2017 dataset

Precision Recall F1-score

Tuesday 0.736 0.648 0.705
Thursday-WebAttacks 0.744 0.797 0.769
Thursday-In�ltration 0.714 0.994 0.831
Wednesday 0.539 0.408 0.458
Friday-PortScan 0.363 0.423 0.388
Friday-DDoS 0.745 0.852 0.795

Table 7: Average time consumed in training datasets

Training time (s) Dimension

KDDCUP99 10% 104.806 41
NSL-KDD 201.727 41
CIC-IDS-2017 172.808 77

We also evaluate our model under actual network attacks using our feature extractor module
and employ several types of attacks such as DDoS, port scan, and injection in �ve LAN hosts
using eight different computers to launch attacks (including 30% of normal data and 70% of
attacks). We then capture packets in the network card with an average feature extraction time of
14 s for every 100 k “.pcap” �le. In order to correctly label the captured data, we use speci�c
hosts to only implement attacks or normal requests and record them. Tab. 8 presents the results
depicting the performance of our model. Unfortunately, the performance is not satisfactory on
CIC-IDS-2017 dataset. In this dataset, the data ratio we selected is 1:1, while in the data we
collected, the ratio is obviously different, which is the reason why the detection ef�ciency is not
satisfactory. So the ratio of normal data and anomalies can disturb the accuracy of MEAEDE.

Table 8: Detection results in actual network environment with ∈ of 0.8

DDoS Port scan Injection

Precision 0.957 0.937 0.836
Recall 0.948 0.939 0.827
F1-score 0.952 0.938 0.832
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5 Conclusion

In this paper, we propose a lightweight anomaly detection framework, which includes network
packet capturing, ef�cient processing, and a feature extraction module that has a good expressive
ability to derive network packets and �ows. We then transform the extracted features to time-
related features for Anomaly Detector module. This module combines MRE, the correlation
coef�cient of input and output, and compressed features from DAE to form a new feature vector,
which is fed into a DEN to transform to a K-component vector and then fed to GMM to get
an energy value. The system detects anomalies if the computed value exceeds a pre determined
threshold. We train and test our model under several intrusion detection datasets and compare
three common information retrieval evaluation metrics with DAE and DAGMM. With improve-
ment in feature extraction, the proposed model outperforms other autoencoder-based models and
can further improve the performance of anomaly detection. Furthermore, after training only with
normal data, it can identify various unknown attacks such as DDoS, web-attack, and port-scan
with desirable performance.

Notwithstanding its adequate performance, the input data distribution has a few limitations;
it is only suitable to network-based packets and �ows. In addition, the ratio of normal data and
anomalies can disturb the performance of MEAEDE. In the future, it is necessary to improve the
feature extraction ability and make the model more robust. It is also imperative to study better
methods for threshold selection of GMM, which can ef�ciently identify more attack types to adapt
to the complex network environment.
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