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ABSTRACT

This study presents an AI-based constitutive modelling framework wherein the prediction model directly learns
from triaxial testing data by combining discrete element modelling (DEM) and deep learning. A constitutive
learning strategy is proposed based on the generally accepted frame-indifference assumption in constructing
material constitutive models. The low-dimensional principal stress-strain sequence pairs, measured from discrete
element modelling of triaxial testing, are used to train recurrent neural networks, and then the predicted principal
stress sequence is augmented to other high-dimensional or general stress tensor via coordinate transformation.
Through detailed hyperparameter investigations, it is found that long short-term memory (LSTM) and gated
recurrent unit (GRU) networks have similar prediction performance in constitutive modelling problems, and both
satisfactorily predict the stress responses of granularmaterials subjected to a given unseen strain path. Furthermore,
the unique merits and ongoing challenges of data-driven constitutive models for granular materials are discussed.
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1 Introduction

Granular materials are ubiquitous in nature, industrial and engineering activities. Predicting
how granular materials respond to various external loads is not just intricate but important
for many engineering problems. The complexity of granular media can be partially attributed
to its unique features, such as inherent anisotropy and heterogeneity [1,2], pressure and rate-
dependence [3–5], continuous evolving microstructure and complicated strain-localisation phe-
nomenon within unstable granular materials [6–9].

Over the past decades, analytical or phenomenological characterisation of elastic-plastic
behaviour of granular materials is undoubtedly the most common scheme. However, although
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numerous attempts have been made to capture the constitutive behaviour of granular materials,
developing a unified theoretical model remains an ongoing challenge [10]. A pessimistic fact is that
phenomenological constitutive models not only are increasingly complex in mathematical forms,
but also normally require dozens of parameters to be calibrated. This trend further reduces the
possibility of taking these advanced constitutive models into practical engineering applications.

Instead of phenomenological constitutive models, some scholars are seeking a shift of
methodology in predicting the constitutive behaviour of granular materials. An attractive alter-
native is the data-driven paradigm, wherein artificial neural networks (ANNs) are used to train a
prediction model directly from observed experimental data, by leveraging the universal approxi-
mating capability of deep neural networks for complex mapping relations [11]. Early attempts at
using ANNs to predict the stress-strain behaviour of granular materials can be traced back to the
literature [12–18]. Owing to the revolutionary development of deep learning in recent years, AI-
based constitutive models have again received increasing attention. Wang et al. [19–21] combined
deep reinforcement learning and game theory to predict the traction-separation law of interfaces
and constitutive behaviour of granular materials. Zhang et al. [22] utilised LSTM to predict the
cyclic behaviour of granular materials. Zhang et al. [10] also summarised the applications of
machine learning in constitutive modelling of soils. Qu et al. [23] explored several constitutive
training strategies by integrating a priori micromechanical knowledge and physics-invariant GRU
model.

Overall, the past work mainly focuses on developing advanced learning models or algorithms
to learn an accurate prediction model with as few as possible specimens. However, when training a
neural network with triaxial testing data and taking these models into practical applications where
complex stress-strain states are usually encountered, a direct challenge is how to enable the deep
neural networks (DNNs) trained with principal stress-strain data from triaxial testing to predict
general stress response in practice.

This work aims to address the above-mentioned challenge by presenting an AI-based constitu-
tive modelling strategy which leverages coordinate transformation to expand the principal strain or
stress tensor to a 3D general tensor incorporating shear components. DEM simulations of drained
triaxial tests with complex unloading-reloading cycles are used to generate high-fidelity training
data. Both LSTM and GRU neural networks are adopted to train the stress-strain prediction
models and a detailed hyperparameter investigation process is also presented.

2 Representing Constitutive Relations via Deep Neural Networks

Constitutive models refer to the mathematical formulations which relate the stress responses
to strain states of materials at an element level. A state of stress or strain of a point under a
general loading condition can be defined by a second-order tensor with 9 components (reduce
to 6 components under a symmetry condition). Instead of using any mechanical assumption,
DNNs connect these stress components to strain components directly with a series of linear and
nonlinear mathematical operations. Since the application of deep learning in predicting the elastic-
plastic behaviour of granular materials is still at an early stage of development, an introduction
about the fundamentals of a conventional neural network is given in Appendix A.
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The constitutive behaviour of materials is essentially a sequence problem. In the family of
deep learning, recurrent neural networks (RNNs) are extensions of conventional fully connected
neural networks and mainly suitable for sequence data predictions. LSTM and GRU networks are
two popular RNNs in dealing with long sequence learning problems. In this study, both networks
will be used to train the constitutive models. The detailed internal structures of GRU and LSTM
cells and their mathematical operations can be found in [24–26].

2.1 Developing Data-Driven Constitutive Models Based on Triaxial Testing Data
Triaxial tests are commonly used to measure the stress-strain responses of granular materials

with the assumption that the triaxial specimen is a representative volume element of the measured
materials. Such a loading condition makes the three loading directions happen to be the principal
stress/strain directions and the increments of principal stress and strain can be experimentally
measured during true triaxial testing. In the process of developing conventional constitutive
models, the role of these triaxial tests is to calibrate free parameters and validate the applicability
of a new analytical model.

However, when utilising the triaxial testing measurements to train a deep neural network and
develop a data-driven constitutive model, some extra work is necessary. The reason is that deep
learning can only approximate the mapping between direct inputs (principal strain) and outputs
(principal stress), while a constitutive model that can be used to analyse boundary value problems
(BVPs) is usually required to incorporate shear stress/strain components. To resolve this issue,
a priori knowledge of the frame-indifference (also called the objectivity) will come into play.

Frame-indifference is a generally accepted assumption in the study of constitutive models [27].
It indicates that stress or strain is a physical quantity that is independent of the coordinate frame,
although its scalar components depend on the choice of a coordinate reference [28–31]. Therefore
the coordinate transformation is a practical strategy to transform the principal stress-strain tensor
from triaxial testing to a 3D tensor with full non-zero components. Provided that the whole
process of triaxial loading is quasi-static, the coordinate transformation strategy can be applied
to the entire stress-strain sequences during testing.

Fig. 1 illustrates the stress transformation between the principal tensor and a 3D tensor incor-
porating both shear and normal components. Supposing that σmn is a principal stress tensor under
the triaxial testing condition in a Cartesian reference frame (1, 2, and 3), a 3D stress tensor σ ′

mn
will be obtained by rotating the original coordinate frame to a different set of Cartesian reference
system (1′, 2′ and 3′):

σ ′
ij = limσmnlnj or σmn= lmiσ ′

ijljn (m= n= 1, 2, 3; i, j= 1′, 2′, 3′) (1)

where lim and lnj are the cosine angles between two coordinate axes with:

lim = cos(e′i, em), lnj = cos(en, e′j) (2)

in which em and en are the basis vectors along the xm and xn directions in the first coordinate
system; e′i and e′j are the basis vectors along the x′i and x′j directions in the rotated coordinate

system. The stress transformation can be written with the form of matrix components as:
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The above formulations can achieve the interchangeable transformation between the principal
stress tensor in triaxial testing conditions and a 3D tensor incorporating shear components. The
transformation of a strain tensor follows the same rule.

Figure 1: An illustration of stress transformation from principal stress tensor to a 3D tensor
incorporating shear components

2.2 Constitutive Learning Strategies Based on Triaxial Testing Data
On the basis of frame indifference, two strategies are available to develop a data-driven

constitutive model: one strategy is to perform data augmentation based on the principal stress-
strain pairs by rotating the original coordinate frame. Depending on the selected interval of the
rotation angle, thousands of data specimens incorporating normal and shear components can
be artificially generated based on simply one principal stress-strain sequence pair. Then all the
augmented data specimens are used to train the deep neural networks. In this case, the AI model
will naturally achieve the aim of predicting stress responses with a 3D strain tensor incorporating
both shear and normal components. As the strategy augments data first and then training models
later, we would name it as “Augmentation First and Training Later,” short for “AFTL.” The basic
workflow of the AFTL strategy can be found in Fig. 2.
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Figure 2: The basic workflow of AFTL strategy

The other strategy is to train the neural networks only with the principal stress and strain
data. Fig. 3 illustrates the basic procedure of this strategy for developing a data-driven model.
During the training phase, the first step is to obtain principal stress and strain pairs via experimen-
tal or numerical triaxial testing. The second step is to train the deep neural network based on the
triaxial data. In the usage phase, before putting the data-driven model into macroscopic modelling
for a BVP problem, the strain state experienced by each computational element is required to
transform to the corresponding principal strain form, using a similar formula to Eq. (4) (replacing
the stress quantity with a strain quantity). The trained DNN receives the transformed principal
strain tensor as inputs and produces the corresponding principal stress components as outputs. By
leveraging the derived transformation matrix obtained in transforming a general strain tensor to
the principal strain tensor, the predicted principal stress tensor can be converted back to a general
stress tensor σij based on Eq. (3). This transformed tensor exactly matches the initial strain form
experienced by the macroscopic computational element. For this strategy, DNN models are trained
with only principal stress and strain sequence pairs, the data augmentation scheme is used in the
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later stage, we would name this strategy as “Training First and Augmentation Later,” which is
short for “TFAL.”

Figure 3: The basic workflow of TFAL strategy

Recalling the fact that the coordinate transformation does not change the stress or strain state
experienced by a point, all these artificially generated specimens essentially represent the identical
state as the original one. Therefore the AFTL strategy may include information redundancy.
Inevitably a marked increase in the number of training specimens will give rise to a far greater
DNN scale and a larger training cost. Besides, the choice of the interval of rotation angle becomes
a new hyperparameter that has to be artificially tuned. By contrast, the TFAL strategy avoids
these downsides and is thus recommended as a preferred scheme in this study.

3 Implementing Data-Driven Constitutive Models Based on Triaxial Testing Data

3.1 Data Preparation via Discrete Element Modelling of Triaxial Testing
As a high-dimensional surrogate model, deep learning normally requires a large amount of

data to train the model. Laboratory experiments are not only expensive but time-consuming. In
contrast, DEM has proven to be capable of capturing the salient behaviour of real granular
materials [32–37]. It is thus feasible to use DEM to develop a data-driven constitutive model.
Because a general loading condition may require thousands of test specimens, here we focus on the
ability of the data-driven model in predicting multiple unloading-reloading cycles and restrict the
simulation to a conventional triaxial testing environment with a state of constant confining stress.

In this study, a total of 220 numerical triaxial specimens with 4037 spherical particles for each
model are generated via DEM. The particle radii are uniformly distributed between 2 and 4 mm.
The normal and tangential contact stiffnesses, interparticle frictional coefficient, particle density,
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viscous damping ratio are 105 N/m, 5 × 104 N/m, 0.5, 2600 kg/m3 and 0.5, respectively. The
specimens are isotropically consolidated to a confining pressure of 200 kPa. Also, the maximum
loading strain is restricted to 12% with incorporating several (mostly one or two) unloading-
reloading loops during the whole loading process. These unloading and reloading strain values are
mutually different and randomly sampled with a physical restriction that the reloading strain is
always lower than its preceding unloading strain.

3.2 Constructing Deep Learning Models for Constitutive Modelling
Before training, all the data specimens from DEM are transformed with the MinMaxScaler

in the scikit-learn package to scale each feature to a range of (0,1). This transformation of data
benefits reducing the risk of getting stuck in local optima and makes the training process faster.
Then the scaled data specimens are shuffled with a certain random seed. The whole specimens are
partitioned into training, validation, and test datasets with 96, 24, and 100 groups of datasets,
respectively. These specimens are mutually different and never seen for each other.

The LSTM and GRU neural networks are built on Tensorflow platform with Nvidia GPU
accelerated computation framework for all the training process. The prediction accuracy of the
deep learning models is evaluated by the scaled mean absolute error (SMAE), which is used as
the cost function when training a DNN model and also the metric to evaluate the final trained
model. The formula of an average SMAE can be calculated by:

SMAE = 1
N

N∑
j=1

1
Nj

Nj∑
i=1

∣∣∣ȳTrueij − ȳPredictionij

∣∣∣ (5)

where SMAE represents the average value of SMAE for all the stress-strain curves; Nj and N
are the number of data points on the jth stress-strain curve and the number of stress-strain
curves, respectively; ȳTrueij and ȳPredictionij are the scaled actual and prediction values of the ith point

in the jth stress-strain sample, respectively. Once a DNN model has been trained, one can give
predictions over all the validation or test specimens and then the average SMAE over the entire
dataset can be given as a more comprehensive evaluation metric for a DNN model.

3.3 Hyperparameter Investigation
The approximation capability of a deep learning model is related to its used architecture and

network configuration. To explore a suitable network configuration for the current constitutive
modelling problem in this work, a detailed parametric study is conducted. The preliminary net-
work configuration starts from one or two RNN layers, followed by one or zero dense layer, before
connecting the output layer. The neuron number in each hidden layer varies from 0 to 120 with
a gap of 20. The final network architecture will be determined by comprehensively considering
(1) the amount of SMAE, and (2) the complexity of architectures. Specifically, if the difference
of two SMAEs is within 10−5, the simplest architecture with the least parameters to be trained
will be selected because a simpler model has less risk of overfitting. The SMAEs of different
network architectures can be found in Fig. 4 and the architectures [LSTM:100-LSTM:100-dense:0]
and [GRU:100-dense:0] are finally selected for LSTM and GRU neural networks, respectively. The
LSTM model trains 122,101 weights and biases (41,600 parameters for the first LSTM layer;
80,400 parameters for the second LSTM layer, and the output layer includes 121 parameters). The
GRU model requires a total of 31,301 weights and biases to be learned with 31,200 parameters
for the GRU layer and 101 parameters for the output layer.
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(a) (b)

Figure 4: Parametric investigation of the RNN neural network configurations (a) LSTM (b) GRU

After a suitable network configuration has been selected, the next step is to train the network
to fully exploit the prediction ability of this surrogate model. Therefore, the influences of some
other important hyperparameters (e.g., timesteps, batch size and learning rate) should be consid-
ered. Empirically, the batch size is usually selected from a power of 2 (e.g., 2n); the learning rate
normally starts from 0.001 and increases to 0.01 and 0.1.

With all these considerations, an investigation of SMAE against different timesteps and batch
sizes is shown in Fig. 5. It is found that the SMAE value of a trained model decreases with
an increase in the timesteps but this tendency slows down for the timesteps over a certain value.
Considering that a larger timestep gives rise to a larger computational cost, the optimal time step
for both LSTM and GRU is selected as 40. On the other hand, the influences of the learning rate
and the batch size on the prediction results seem limited for both GRU and LSTM models. Based
on the parametric investigation, the final hyperparameter combinations of the LSTM model and
the GRU model are: [timesteps: 40, batch size: 32, learning rate: 0.001] and [timesteps: 40, batch
size: 64, learning rate: 0.001], respectively.

Figure 5: SMAEs of the selected LSTM and GRU models against various timesteps and batch size
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The learning curves of both LSTM and GRU models with the selected hyperparameters are
shown in Fig. 6, which demonstrates that LSTM and GRU have a similar prediction accuracy in
the current constitutive modelling problem. Specifically, LSTM seems to converge quicker at the
early training epochs but the prediction difference shrinks later on. To determine the architecture
and hyperparameters of the final training models, a total of 87 groups of distinct training
configurations for each RNN model are considered.

Figure 6: The learning curves of the selected LSTM and GRU models

Note that the hyperparameter selection for a deep neural network is essentially a very high
dimensional combinatorial optimisation problem, it is thus not easy to search all the possible com-
binations considering available computational resources. Although the parametric study does not
cover many combinations, it provides a relatively reliable network configuration and parameters
for the model in the searched parameter space.

3.4 The Prediction Performance of an AI-Based Constitutive Models
The LSTM model predicts the 100 groups of unseen test specimens with an average SMAE

of 0.0193. The smallest SMAE is 0.007 and the largest SMAE is 0.051. For the GRU model, the
average SMAE on the test specimens is 0.0189. The best prediction has a SMAE of 0.007, while
the worst prediction has a SMAE of 0.054. Some typical predictions given by the trained LSTM
and GRU model are shown in Figs. 7 and 8, respectively.

On the one hand, the results confirm that the LSTM and GRU have similar prediction per-
formances on the stress-strain behaviour of granular materials. On the other hand, it is found that
even for the worst and the second worst prediction cases, the overall tendency of stress responses
has been satisfactorily captured by both LSTM and GRU models. The results demonstrate that
the prediction accuracy of the trained model is acceptable and the DNN model is able to predict
complex cases with more than two unloading-reloading cycles, which is very challenging to achieve
for phenomenological constitutive models.
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(a) (b)

(c) (d)

(e) (f)

Figure 7: Representative prediction results of the trained LSTM model (a) The best predic-
tion, SMAE:0.007 (b) The worst prediction, SMAE:0.051 (c) The second worst prediction,
SMAE:0.048 (d) Two unloading-reloading cycles, SMAE:0.018 (e) Three unloading-reloading
cycles, SMAE:0.016 (f) Four unloading-reloading cycles, SMAE:0.015
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(a) (b)

(c) (d)

(e) (f)

Figure 8: Representative prediction results of the trained GRU model (a) The best predic-
tion, SMAE:0.007 (b) The worst prediction, SMAE:0.054 (c) The second worst prediction,
SMAE:0.044 (d) Two unloading-reloading cycles, SMAE:0.017 (e) Three unloading-reloading
cycles, SMAE:0.017 (f) Four unloading-reloading cycles, SMAE:0.014
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4 Concluding Remarks

Conventional continuum-based elastic-plastic constitutive models normally utilise 1) yield
surfaces to describe plasticity, and 2) associative or non-associative flow rules to characterise
the evolution direction of plastic deformation. This work offers an alternative to currently used
phenomenological models for granular materials by training a data-driven constitutive model via
RNN neural networks based on triaxial testing data. The work adopts coordinate transformation
to transform the principal stress or strain tensor to a general 3D tensor incorporating both normal
and shear components, and a constitutive training strategy is summarised. Also, both LSTM and
GRU neural networks are used to train the stress-strain prediction model. The results demonstrate
that the LSTM and GRU models have a similar prediction accuracy and both of them are
powerful in predicting the macroscopic elastic-plastic responses of granular materials.

The data-driven paradigm has unique advantages in the constitutive modelling of materials.
First, it can be embedded in macroscopic numerical modelling (such as FEM or MPM) for
practical applications without extra simplifications. Second, its prediction ability can be further
improved, provided that new data specimens are added. Third, the DNN model is capable of
predicting complex stress-strain responses with excellent accuracy and efficiency. It not only
inherits the merits of DEM in naturally capturing stress-strain relations of granular materials
undergoing large deformation and shear localisation, but overwhelmingly accelerates the stress-
strain predictions given by ab initio DEM. Therefore, the data-driven constitutive model may have
potentials to address some dilemmas which traditional constitutive models struggle with.

It should be noted that constitutive models for a specific granular material should be asso-
ciated with its material and state parameters, such as particle size distribution, mineralogical
compositions and porosity etc. More advanced deep learning models considering these physics-
invariant properties can be found in [23]. The other important issue is that granular materials
subjected to complex plastic deformation are of non-coaxial behaviour between the principal stress
directions and plastic strain rate directions. A further extension on the current framework by
incorporating non-coaxiality will be reported elsewhere.
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Appendix A. Fundamentals of Deep Learning

Deep learning is a subset of machine learning based on deep (multiple-layer) artificial neural
networks (ANNs). As shown in Fig. A.1, a deep neural network (DNN) is generally composed of
one input layer, several hidden layers, and one output layer. The input layer receives input values
(independent variables) and passes them on to the hidden layers while the output layer produces
the prediction results (estimated values of dependent variables).

Figure A.1: Diagram of deep neural networks

Fig. A.2 illustrates the basic procedure of deep learning. The process of feeding input data
through the network and outputting prediction results is called forward propagation. Mathe-
matically, the forward propagation of a deep neural network is a combination of a series of
linear transformations with matrix multiplication and nonlinear transformations with activation
functions. In Fig. A.1, the values of the activation functions in each neuron are:

a(j)
i = fj

⎛
⎝

d∑
k=1

w(j−1)
ki a(j−1)

k + b(j−1)

⎞
⎠ (j ≥ 2) (A.1)

where a(j)
i denotes the value of the activation function of the ith neuron in the jth layer; fj

represents the activation function of the neurons in the jth layer; d is the number of neurons

involving computations in the (j− 1)th layer; w(j−1)
ki represents the weight linking the kth neuron

in the (j − 1)th layer and the ith neuron in the jth layer; and b(j−1) is the bias in the (j− 1)th
layer.
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Figure A.2: Diagram of deep learning procedures

Assuming that the jth layer is the last hidden layer, the prediction outputs ŷm can be
calculated by:

ŷm = f

⎛
⎝

d∑
k=1

w(j)
ki a

(j)
k + b(j)

⎞
⎠ (j≥ 2) (A.2)

where d is the number of neurons in the last hidden layer, and f is the activation function in
the output layer. For a trained model, the weights and biases of a network are known. The final
prediction results can be explicitly calculated via the forward propagation.

The nature of deep learning is to discover a hypothesis function or “surrogate model” based
on DNNs’ architectures to represent a certain mapping or relation. Initially, the weights and
biases in DNN are randomly initialised. The resulting prediction by the forward propagation will
normally be far away from the ground truth. The difference between the prediction and the ground
truth is quantified by a loss function. For a prescribed neural network structure, the loss function
is specified as a function of weights and biases.

To train a reliable hypothesis model, the learning problem is converted to an optimisation
problem with the target of minimising the loss function. Normally, the network weights and
biases are iteratively optimised by a gradient-based optimisation algorithm, e.g., gradient descent.
The required gradients are calculated by the backpropagation algorithm, which utilises automatic
differentiation (AD) to numerically evaluate the derivative of a function by applying the chain
rule repeatedly to the elementary arithmetic operations constituting the loss function.

In the training phase, the optimised weights and biases are used for the next forward propa-
gation to update the loss function. Then the backpropagation and the gradient-based optimisation
algorithm further adjust the weights and biases for the next forward propagation. After the process
is repeated for a sufficiently large number of training cycles, the neural network will usually be
able to predict the results satisfactorily. Then the weights and network architectures can be saved
for future use.


