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ABSTRACT

The control of slurry pressure aiming to be consistent with the external water and earth pressure during shield
tunnelling has great significance for face stability, especially in urban areas or underwater where the surrounding
environment is very sensitive to the fluctuation of slurry pressure. In this study, an optimal control method for
slurry pressure during shield tunnelling is developed, which is composed of an identifier and a controller. The
established identifier based on the random forest (RF) can describe the complex non-linear relationship between
slurry pressure and its influencing factors. The proposed controller based on particle swarm optimization (PSO)
can optimize the key factor to precisely control the slurry pressure at the normal state of advancement. A data set
from Tsinghua Yuan Tunnel in China was used to train the RF model and several performance measures like R2,
RMSE, etc., were employed to evaluate. Then, the hybrid RF-PSO controlmethod is adopted to optimize the control
of slurry pressure. The good agreement between optimized slurry pressure and expected values demonstrates a
high identifying and control precision.
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1 Introduction

The slurry pressure balanced (SPB) shield tunnelling method has been widely used in under-
ground space development for its strong geological adaptability, small impact on the surrounding
environment and high degree of mechanization [1]. At present, the stability of the tunnel face
was usually controlled and adjusted according to the experience of shield operators during SPB
shield tunnelling and false decisions were often encountered [2,3]. Large settlement or even face
collapse may take place if the slurry pressure is too small while the surface heave or even blow-out
accident may happen if the slurry pressure is too large [4,5]. Thus, high precision and control of
the slurry pressure are requested during SPB shield tunnelling.
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A great number of different factors such as the machine driving state [6], the cutter head [7,8],
as well as the environmental conditions [9,10], result in the control face stability to be very
complex [11]. So it should be a high dimensional data mining that the theoretical or empirical
methods could not figure out. The artificial intelligence method has good non-linear mapping abil-
ity and has been widely applied in the prediction [12–14] and optimized control [15,16] of shield
tunnelling. In terms of stability control of excavation face, earlier researches mainly focused on
EPB (earth pressure balanced) shield [17–20]. Several artificial intelligence models like least squares
support vector machine (LSSVM) [21,22], backpropagation (BP) [23,24], artificial neural network
(ANN) [25], and adaptive neuro-fuzzy inference strategy (ANFIS) [26,27], etc., were applied in
the settlement prediction and optimization of soil pressure control. Liu et al. [21] proposed a
predictive control strategy for earth pressure which was balanced by optimizing advance speed
and screw conveyor speed based on the least squares support vector machine. Cheng et al. [23]
presented an optimal control method that the tunnel face was controlled by an optimal screw
conveyor speed derived from particle swarm optimization. Nevertheless, according to the difference
of principle between EPB and SPB, slurry pressure control is different from soil pressure control
which means the previous models are unsuitable for SPB shield [6]. Thus in recent years, more
and more researchers have begun to pay attention to the control of slurry pressure [28,29]. Zhou
et al. [30] presented a predictive control system for air chamber pressure in slurry shield tunnelling
using ENN neural network model. However, it is the slurry pressure instead of the air chamber
pressure in front of the excavation face. Li et al. [31] proposed a controller to keep the earth
pressure and slurry circulation system pressure in balance based on the predictive function control
method. But it is only suitable for the direct type slurry shield machine which is not proper for
more commonly used indirect type slurry shield machine. Li et al. [6] established the complex
relationship between slurry pressure and tunnelling parameters based on diagonal recurrent neural
network (DRNN) and presented a model predictive control (MPC) system for the slurry pressure
balance during construction. Nevertheless, among the input features of the model, some significant
factors influencing slurry pressure like the geometry of tunnel or geological conditions were not
taken into consideration.

To control the balance between the slurry pressure and the external water and earth pressure
during shield tunnelling. Firstly, an identifier needs to be established that can adapt to the changes
of environmental conditions and predict the slurry pressure during shield tunnelling. Then, based
on the proposed identifier model, a controller should be put forward to optimize the key control
factor by minimizing the difference between the slurry pressure and the external water and earth
pressure. In terms of the identifier model, random forest (RF) is a pattern recognition method
based on a “holistic learning” strategy, which has been increasingly favored by researchers in
recent years [32,33]. It was proved that tree-based models have good performance and are superior
to network-based models [34]. Many applications of the RF algorithm in related fields of civil
engineering can be found such as tunnel-induced ground settlement prediction [14,35,36], con-
trol [37], and condition assessment [33] of EPB shield, etc. Generally, the RF algorithm generates
many predictor variables and the prediction accuracy is improved by the use of average while the
overfitting is controlled by reducing the overall variance. Thus, it’s very stable because the wrong
prediction is made only when more than half of the base predictors have errors [38]. Therefore,
considering the complex and non-linear relationship between slurry pressure and its influencing
factors, the RF was employed to identify the slurry pressure in this study.

In terms of the controller model, particle swarm optimization (PSO) is a powerful optimiza-
tion algorithm proposed by Kennedy et al. [39] for finding a global optimum in multidimensional
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searching space. Based on the benchmark comparisons carried out by Elbeltagi et al. [40], the
PSO method was generally found to perform better than other algorithms like genetic algorithms
(GA) and ant-colony optimization (ACO) in terms of success rate and solution quality. Various
works done by Yagiz et al. [41], Hou et al. [42], etc., have also confirmed the good performance
of PSO. In previous research, this optimization algorithm was usually applied to search the hyper-
parameters of several intelligent models. But in this study, PSO was employed to investigate the
optimal parameter to minimize the difference between the slurry pressure and the external water
and earth pressure.

The continuation of this paper is organized as follows. In Section 2, we give some preliminar-
ies on the algorithm applied in this paper and then present the methodology of slurry pressure
identification and control model. In Section 3, with python language [43], the data from Tsinghua
Yuan Tunnel was processed and an identifier, as well as a controller, was established based on the
proposed method. Finally, the result was present and the performance of the proposed method
was investigated.

2 Hybrid RF-PSO Based Control Method

2.1 Slurry Support System in SPB
During the SPB shield tunnelling, the excavated soil enters the slurry chamber through the

opening of the cutter head and was then carried out by slurry. Therefore, different from the EPB
shield of which the tunnel face is supported by soil in the soil chamber, the face stability of SPB
shield is maintained by the pressurized slurry mixed with soil in the slurry chamber, as shown
in Fig. 1. According to the dynamic balance in the slurry chamber, the slurry pressure regulation
mechanism is performed by adjusting air pressure and slurry in and outflow, which are also related
to the state of shield tunnelling like thrust, torque, etc. Therefore, the stability of excavation face
is a complicated soil-slurry-machine interaction process and many factors are involved including
soil environmental conditions, shield mechanical driving state, and slurry circulation system.
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Figure 1: Supporting principle of excavation face in SPB shield
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Soil environmental conditions include geometric and geological factors. In terms of geometry,
the tunnel diameter and depth have a great influence on slurry pressure. Here, the depth is
measured from the tunnel crown to the ground surface. This parameter plays an important role
in the control of slurry pressure. As the depth increases (decreases), the slurry pressure has to
immediately increase (decrease) otherwise it may cause instability of the excavation face. In terms
of geological parameters, many factors such as soil weight and cohesion that has a great influence
on the balance of slurry pressure.

The parameters represent the mechanical driving state of shield comprises advance speed (v)
and thrust force (F), rotational speed (n), and torque (T). When the formation is harder or heavier,
the thrust and torque required are often greater, which means they reflect the difficulty of soil
excavation to a certain extent.

The slurry circulation system is the key part of controlling slurry pressure of which the main
parameters are air pressure (Pa), the volumes of slurry feeding per ring (Qf ), the volumes of
slurry discharging per ring (Qd ), the different volumes between slurry charging and feeding (Qdif ),
the specific gravity of slurry feeding (Gf ), the specific gravity of slurry discharging (Gd) and the
different specific gravity between slurry charging and feeding (Gdif ).

Theoretically, according to the supporting principle of excavation face in SPB shield, the
desired supporting pressure of the excavation face should be equal to the static earth and water
pressure, which can be expressed as [31,44]:

Pd =K0γ
′
s zs+ γwhw (1)

where Pd is the desired slurry pressure, the remaining parameters are obtained through geological
exploration, among which K0 is the coefficient of static lateral earth pressure, γ ′

s and γw are effec-
tive soil weight and water weight respectively. zs is the cover thickness and hw is the groundwater
level.

2.2 Slurry Pressure Identification via Random Forest
2.2.1 Input Features

To predict the slurry pressure during shield tunnelling, it is essential to investigate the factors
that may affect the slurry pressure and determine which can be used as input parameters of
the identification model. According to the analysis in Section 2.1, the specific parameters can be
divided into three categories among which the soil environmental factors are cover to diameter
ratio(R = Z/D) that comprehensively consider the influence of tunnel geometric conditions. In
this study, all the geological parameters are not taken into consideration for the following reasons:
1) The difference of soil weight and coefficient of static lateral earth pressure in this investigated
tunnel section is small; 2) Due to the limitation of geological exploration, continuous geological
parameters values are unable to be obtained; 3) To a certain extent, shield mechanical drive
parameters can reflect the ground conditions. Therefore, through the above analysis, 12 features
were taken into consideration in the identifier model. Besides, what we are concerned with is the
precise nonlinear relationship between the slurry pressure and its various influencing factors. Thus,
the input of this model are the parameters of one step while the output of the model is still the
slurry pressure of this step, which is presented as follows:

Ps (r)= f
(
R (r) , F (r) , T (r) , ν (r) , n (r) ,Pa (r) ,Qf (r) ,Qd (r) ,Qdif (r) ,Gf (r) ,Gd (r) ,Gdif (r)

)
(2)
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2.2.2 Random Forest for Slurry Pressure Identification
Random forest (RF) is a pattern recognition method based on a “holistic learning” strategy,

which has high nonlinear mapping ability. It is mainly composed of two main components,
namely the Decision Tree (DT) algorithm and the bagging algorithm. In DT, the feature space
is continuously divided into subspaces to ensure that all samples in the same subspace are as
uniform as possible. For regression problems, space division is usually performed by minimizing
the following equation:

S=
∑
c∈T

∑
i∈c

(yi−mc)
2 (3)

where S is the sum of squared errors of the tree, mc is the predicted value of the terminal leaf
node in the tree; yi is the output value of sample i in the data set.

Based on the DT algorithm, Breiman [45] proposed a more powerful method, namely the
so-called random forest algorithm. It has been proved that “forest” is more robust than “single
tree” in many data mining problems and the ability to resist overfitting is stronger. In RF, the
training data of each tree is constructed by bagging technology and the results of all decision
trees are averaged to improve the modeling accuracy and control over-fitting. Based on the above
analysis of input features, Fig. 2 illustrates a general architecture of the RF-based slurry pressure
identification model and n represents the number of trees constructed in the random forest.
Besides, the relative importance of characteristic variables can also be obtained through impact
analysis of features on model predictions.

Tree 1

Average

Y (Output)

Tree 2 Tree n

Prediction 1 Prediction 2 Prediction n

Subdataset 1 Subdataset 2 Subdataset n

Soil environmental conditions Mechanical driving parametersSlurry circulation system

• Air pressure
• Slurry feed flow
• Slurry discharge flow
• Slurry flow deviation
• Slurry specific gravity of feeding
• Slurry specific gravity of discharging
• Slurry specific gravity deviation 

• Thrust force
• Torque
• Advance speed
• Rotational speed

• Cover to diameter ratio

Figure 2: RF-based slurry pressure identification model
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2.2.3 Hyper-Parameters Tuning
It is necessary to tune the hyperparameter of the RF model since different hyperparameters

result in different performance. The cross-validation method can reduce the overfitting of a model
to a certain extent when it was used to evaluate the prediction performance of the model,
especially the performance of the trained model on new data [44]. Simple cross-validation is to
randomly divide the data set into the training set and test set according to a certain proportion
while the data set of the K-fold cross-validation method is divided into k small pieces as illustrated
in Fig. 3. The validation set and the test set form a complement to each other and the average is
finally obtained.
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Figure 3: Diagram of the cross-validation method

Usually, the original data set is randomly divided into a training set and a testing set. The
training set is used to build a regression model and the test set is used to prove the predictive
ability of the model on new data. Generally, the proportions of the training set and the testing
set depend on the quality and accuracy of the data as well as the structure of the network itself.
If the proportion of the training set is too small, the model will not be able to make predictions;
if the proportion of the training set is too large, the model will closely match the results of the
training set and will not give good prediction results for new data. According to the optimization
analysis, this paper finally uses 70% of the data set for training and the remaining 30% for model
testing [44]. As long as a certain range of parameters is entered, multiple parameter combinations
will be systematically traversed and the best hyperparameter will be determined through k-fold
cross-validation (CV). The calculation time and variance should be considered when determining
the k value of CV. According to the suggestion by Friedman et al. [46], set k to 5 is enough for the
hyperparameter-tuning, that is, the training set is randomly divided into five subsets, four of which
are used to train the RF model and the remaining subsets are used to verify the performance of
the RF model. Repeat the training and verification process five times, each time using a different
subset for verification. The performance of the random forest model on the training set is obtained
by averaging the performance of five rounds of training and verification. The flow chart of RF
model development is illustrated in Fig. 4.
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To evaluate the performance of the model during the tuning of the model, a scorer which is
a metrics is designated to score training results. All score metrics follow the following principle:
a higher return value is better than a lower return value. In this paper, the “explained_variance_-
score” was applied as shown in Eq. (4):

explained_variance
(
yi,yip

)= 1− Var
{
yi− yip

}

Var {yi} (4)

where yi is the original value, yip is the predictive value, Var means variance.

Date set of construction

Normalization

Random forest model 
training

Testing Set(30%)Training Set(70%)

Five-fold cross 
validation

Random forest based 
identifier

Model evaluation

Importance analysis

Figure 4: Procedure of random forest model training

2.3 PSO-Based Optimization of Air Pressure
In terms of the slurry pressure control methods, the slurry shield can be divided into two

basic types, indirect control type (German-style with bubble chamber) and direct control type
(Japanese style without bubble chamber). In the early years of SPB shield development, the
excavation chamber only contains a slurry chamber which means stability of the excavation
face is maintained by controlling the slurry pressure directly (by the flow of feed or discharge
slurry pump). However, the slurry pressure would fluctuate greatly with the change of geological
conditions which makes the excavation face stability problem uncontrollable. With the development
of shield, the excavation chamber of the current SPB shield machine is usually composed of the
slurry chamber and bubble chamber which means the control and adjustment of the excavation
face are achieved by the slurry circulation control system and air pressure control system together.
Generally speaking, the slurry circulation control system is mainly to adjust the change of slurry
flow in and out to keep the slurry level near the axis while the air pressure control system is the
major execution module to balance the fluctuation of slurry level and control the slurry pressure
indirectly. It should be noted that when the slurry level is beyond the limitation, the operators
have to stop driving and regulate the feed or discharge slurry pump to readjust the slurry level [6].
Besides, due to the hysteresis of slurry circulation, it is impossible to control the slurry pressure by
the slurry circulation system. Therefore, at the normal state of advancement, the slurry pressure is
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mainly controlled by the air pressure control system for its high precision and sensitivity. In this
paper, only the slurry pressure balance problem in continuous excavation mode was taken into
account, thus, the air pressure was optimized in slurry pressure control.

Particle swarm optimization (PSO) is a powerful optimization algorithm based on the swarm
behavior of birds or fishes around food, which was applied to search the optimal air pressure in
this study. The term “particle” is used here to refer to the individual candidate that defined by
velocity (Eq. (5)) and position (Eq. (6)) based on two best fitness values: the best fitness solution
of each particle fulfill so far which is pbest and the global best solution gained by any particle
in the population which is gbest.

vi+1 =ωvi+ c1r1 (pbesti− pi)+ c2r2 (gbesti− pi) (5)

pi+1 = pi+ vi+1 (6)

where ω is the inertia weight, r1 and r2 are random values in the range (0, 1) sampled from a
uniform distribution; c1 and c2 are the constants named acceleration.

PSO starts with a set of particles randomly generated and initialized. Then, according to pbest
and gbest values, all particles update their velocities and positions until the optimal solution is
finally reached.

The flowchart of the PSO algorithm is demonstrated in Fig. 5.

Initialization

Calculate fitness for each particles

Calculate velocity for each particle

Update swarm best position

Update position of particles

Yes No

Fitness better 
than particle best?

Update particle best Keep previous particle best

Maximum iteration?

Select the optimum solution

Yes

No

Figure 5: Flowchart of PSO algorithm

2.4 Optimal Control Model of Slurry Pressure
During the shield tunnelling, the most ideal situation for excavation face stability is that the

slurry pressure is equal to the desired slurry pressure. However, the environmental conditions and
machine statuses change with the advance of excavation which inevitably results in the fluctuation
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or even mutation of slurry pressure, especially in complex geological conditions. In order to
control slurry pressure, it should be identified first. In other words, the slurry pressure needs to
be predicted during shield tunnelling and this is the main purpose of the RF model. Then, based
on the proposed identifier model, a controller is established to reduce the fluctuation and make
the slurry pressure as close to the expected value as possible. Therefore, the optimization function
can be described as follows:

J =min |Ps−Pd | (7)

where Ps is the predicted slurry pressure, Pd is the desired slurry pressure.

To control the slurry pressure during shield tunnelling, a control method based on PSO and
RF model mentioned above was developed and its procedure is shown in Fig. 6, where Pms is
monitored slurry pressure during shield tunnelling. When the slurry pressure on the excavation
surface is equal to the expected static water and soil pressure, the shield will continue to move
forward. If the slurry pressure is not equal to the expected static water and soil pressure, the
optimized value of air pressure will be searched aiming to output the predicted slurry pressure
which has the minimum difference from the expected value. Then, the suggested air pressure will
be given by the PSO-based optimizer.

Advance

Monitor construction parameters

PSO-based controller

Update the date set

Establish optimizer
Min |P − Pd |

Suggested value of Pa 

Yes

No

P = Pd

Update the random 
forest model

RF-based identifier

RF and PSO based slurry pressure control system 

Figure 6: Procedure of slurry pressure control based on RF and PSO

3 Case Study

The methodology of the RF-PSO model has been explained above. This section demon-
strates the application of the proposed model through a practical tunnel project to validate the
performance of it.

3.1 Project Description
Tsinghua Yuan Tunnel is an urban underground tunnel of the Beijing-Zhangjiakou High-

speed Railway in Beijing. Two SPB shield with a diameter of 12.64 m was applied and the external
and internal radii of the segmental lining of the tunnel are 6.1 and 5.55 m respectively. The
3#∼2# section of the shield tunnel was 1741 m long that launched from shaft 3 and ended in
shaft 2. The profile of geology is illustrated in Fig. 7, the buried depth of the tunnel is 6.8 m
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in the area of the 3# launching shaft and then descended with a gradient of 12.9%. When the
tunnel reached shaft 2, of which the buried depth increased to 19.18 m.

Figure 7: Geological profile of 3 #–2 # interval

3.2 Data Processing
In this study, a total of 450 sets of data from ring 0 to ring 449 were investigated. The section

from the 0th ring to the 225th ring is almost silty clay while the section from the 225th ring to the
449th ring is an interlayer structure of pebble soil, sand, and silty clay. The frequency histogram of
each parameter during shield tunnelling is shown in Fig. 8, most of them have a wide distribution,
indicating that the state of the shield machine changes greatly during construction and the
parameters have been adjusted frequently.

Pearson correlation coefficient is an effective index to evaluate the correlation which is shown
as Eq. (8). The correlation between all parameters of the model is analyzed through the seaborn
library based on python and the correlation heat map is shown in Fig. 9, where the lower-left
corner is the heat map mode and the upper right corner is the corresponding correlation value.

ηxy = n
∑
xiyi−

∑
xi

∑
yi√

n
∑
x2i −

(∑
xi

)2√n
∑
y2i −

(∑
yi

)2 (8)

where xi, yi is the feature, n is the number of samples.

As can be seen, the input parameters have a strong correlation with slurry pressure especially
air pressure, cover to diameter ratio, thrust force and torque, of which the correlation value
exceeds 0.5. Furthermore, the correlation between ratio and thrust force, torque respectively were
0.86 and 0.8, which verified that thrust force and torque can reflect the geological conditions to
a certain extent. Additionally, if the variance of one feature is much larger than the other, then
it may dominate the objective function and result in the model unable to learn from the other
features correctly as expected. Therefore, the input data are normalized to the range of [0,1] to
speed up the convergence of the RF model. The normalization processing method is as follows:

xn = x−xmin

xmax−xmin
(9)

where xn is the normalized eigenvalue, x is the original feature value, and xmin, xmax are the
minimum and maximum values of the feature, respectively.
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Slurry flow deviation(m3)

Figure 8: Parameter frequency histogram

4 Results and Discussion

4.1 Performance of the Hybrid RF-PSO Model
According to section 2.2.2, 70% of the data set (315 groups) was used for training and the

remaining 30% (135 groups) was for model testing. The optimal hyperparameters of the slurry
pressure identifier model are obtained by five-fold cross-validation. Among all hyperparameters,
the number of the estimator (tree) has the most influence on the performance of the RF model,
followed by the max depth and max features. Thus, the tuning order of the training model is the
number of estimators, max depth and max features. Eventually, the value of these hyperparameters
is 1100, 15 and 7, respectively, which were tuned by the five-fold cross-validation method. The
final performance score of the random forest model on the training set and test set is 0.963
and 0.946, respectively. To illustrate the advantages of the RF model, the backpropagation (BP)
neural network and support vector regression (SVR) were also employed to train the data for
comparison. To avoid the influence of determination of the hyperparameters on the comparison
results, the hyperparameters of these three models were also tuned by the five-fold cross-validation.
The comparison of the measured and predicted values of the slurry pressure on the training set
and the test set is shown in Fig. 10.

As can be seen, scattered data in both plots are all close to the line of equality (shown as
the solid line) in the training set and the testing set, demonstrating the good accuracy of these
three models. Furthermore, the width of data of the RF model is narrower than BP and SVR
model, which means its deviation from the expected value is smaller and it can also be proved
in the following Tab. 1. Additionally, in terms of computational time, the most time-consuming
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algorithm is BP neural network and followed by SVM and RF between which there is not much
difference.
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Figure 10: Performance of the selected models. (a) Training Set (b) Testing Set
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The network performance evaluation indices of each model on the training set and test set
are listed in Tab. 1. The mean absolute error (MAE), mean square error (MSE), root mean square
error (RMSE), coefficient of determination (R2), adjusted coefficient of determination (Adjusted
R2) were calculated. A small value of MAE, MSE, RMSE and great values of R2 and adjusted
R2 indicates a good prediction accuracy of the model. The results of the RF model are better
than the other two, indicating that the model has high non-linear mapping ability and strong
generalization ability. In terms of RMSE, the RF model is 69.7% and 72.0% less than the SVR
model and the BP model respectively on the training set while on the test set are 28.6% and 34.5%.
In terms of R2, the RF model is 5.4% and 6.6% higher than the SVR model and BP model
respectively on the training set while on the test set are 3.0% and 4.1%. The comparative analysis
with SVR model and BP model elucidates that the RF model can predict the slurry pressure with
reasonable accuracy.

Table 1: Model evaluation parameter statistics

Model MAE MSE RMSE R2 Adjusted R2

Formula 1
n

∑n
i=1

∣∣yi− yip
∣∣ 1

n

∑n
i=1

(
yi− yip

)2 √
1
n

∑n
i=1

(
yi− yip

)2 1−
∑n

i=1(yip−yi)2∑n
i=1(yi−yi)2

1−
(
1−R2)(n−1)
n−k−1

Train RF 0.0172 0.0005 0.023 0.9945 0.9948
SVR 0.0610 0.0057 0.076 0.9424 0.9438
BP 0.0640 0.0068 0.082 0.9316 0.9334

Test RF 0.0437 0.0031 0.055 0.9681 0.9700
SVR 0.0581 0.0060 0.077 0.9384 0.9421
BP 0.0650 0.0070 0.084 0.9274 0.9317

where yi is the original value, yip is the predictive value, n is the number of samples and k is the
number of features.

Based on the proposed RF model, a control model that keeps the slurry pressure in line
with the desired one as much as possible during shield tunnelling was established. The tuning
parameters of PSO including the maximum number of iterations (IterMax), the population size
(PopSize), the lower and upper boundaries of a variable (VarMin and VarMax) have been selected
as follows: IterMax = 1000, PopSize = 100, VarMin = 0, and VarMax = 1.5. The two parameters
of the personal learning coefficient (c1) and the global learning coefficient (c2) are set to be 1.5
and 1.5, respectively, which were determined by several trial and error runs. The optimization
results are illustrated in Fig. 11, the slurry pressure after the optimization by PSO can consistently
conform to the desired values represented by the blue dotted line, which means the control
model has a good tracking ability to the expected value. Furthermore, the fluctuation of the
optimized slurry pressure is much smaller throughout the 450-ring section while the monitored
slurry pressure fluctuated significantly, To quantify the performance of the optimization, the index
MAE was applied to measure the difference between the expected slurry pressure before and
after optimization. The MAE between the monitored and desired slurry pressure is 48.06 while it
is 17.10 between the optimized and desired, which proves the good performance of the control
model.
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Figure 11: Slurry pressure solved by PSO

The main job of the controller model is to minimize the difference between slurry pressure
and desired support pressure of excavation face by searching for the optimal air pressure. The
suggested air pressures solved by PSO are shown in Fig. 12. The air pressure was relatively stable
before the optimization. The optimized results indicate the air pressure should be dynamically
adjusted to provide an accurate slurry pressure. The proposed control strategy in this paper can
effectively control the fluctuation of slurry pressure at the normal of advancement.
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Figure 12: Comparison between the air pressure before and after optimization by PSO

4.2 Discussion
As mentioned before, the impact of features on model predictions can be obtained based on

the importance analysis of RF. Generally, in the random forest regression model, the statistic R2

is used to characterize the relative importance. The importance score of the feature is normalized
(the sum of all importance scores is 1) and the result is shown in Fig. 13 below. It shows that
the soil environmental parameters, shield mechanical driving parameters and slurry circulation
parameters account for the total importance of 0.342, 0.143 and 0.515, respectively, indicating
that the slurry parameters have the greatest impact on the prediction results. Among them, the
parameter that has the greatest influence on the slurry pressure is certainly the air pressure,
which accounts for almost half of its importance. Hence, that is why the air pressure is usually
selected to control the slurry pressure in engineering practice. Furthermore. the most influential
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mechanical driving parameter is thrust and followed by torque. It should be noted that the results
of importance analysis and correlation analysis keep basic consistency, which indicates that a
higher correlation with slurry pressure means greater importance on it.
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Figure 13: Relative importance of the input variables selected in the RF model

In practical applications, the proposed model can provide initial estimations of slurry pressure.
With the prediction model of slurry pressure, control factors can be optimized and the suggested
value will be given. Briefly, the improved model in this research is expected to provide insightful
suggestions to support operators in the control of face stability during slurry shield tunneling.
However, in this research, only air pressure is considered which means the given suggestion is lim-
ited during slurry shield tunneling and slurry parameters should also be taken into consideration
in the future study. Besides, more data should be trained to improve the accuracy of the proposed
model.

5 Conclusion

In this study, with python language, a dynamic identifier is constructed based on RF to
perform the complex relationship between slurry pressure and its affecting factors. Then, combined
with the trained RF model, a PSO-based controller was designed to optimize the air pressure to
control slurry pressure during shield tunnelling. The proposed model is applied to a case study of
Tsinghua Yuan Tunnel in Beijing. To illustrate the advantages of the RF model, the SVR model
and BP model were also employed for comparison. Finally, the hybrid RF-PSO control method
was applied in the optimization of slurry pressure. Major conclusions are obtained as follows:

1. Based on the RF algorithm, a reasonable relationship between slurry pressure and three
main aspects including soil environmental factors, shield mechanical driving state and slurry
circulation system was obtained. The performance of this identifier model on the training set and
test set were 0.963 and 0.946, respectively, indicating the high nonlinear mapping ability and strong
generalization ability of this model.

2. Through comparative analysis with the BP model and SVR model, the RF model has
smaller RMSE and greater R2, which indicates that the RF model demonstrates better prediction
accuracy of slurry pressure than the SVR model and BP model.

3. According to the importance analysis, the soil environmental parameters, shield mechanical
driving parameters and slurry circulation parameters account for the total importance of 0.342,
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0.143 and 0.515, respectively. Among them, air pressure has the greatest influence on slurry
pressure, which accounts for almost half of its importance and is followed by the cover to
diameter ratio, which accounts for 0.342.

4. The optimized slurry pressure shows good agreement with the target support pressure,
which means the proposed model has great performance in the control of slurry pressure during
shield tunnelling. Compared with the field data in Tsinghua Yuan Tunnel project, the fluctuation
of optimized slurry pressure was significantly reduced.

5. The proposed method is recommended as a useful tool to provide suggestions for slurry
pressure control during shield tunnelling. Further work is needed to enlarge the database and
promote the applicability of the hybrid RF-PSO-based control model for slurry pressure.
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