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ABSTRACT

A parameter-free approach is proposed to determine the Lagrange multiplier for the constraint of material volume
in the level set method. It is inspired by the procedure of determining the threshold of sensitivity number in the
BESO method. It first computes the difference between the volume of current design and the upper bound of
volume. Then, the Lagrange multiplier is regarded as the threshold of sensitivity number to remove the redundant
material. Numerical examples proved that this approach is effective to constrain the volume. More importantly,
there is no parameter in the proposed approach, which makes it convenient to use. In addition, the convergence is
stable, and there is no big oscillation.
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1 Introduction

Among many methods for structure topology optimization [1–14], the level set method [5–10]
has caught much attention. Determining the Lagrange multiplier for the constraint of material
volume is an indispensable task in the level set method [15]. A straightforward approach to com-
plete this task is to gauss a Lagrange multiplier and keep it fixed during the optimization [8], but
this simple approach cannot accurately enforce the volume constraint. The second approach relies
on averaging certain quantity on the boundary being optimized [9], for instance the Lagrange
multiplier for the minimal compliance problem is obtained as the average of the density of strain
energy on the boundary. Although this approach can accurately enforce the volume constraint,
the integration on a boundary is cumbersome. The third approach is to adjust the Lagrange
multiplier according to the volume of material, and it is called the augmented Lagrange multiplier
method [16–18]. This approach can also accurately enforce the volume constraint. However, it is
often difficult to guess a proper value of the penalty parameter in this method, hence considerable
oscillations of compliance and volume usually happen as the optimization progresses. In fact, the
penalty parameter significantly affects the optimization, and an improper value of the penalty
parameter may even make the optimization not converge.
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The approaches reviewed above are successful to determine the Lagrange multiplier. In our
present study, a new approach is proposed, i.e., a parameter-free approach using the bi-directional
evolutionary structural optimization (BESO) method [12,19–21]. It is inspired by the procedure
for determining a threshold for material deletion and addition in the BESO. Currently, there is a
trend of combining different methods of structural topology optimization [22–29] to give full play
to their advantages and to complement each other, hence leading to a more powerful topology
optimization method. In [22–24,28], the BESO was respectively integrated into the level set method
and the phase field method to nucleate holes. In [26,27] the density method was integrated into
the level set method. In [25,29] the level set method was used in the BESO to obtain smooth
boundary of structures. Through the combination of different methods of structural topology
optimization, several drawbacks were successfully overcome. The present study offers still another
combination between the BESO method and the level set method.

2 The Level Set Based Topology Optimization

The boundary �o being optimized of a structure � is described by the zero isocontour of
the signed distance function �(x) of �o. Let structures stay within a fixed domain D, i.e., �⊂D.
Then, we have

�(x)= 0 ⇐⇒ ∀ x ∈�o

�(x) < 0 ⇐⇒ ∀ x ∈�

�(x) > 0 ⇐⇒ ∀ x ∈D\�
Propagation of �o is described by the Hamilton-Jacobi (H–J) equation

∂�

∂t
+ θn = 0 (1)

where θn is the velocity of �o in its outward normal direction.

The compliance minimization problem given by Eq. (2) is considered here

min C(u)

s.t. a(u, v)= �(v), ∀ v∈U
V −V ≤ 0

(2)

where C is the objective function; a(u, v) = �(v) is the weak form equation; V is the volume
of material; V is the upper bound. The design velocity for the optimization problem Eq. (2) is
given by

θn=Ae(u) · e(u)−λ (3)

where Ae(u) · e(u) is the density of strain energy; λ is the Lagrange multiplier for the constraint
of material volume. When θn > 0 the structure expands and the volume increases. When θn < 0
the structure shrinks and the volume decreases. Finally, when θn= 0 the structure does not change
and the optimization converges.

Now, an important task is to determine λ in Eq. (3). There are several approaches to com-
plete this task [15]. A straightforward approach is to gauss a Lagrange multiplier and keep it
fixed during the optimization [8], but this simple approach cannot accurately enforce the volume
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constraint. The second approach is the boundary integration approach [9] where the Lagrange
multiplier is obtained as the average strain energy density according to Eq. (3), i.e.,

λ=
∫
�o
Ae(u) · e(u)ds∫

�o
ds

(4)

Although this approach can accurately enforce the volume constraint, the integration along
boundary �o is cumbersome. The third approach is the augmented Lagrange multiplier [18,24]. In
this approach, λ is adjusted according to the volume of material, i.e.,

λk =max
{
0, λk−1+ 1

τ

(
Vk−1−V

)}
(5)

where τ > 0 is a penalty parameter; k denotes the current iteration of optimization. Again, this
approach can accurately enforce the volume constraint. However, it is often difficult to guess
a proper value of the penalty parameter τ in this method, hence considerable oscillations of
compliance and volume usually happen during the optimization. In fact, the penalty parameter τ

significantly affects the optimization, and an improper value of τ may even make the optimization
not converge.

When the volume of current design is larger than V , the structure is required to shrink to
satisfy the volume constraint, and according to Eq. (3) this calls for a larger value of the Lagrange
multiplier. Similarly, when the volume of current design is smaller than V , the volume constraint
is not active, and the structure is allowed to expand to reduce its compliance. More importantly,
when the optimization converges, we have V =V and θn = 0 according to Eq. (3), and the accurate
value λ∗ of the Lagrange multiplier is equal to the uniform strain energy density on the optimized
boundary �∗o , i.e.,

λ∗ =Ae(u) · e(u), on �∗o (6)

Such an observation offers us the theoretical background to determine the Lagrange multiplier
for the constraint of material volume in the level set method by using the BESO method.

3 Determining λ for the Level Set Method by Using the BESO

3.1 The BESOMethod
BESO [12,19–21] uses sensitivity number to achieve deletion and addition of material. In the

present study, the sensitivity number of the e-th element is given by [12,19]

αe = uTe k0ue/Ve (7)

where k0 is the stiffness matrix of element; Ve is the volume of element. One can see that the
first term in right hand side of Eq. (3) and the sensitivity number Eq. (7) are both the strain
energy density. According to the BESO method [12,19], a spatial filtering is first applied to the

sensitivity numbers, i.e., αe =
∑Ne

j=1wejαj/
∑Ne

j=1wej. Then, a temporal smoothing is applied, i.e.,

αke ← (αke +αk−1e )/2.

3.2 Determining λ for the Level Set Method
Inspired by the process in the BESO method for determining the threshold αth for design

updating, a new approach is proposed to determine λ in the level set method.



286 CMES, 2021, vol.128, no.1

In every optimization iteration, we first compute the difference between the volume of current
design (denoted as Vk) and V in Eq. (2), i.e.,

�Vk =Vk−V (8)

If �Vk ≤ 0, we set λ = 0. If �Vk > 0, the procedure of determining the threshold αth is
adapted to determine the Lagrange multiplier, and it is described as follows:

In order to delete the redundant material �Vk, suppose that N� solid elements need to be
removed from the current design. First, for all the solid elements, we sort their sensitivity numbers
so that α1 < α2 < . . . < αNs . Then, the Lagrange multiplier is determined as

λ= αN�
(9)

In other words, the Lagrange multiplier is regarded as the threshold of sensitivity number to
remove the redundant material.

Recall that the sensitivity number αN�
in Eq. (9) is smoothed by spatial filtering. Therefore,

the strain energy density in Eq. (3) is also smoothed by spatial filtering, and the result is taken
as the naturally extended velocity to solve the H-J equation. Otherwise, the Lagrange multiplier
given by Eq. (9) may result in an error in volume of the optimized structure.

As one can see in Eqs. (8) and (9), there is no parameter in the procedure to determine
the Lagrange multiplier. Such a parameter-free approach is convenient to use, which is important
to solve practical engineering problems. On the contrary, the widely used augmented Lagrange
multiplier method is often criticized about the penalty parameter that greatly affect the results of
optimization.

Note that besides using the BESO method to determine the Lagrange multiplier, we can
also use it to nucleate holes during the level set based topology optimization. The details of the
hole nucleation are referred to our previous papers [22–24]. Nevertheless, the method proposed in
the present paper only deals with the Lagrange multiplier and has nothing to do with the hole
nucleation.

4 Numerical Examples

In the following examples, the properties of solid material are: E = 1 and ν = 0.3; and those
of artificial weak material are: E = 1× 10−3 and ν = 0.3. We assume the plane stress state and
use 4-node bilinear square element. The move limit strategy [30] is applied. In each iteration of
optimization, �o is evolved 10 steps and reinitialization is applied to �(x).

The criteria of convergence include [19]:

Cerr=

∣∣∣∑5
i=1 |Ck−i+1−Ck−5−i+1|

∣∣∣∑5
i=1Ck−i+1 ≤ 0.5% (10)

and

Verr= |V
k−V |
V

≤ 0.5% (11)

In addition, we will terminate the optimization when k= 200.
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4.1 Example 1

Fig. 1 shows the design optimization problem, and V = 1. In the finite element analysis 160×
80 elements are used; in the level set computations a grid with 161× 81 nodes is used.

2

1

Figure 1: Design problem of Example 1

First, we do the optimization with the Lagrange multiplier being determined by using the
BESO. Fig. 2 shows the initial structure and the optimized structure, and Fig. 3 shows the history
of optimization. As can be seen in Fig. 3, small oscillations of compliance and volume ratio
appear after the 100-th iteration. Such small oscillations have no big influence on the results of
optimization. In our view, the reason of these oscillations is that the volume ratio of the structure
has a small error as compared with the value required by the optimization problem.

(a) (b)

Figure 2: The initial structure and optimized structure with the Lagrange multiplier being deter-
mined by using the BESO. Compliance of (b) is 60.50, and volume is 1.00 (a) Initial structure
(b) Optimized structure
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Figure 3: History of the optimization with the Lagrange multiplier being determined by using the
BESO
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Second, the optimization is done with the Lagrange multiplier being determined by using the
augmented Lagrange multiplier method. Fig. 2a shows the initial structure. The penalty parameter
in Eq. (5) is set to τ = 10−3, and λ is updated after the 30-th iteration according to the augmented
Lagrange multiplier method. In this example, the strain energy density given by the finite element
analysis is directly taken (not smoothed by spatial filtering) to compute the naturally extended
velocity. Fig. 4 shows the optimized design, and Fig. 5 shows the history of optimization. From
Figs. 4 and 2b, we find out that the two optimized structures are similar to each other. Such
results prove that the proposed parameter-free approach to determine the Lagrange multiplier is
effective.

Figure 4: The optimized structure with the Lagrange multiplier being determined by using the
augmented Lagrange multiplier method. Compliance of the optimized structure is 61.53, and
volume is 1.00

As can be seen in Fig. 5, after λ is updated (i.e., after the 30-th iteration), obvious oscillations
of compliance and volume ratio appear, which is a typical behavior of this method. Such oscilla-
tions may significantly change the shape or topology of the structure, and it adversely affects the
performance of structure, i.e., the compliance in the present study.
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Figure 5: History of the optimization with the Lagrange multiplier being determined by using the
augmented Lagrange multiplier method

From Figs. 3 and 5, we can see that there are two different kind of oscillations. First, when
the optimization is near to the convergence, as can be seen in Fig. 3, the oscillations are very
small, and they have no big influence on the results of optimization. Second, as shown in Fig. 5,
when λ is updated after the 30-th iteration according to the augmented Lagrange multiplier
method, significant oscillations arise. Such big oscillations are usually very harmful to the results
of optimization, and they should be avoided.
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4.2 Example 2

The design optimization problem is shown in Fig. 6, and V = 3. Since the structure is
symmetric, the right half is considered in the optimization. In the finite element analysis 150×50
elements are used; in the level set computations a grid with 151× 51 nodes is used.

6

1
t

Figure 6: Design problem of Example 2

First, the optimization is done with the Lagrange multiplier being determined by using the
BESO. Fig. 7 shows the initial structure and the optimized structure, and Fig. 8 shows the history
of optimization. As can be seen in Fig. 8, small oscillations of compliance and volume ratio
appear after the 70-th iteration. Such small oscillations have no big influence on the results of
optimization.

(a) (b)

Figure 7: The initial structure and optimized structure with the Lagrange multiplier being deter-
mined by using the BESO. Compliance of the optimized structure is 183.19, and volume is 3.00
(a) Initial structure (b) Optimized structure
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Figure 8: History of the optimization with the Lagrange multiplier being determined by using the
BESO

Second, the optimization is done with the Lagrange multiplier being determined by using the
augmented Lagrange multiplier method. Fig. 7a shows the initial design. The penalty parameter
in Eq. (5) is set to τ = 10−3, and λ is updated after the 30-th iteration according to the augmented
Lagrange multiplier method. The strain energy density is directly taken (i.e., not smoothed by
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spatial filtering) to compute the velocity to solve the H-J equation. Fig. 9 shows the optimized
design, and Fig. 10 shows the history of optimization. Again, we can see that obvious oscillations
appear after λ is updated (i.e., after the 30-th iteration).

Figure 9: The optimized structure with the Lagrange multiplier being determined by using the
augmented Lagrange multiplier method. Compliance of the optimized structure is 187.36, and
volume is 3.00
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Figure 10: History of convergence of the optimization with the Lagrange multiplier being deter-
mined by using the augmented Lagrange multiplier method

Third, we put more holes into the initial design; we use a mesh with 600 × 200 elements
for the finite element analysis and a grid with 601 × 201 nodes for the level set computation.
Then, the optimization is done with the Lagrange multiplier being determined by using the BESO.
Fig. 11 shows the initial structure and the optimized structure, and Fig. 12 shows the history of
optimization. With more holes in the initial structure, the shape and topology of the optimized
structure appear to be different.

(a) (b)

Figure 11: The initial structure and optimized structure with the Lagrange multiplier being deter-
mined by using the BESO. Compliance of the optimized structure is 183.01, and volume ratio is
0.50 (a) Initial structure (b) Optimized structure
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Because the finite element mesh is finer, the threshold of sensitivity number becomes more
accurate, and the Lagrange multiplier obtained by Eq. (9) is more accurate. Therefore, as can be
seen in Fig. 12, there is no oscillation of compliance and volume ratio during the optimization.
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Figure 12: History of the optimization with the Lagrange multiplier being determined by using
the BESO

4.3 Example 3

The design optimization problem is shown in Fig. 13, and V = 3. Since the structure is
symmetric, only the right half is considered in the optimization. In the finite element analysis
600× 200 elements are used; in the level set computations a grid with 601× 201 nodes is used.

Figure 13: Design problem of Example 3

First, we do the optimization with the Lagrange multiplier being determined by using the
BESO. Fig. 14 shows the initial structure and the optimized structure, and Fig. 15 shows the
history of optimization. As can be seen in Fig. 15, small oscillations of compliance and volume
ratio appear after the 120-th iteration. Fig. 16 shows serval intermediate designs, and one can see
that the optimization first defines the solid outer skin of the structure, meanwhile many small
holes are remained in the inner region. At this time, the porous inner region may be regarded as
a region filled with microstructures. Then, as the optimization progresses, some thin beams appear
in the optimized structure.

(a) (b)

Figure 14: The initial structure and optimized structure with the Lagrange multiplier being deter-
mined by using the BESO. Compliance of the optimized structure is 182.93, and volume is 3.00
(a) Initial structure (b) Optimized structure
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Figure 15: History of the optimization with the Lagrange multiplier being determined by using
the BESO

(a) (b)

(c) (d)

Figure 16: Intermediate designs of the third example with the Lagrange multiplier determined by
using BESO (a) Step 20 (b) Step 5 (c) Step 60 (d) Step 80

Second, besides using the BESO to determine the Lagrange multiplier, we also use the BESO
to nucleate hole. The details of the hole nucleation are referred to our previous papers [22–24].
Fig. 17 shows the initial structure and the optimized structure, and Fig. 18 shows the history of
optimization. One can see that the converge is smooth. Several intermediate designs are shown in
Fig. 19.

(a) (b)

Figure 17: The initial structure and optimized structure with the Lagrange multiplier and hole
nucleation achieved by using BESO. Compliance of the optimized structure is 183.79, and volume
ratio is 0.50 (a) Initial structure (b) Optimized structure
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Figure 18: History of convergence of the optimization with the Lagrange multiplier and hole
nucleation achieved by using BESO

(a) (b)

(c) (d)

Figure 19: Intermediate designs of the third example with the Lagrange multiplier and hole
nucleation achieved by using BESO (a) Step 10 (b) Step 20 (c) Step 70 (d) Step 110

5 Conclusion

Determining the Lagrange multiplier for the constraint of material volume is an indispensable
task in the level set method. Although the approaches that can be found in the literature are
successful, they also suffer from some drawbacks. In this paper, a new approach is proposed to
determine the Lagrange multiplier. First, it computes the difference between the volume of current
design and the upper bound of volume. Then, the Lagrange multiplier is regarded as the threshold
of sensitivity number to remove the redundant material. Several numerical examples demonstrated
that this approach is effective. More importantly, there is no parameter in the proposed approach,
which makes it convenient to use. In addition, the convergence is stable, and there is no big
oscillation. In the future, the proposed approach will be further extended to deal with other
optimization problems or other constraints, for instance, the microstructure optimization [31] or
the fatigue damage [32].
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