
echT PressScience
Computer Modeling in
Engineering & Sciences

DOI: 10.32604/cmes.2021.015314

ARTICLE

A Homogeneous Cloud Task Distribution Method Based on an
Improved Leapfrog Algorithm

Yunliang Huo1, Ji Xiong1,*, Zhixing Guo1, Qianbing You1 and Yi Peng2

1School of Mechanical Engineering, Sichuan University, Chengdu, 610065, China
2Chengdu Yigao Intelligent Technology Co., Ltd., Chengdu, 610065, China
*Corresponding Author: Ji Xiong. Email: 13668149296@163.com

Received: 08 December 2020 Accepted: 08 April 2021

ABSTRACT

Cloud manufacturing is a new manufacturing model with crowd-sourcing characteristics, where a cloud alliance
composed of multiple enterprises, completes tasks that a single enterprise cannot accomplish by itself. How-
ever, compared with heterogeneous cloud tasks, there are relatively few studies on cloud alliance formation for
homogeneous tasks. To bridge this gap, a novel method is presented in this paper. First, a homogeneous cloud
task distribution model under cloud environment was constructed, where services description, selection and
combination were modeled. An improved leapfrog algorithm for cloud task distribution (ILA-CTD) was designed
to solve the proposed model. Different from the current alternatives, the initialization operator and the leapfrog
operator in ILA-CTD can ensure that the algorithm always searches the optimal solution in the feasible space.
Finally, the processing of task allocation for 1000 pieces of medical labeling machine bottom plates was studied as
a case to show the feasibility of the proposed method. The superiority of ILA-CTD was also proven based on more
optimal solutions found, compared with the three other methods.

KEYWORDS

Cloud manufacturing; service composition; tasks distribution; intelligent optimization; leapfrog algorithm

1 Introduction

The application of modern technologies (the Internet of Things [1,2], service-oriented technol-
ogy [3], cloud computing [4], big data [5], etc.) had a profound impact on manufacturing methods.
Cloud manufacturing (CMfg) is a network-based and knowledge-enhanced manufacturing model,
it is a specific form of the service-oriented manufacturing paradigm [6]. Generally, there are two
types of clouds: private clouds in large enterprises [6,7] and public clouds for small and medium
enterprises (SMEs) [8]. The application of CMfg in SMEs would better reflect the characteristics
of CMfg, such as centralized management of distributed resources, crowd-sourcing manufacturing,
and highly shared manufacturing resources [9].

There is consistent requirement in CMfg in SMEs, namely that a large order needs to be
fulfilled in a short time, this is undertaken by an alliance of multiple SMEs [10]. A single SME

This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

http://dx.doi.org/10.32604/cmes.2021.015314

360 CMES, 2021, vol.128, no.1

is unable to complete such a large order in a timely manner. A reasonable distribution of a large
order to multiple SMEs can drastically reduce the time required to fulfill the order, because the
order can be executed parallelly. The global optimization for this activity can be achieved through
reasonable task allocation according to the capabilities of the alliance members. Two crucial steps
are needed to form a cloud alliance: selection of members (services selection) and reasonable task
distribution (services composition) [11].

Selection of alliance members, namely services selection (SS) can be achieved through methods
such as semantic similarity [12], QoS (quality of services) [13] and rough-fuzzy approach [14].
For task distribution, cloud manufacturing relates to two types: heterogeneous tasks that require
different services [15], and homogeneous tasks that require the same services [16]. The difference
is that the latter selects services based only on QoS, and even if the production capacity of
an individual service is insufficient, a large number of available services will still be obtained.
However, not every available service can be assigned a task because there is the constraint of
starting quantity. Therefore, how to reasonably allocate mass homogeneous tasks to such services
is a complicated question with many constraints such as production capacity, QoS, and starting
quantity. To propose a solution to this problem, an improved leapfrog algorithm for cloud task
distribution (ILA-CTD) is presented in this study. A novel initialization operator was designed in
this method to avoid the solution modification caused by the restriction of the starting quantity.
The solution obtained by the leap operator satisfies the restriction of the starting quantity. Pareto
optimal theory was applied to leapfrog algorithm, so that the proposed algorithm has the ability
to deal with multi-objective optimization problems.

This article is organized as follows: Section 2 reviews related works; Section 3 presents the
proposed model; Section 4 introduces the novel task distribution method; Section 5 describes
a case study with the results discussions; and Section 6 concludes the study with remarks and
suggestions for future work.

2 Related Works

2.1 Service Selection (SS)
Manufacturing services are usually designed to be user-friendly (i.e., services can be eas-

ily identified through accurate description of QoS). After alternative services are found, dis-
crimination of the services with overlapping or identical functionalities based on QoS can be
achieved [17,18]. However, things become more complex when a task consists of several subtasks,
that need multiple services to accomplish collaboratively [16].

Many methods have been developed to rank and select services. Zhao et al. [19] proposed
an optimal service selection approach using crowd-based cooperative computing, whose main
contribution was optimally balancing the QoS and the synergy effect. Eisa et al. [18] presented a
Multi-Criteria Decision-Making model to rank services based on various QoS attributes; unlike
other approaches, their work was based on a real cloud provider (Amazon). Hussain et al. [20]
presented a novel customer-centric Methodology for Optimal Service Selection (MOSS) in a cloud
environment. Bouzary et al. [21] used TF-IDF (term frequency-inverse document frequency) to
identify services that satisfy QoS. A modified interval DEA model with undesirable outputs
has been adopted to achieve more accurate web service selection [22]. In addition, the dynamic
change of consumer requirements was also considered by Devi et al. [23], they proposed a Linear
Programming model to rank and select services dynamically.

CMES, 2021, vol.128, no.1 361

Obviously, QoS plays an important role in cloud services selection. To build upon previous
research, a selection method for homogeneous services based on QoS is proposed in this work.

2.2 Task Distribution and Services Composition
From ants to human beings, animals have the ability to cooperate, communicate and divide

labor among individuals, which is inspiring collaborative manufacturing. Chen et al. [16] pro-
posed an improved multi-objective evolutionary algorithm based on the decomposition-particle
swarm optimization (MOEA/D-PSO) to obtain the optimal combination of services. Aimed at
minimizing the making span, monetary and energy costs of tasks in the cloud-fog paradigm, a
two-tier bipartite graph task allocation approach was presented by Gad-Elrab et al. [24] based
on fuzzy set theory. Gigliotta et al. [25] examined the issues in task allocation in homogeneous
communicating robots using the evolutionary algorithm. Sharma et al. [26] proposed an improved
cloud task allocation strategy using a modified K-means clustering technique. A hybrid approach
combining the features of genetic algorithm and the analytical hierarchy process, was implemented
by Mostafa et al. [27] to distribute tasks to service suppliers. A multi-objective genetic algorithm
was used by Jiang et al. [28] to allocate the disassembly tasks in the cloud environment. Jatoth
et al. [29] presented an Optimal Fitness Aware Cloud Service Composition (OFASC) to balance
multiple parameters of QoS. Zhou et al. [30] used evolutionary algorithms for many-objective
cloud services composition. Somasundaram et al. [31] designed and developed a cloud resources
broker (CLOUDRB), which integrated CLOUDRB with deadline-based job scheduling. They also
developed a particle swarm optimization (PSO)-based resource allocation mechanism, to allocate
users’ requirements to cloud resources in a near-optimal manner.

In summary, task distribution (services combination) is a complex problem, and intelligent
evolution algorithms (such as GA, EA and PSO) have made substantial contribution to address
the complexities. Inspired by the previous efforts, ILA-CTD is proposed in this study to address
the homogeneous cloud task distribution problem.

3 Homogeneous Task Distribution Model

3.1 Problem Statement
The manufacturing resources in CMfg are encapsulated as manufacturing service in a cloud

resources pool. When the manufacturing tasks published in CMfg, three stages follow, namely,
task decomposition, services selection, and services composition. The homogeneous cloud task
distribution model is shown in Fig. 1.

Manufacturing resources of factories are virtualized to various cloud services in a cloud
service pool. When the tasks are uploaded, the service pool will be searched and available
services will be selected. Then, the optimal service combination will be determined to identify an
optimized cloud manufacturing alliance. The factories in the alliance will be notified to perform
manufacturing tasks. The focus of our work is services selection and combination optimization,
specifically for homogeneous tasks. This is expressed in Eq. (1):⎧⎪⎪⎨
⎪⎪⎩
Tp

(n) = {P1, P2, . . . , Pi, . . . , Pn}
Sc

(f) =
{
S1, S2, . . . , Sj, . . . , Sf

}
Mj ≤ s j

(1)

362 CMES, 2021, vol.128, no.1

Tp
(n) indicates cloud tasks with n products, Pj is the ith product; Sc

(f) is the set of available

services; Sj is the jth available service; s j denotes the manufacturing capacity of Sj; and Mj is
the starting quantity of Sj. Services selection can be achieved based on QoS, and then, the rest
of the problem converts to the distribution of n products to f services with both QoS and cloud
alliance quality considered.

Figure 1: The model of homogeneous cloud task distribution

3.2 Service Description and Selection
3.2.1 Manufacturing Service Description in the Cloud

Offline services selection mainly focuses on QoS, which involves cost, time, and quality.
However, for cloud services, the attributes that affect the quality of the cloud manufacturing
alliance also need to be considered. Evaluation indexes proposed by Chen give a comprehensive
description of cloud manufacturing services; cloud manufacturing services (C-QoS) were expressed
as 6 tuples (C-QoS = {SI , G, C0, T , C, Q}) [16].

1) SI shown in Eq. (2) is the quality consistency:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

SIi =
∑ f

j=1
∑q

k=1

(
Qjk.Sgn

(
S j

)−µk
)2

k.
∑ f

j=1 Sgn
(
S j

)

µk =
∑ f

j=1Q
jk.Sgn

(
S j

)
∑ f

j=1 Sgn
(
S j

)
(2)

SIi is the quality consistency of ith cloud alliance; Qjk is the evaluation value of kth quality
index of S j in its history; S j is jth available service; Sgn (S j) is the status of service S j. If S j is
selected, Sgn(S j) = 1; else Sgn(S j) = 0. f is the number of available services, and q is the total
number of quality indexes.

CMES, 2021, vol.128, no.1 363

2) G shown in Eq. (3) is the composability:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
Gi =

∑ f
j=1 Sgn

(
S j

)
.Gj

∑ f
j=1Sgn

(
S j

)
Gj = Goj

Gn j

(3)

Gi is the composability of the ith cloud alliance; Goj is the number of times that S j has been
used in a combination in its history; Gnj is the number of times that S j has been used in its
history.

3) C0 shown in Eq. (4) is communication ability:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Coi =
∑ f

j=1 Sgn
(
S j

)
.Coj∑ f

j=1 Sgn
(
S j

)

Coj =
p∑

h=1

Cojh/p

(4)

Coi is the communication ability of the ith cloud alliance; Cojh is the evaluation value of
communication ability given by the hth service provider who has cooperated with S j; p is the
number of services that have collaborated with S j.

4) T shown in Eq. (5) is the time consumed by service:⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Ti =max

(
Tmj +Ttj

)
Tmj = si j.Tmaj

Tt j =Tta j

(5)

Ti is the consumed time of the ith cloud alliance; Tmaj is the time consumed by S j for
producing a unit product; Tta j is the time consumed when the unit product is transported by S j;
and s j is the number of products undertaken by S j.

5) C shown in Eq. (6) is the cost:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Ci =
f∑
j=1

(
Cmj+Ctj

)
Cmj = s j.Cmaj

Ct j = s j.Cta j

(6)

Ci is the cost of the ith cloud alliance; Cmaj is the cost consumed by S j for producing a unit
product; Cta j is the cost consumed by S j when the unit product is transported.

364 CMES, 2021, vol.128, no.1

6) Q shown in Eq. (7) is the quality:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Qi =
∑ f

j=1 Sgn
(
S j

)
.Qj

∑ f
j=1 Sgn

(
S j

)

Qj =
q∑

k=1

Qjk/nQ

(7)

Qjk is the evaluation value of the kth quality index of S j in its history; and nQ is the total

number of evaluations of Qjk in its history.

3.2.2 Services Selection
For r candidate services in the cloud pool, incapable services should first be eliminated from

selection. Then, f (f < r) available services will exist. As shown in Eq. (8), a selection method
based on QoS was designed to filter incapable services; the task requirements are expressed as R =
[r1, r2, . . ., rk, . . ., rc], and the attributes of jth service are expressed as Saj = [a1, a2, . . . , ak, . . . , ac].⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ej = [e1, e2, . . . , ek, . . . , ec]

ek = rk− ak

∀ ek ∈Ej
if ek < 0; Sj is incapable

else; Sj is capable

(8)

rk is the kth requirement, and ak is the value of the service attribute corresponding to rk.

3.3 Distribution Model
The distribution model of n products to f available services is shown in Eqs. (9)–(11). As

s j ≥Mj must be satisfied, a situation may arise, namely, that not every available service can be
assigned with tasks if n is relatively small or f is relatively large.

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

S1 Tm1 Tt1 Cm1 Ct1 Q11 · · · Q1q Gn1 Go1 Co1

...
. . .

...
...

...
... · · · ...

...
...

. . .

Sj Tmj Tt j Cmj Ct j Qj1 · · · Qjq Gn j Go j Co j

...
. . .

...
...

...
... · · · ...

...
...

. . .

Sf Tmf Ttf Cmf Ctf Qf 1 · · · Qfq Gnf Gof Cof

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

M1 s1

...
...

Mj s j

...
...

Mf sf

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(9)

Therefore, a complex problem arises, because product quantities undertaken by each service
and different service combinations will constitute different cloud alliance options. We assign a
reasonable quantity and s j (shown in Eq. (9)) and optimize objectives (shown in Eq. (10)) under
constraints (shown in Eq. (11)):

F =Max (Q, G, C0)&&Min (SI , T , C) (10)

CMES, 2021, vol.128, no.1 365

f∑
j=1

s j = n

s j ≥M j or s j = 0

Ti ≤Tr

Ci ≤Cr

(11)

Tr and Cr represent consumer expectations of time and cost, respectively.

4 Solution Methods

The leapfrog method is an efficient algorithm with both hereditary and group behav-
ior [32–34]. However, the classic leapfrog algorithm is incapable of solving the above model
because it is a multi-objective optimization problem, and many infeasible solutions will be gen-
erated because of the constraint of starting quality. To solve the presented model, an improved
leapfrog algorithm for cloud task distribution (ILA-CTD) is proposed.

4.1 Basic Definitions
Pareto domination: Assuming that a and b are two solutions of a multi-objective function F

with m benefit-oriented targets and n cost-oriented targets, if ∀ i, Fi(a) ≤ Fi(b) (i = 1, 2,. . ., m)
and Fj(a)≥ Fj(b) (j= 1, 2,. . ., n), where Fi is the benefit-oriented target and Fj is the cost-oriented
target, and at least one strict inequality holds, then b dominates a.

Non-dominated solution: Assuming that c is a feasible solution of a multi-objective function
F with m targets, if there is no other solution d that satisfies Fi(c) ≤ Fi(d) (i = 1, 2,. . ., m) and
Fj(a) ≥ Fj(b) (j = 1, 2,. . ., n), then c is a non-dominated solution.

Elite archives: Set of non-dominated solutions obtained in the process of searching for the
best solution.

4.2 ILA-CTD Operators
4.2.1 Initialization of Frog Population

A solution of the model is mapped to a frog Ui = (s1i , . . . , s ji , . . . , s fi) in ILA-CTD, and p
frogs form a population P. Different from the classic leapfrog algorithm in which the initialization
of the population is achieved via the rand methods, in this work, a novel initialization method
shown in Eq. (12), was designed to satisfy the constraint in Eq. (13).⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

j= unidrnd (f)

k= (a ∗ unidrnd (b)) ∗ (
n−Mj

)
if r≤ (

c+M j/T
)
; s j = 0

else s j =Mj+ unidrnd (k)

(12)

366 CMES, 2021, vol.128, no.1

unidrnd(f) is a function that produces an integer from 0 to f ; a and b are the initial speed
factors; c is the diversity factor; and r is a random number between 0 and 1.

f∑
j=1

s j = n (13)

n is the total number required to be distributed. Obviously, all solutions obtained through
the designed initialization method satisfy the constraint of starting quality, and the diversity of
population P is also guaranteed via factor c.

4.2.2 Fitness Function
A fitness function shown in Eq. (14) was designed to rank frogs, where fi is the fitness value

of the ith frog in a population.

fi =
{
1 Ui is non− dominated solution

0 else
(14)

4.2.3 Grouping
Dividing p frogs into q groups, where q< p. The ith group is called memeplex(i). The detailed

grouping rules are as follows: (1) sorting frogs by fitness value. (2) assigning the sorted frogs to
each group in turn. For example, q= 3; 1th frog enters memeplex(1); 2th frog enters memeplex(2);
3th frog enters memeplex(3); and 4th frog enters memeplex(1) again.

4.2.4 Leap Operator τ(Ui)
The search process constantly makes the worst frog in each memeplex leap to a better position.

The leap operator τ (Ub) is shown in Eq. (15):

Uw = (
sw1, . . . , sw j, . . . , sw f

)
Ub =

(
sb1, . . . , sb j, . . . , sb f

)
(Uw =Uw +Ub−Uw)

(15)

Uw is the worst frog in a memeplex, and Ub is the best frog. It is easy to prove that the
solution obtained via the leap operator also satisfies the constraint of starting quality, which is
more efficient than the other methods that consume time to amend infeasible solutions.

Proof. If Ui = (s1i , . . . s ji , . . . s fi) is a solution that satisfies the constraint of starting

quality, then s ji > Mj and
∑ f

j=1 s
j
i = n. Assuming that Uw = (s1w, . . . , s jw, . . . , s fw) and Ub =

(s1b, . . . , s jb, . . . , s fb) are two solutions that satisfy the constraint of starting quality, then Eq. (16)
follows:

Ub−Uw =
f∑

j=1

s jb−
f∑
j=1

s jw

= 0 (16)

CMES, 2021, vol.128, no.1 367

Hence, Uw =Uw+ (Ub−Uw) satisfies constraint that
∑ f

j=1 s
j
w = n, for s jw of the new Uw, the

Eq. (17) is always existence.

s jnw = s jw+ s jb− s jw

= s jb (17)

Ub is feasible and satisfies the constraint of starting quality. Therefore, s jb > Mj is also
satisfied. Thus, the feasibility of the solution obtained using the leap operator is proved.

4.2.5 Local Search
Local search replaces the worst frog with a better one in each memeplex. The flowchart is

shown in Fig. 2.

Start

Determine Uw,Ub,Ugb

τ(Ub)

Is the new Uw

better than the Uw?

Replace the Uw with
the new one

τ(Ugb)

Randomly generate a
frog to replace Uw

end

Is the new Uw

better than the Uw?

Y

N

Y
N

Figure 2: Flowchart of local search

Step 1: Find the local worst frog Uw, the local best frog Ub, and the global best frog Ugb.

Step 2: Update Uw by using the leap operator τ (Ub).

Step 3: Is the new Uw better than the old one? If yes, go to Step 4; else, go to Step 5.

Step 4: Replace the Uw with the new one.

Step 5: Update the Uw by using the leap operator τ (Ugb).

Step 6: Is the new Uw better than the existing Uw? If yes, go to Step 4; else, go to Step 7.

Step 7: Randomly generate a frog to replace Uw.

4.3 Process of ILA-CTD
Based on the above operators, the flowchart of ILA-CTD is shown in Fig. 3. The detailed

steps are as follows:

368 CMES, 2021, vol.128, no.1

Start

Determine p, q and T

Initial population

Calculate the fitness value of
each frog

Sort frogs by fitness value

Local search for each
group

Frogs converge and sort

Whether the
termination condition

are met ?

Group p frogs to q groups

Fill elite archives Out put the elite archives

End

Frogs sort and weed out
dominated solutions

Is the elite
archives full?

Figure 3: Flowchart of ILA-CTD

Step 1: Determine the population size p, number of group q, and termination condition T .

Step 2: Initialize population with the proposed method.

Step 3: Calculate the fitness value of each frog in the population.

Step 4: Sort frogs by fitness value.

Step 5: Group p frogs into q groups.

Step 6: Perform local search for each group (update the worst one in each group).

Step 7: Converge frogs in each group, and sort frogs by fitness value again.

Step 8: Whether termination condition is met? If yes, go to Step 9; else, go to Step 10.

Step 9: Are the elite archives full? If the elite archives are not full, then fill elite archives with
non-dominated solutions obtained in this generation; else, discard dominated solutions in the elite
archives and fill with non-dominated solutions. Then, go to Step 5.

Step 10: Out put the elite archives.

5 A Case Study

The allocation of processing 1,000 pieces of medical labeling machine bottom plates shown in
Fig. 4, was used as a case to demonstrate the feasibility of the proposed method. The performance
of the plate mainly depends on the dimensional accuracy Q1, position accuracy Q2 of the holes,

CMES, 2021, vol.128, no.1 369

and flatness Q3 of the plate. The specific accuracy requirements and delivery time constraint is
shown in Tab. 1; 10 available services shown in Tab. 2 were obtained after services selection.

Figure 4: Medical labeling machine bottom plate

Table 1: Requirement information table

Requirement N Tmax/D Q1 Q2 Q3

1000 3 0.8 0.8 0.7

Table 2: Services information table

S j Cmaj/(�/Pice) Cta j/(�/Pice) Tmaj(D/Pice) Tta j Qj1 Qj2 Qj3 Goj Gn j Co j M j

1 90 0.8 0.004 0.5 0.90 0.80 0.85 23 22 0.82 100
2 120 0.6 0.002 1.0 0.85 0.90 0.80 125 100 0.78 200
3 115 0.2 0.002 1.5 0.80 0.85 0.70 136 94 0.90 200
4 140 1.2 0.001 0.5 0.95 0.80 0.90 231 128 0.95 500
5 88 1.2 0.005 0.5 0.85 0.80 0.80 45 42 0.88 200
6 100 0.6 0.002 1.0 0.85 0.80 0.80 98 78 0.78 200
7 114 0.4 0.001 1.0 0.85 0.85 0.80 89 76 0.96 300
8 110 1.6 0.002 1.5 0.85 0.80 0.70 79 69 0.76 100
9 115 0.4 0.002 2.0 0.90 0.80 0.75 146 102 0.85 200
10 110 0.5 0.002 1.0 0.80 0.85 0.90 65 59 0.84 200

370 CMES, 2021, vol.128, no.1

A personalized solution is always required in actual application, and a comprehensive eval-
uation based on consumer preferences for targets is necessary. Therefore, the function shown in
Eq. (18) was adopted to normalize the attributes values.

•faij = fa
ij− f jamin

f jamax− f jamin
benefit− oriented

•faij = f jamin− fa
ij

f jamax− f jamin
cost− oriented

(18)

•f ija is the normalized value of f ija ; f
ij
a is the jth attribute value of the ith available service;

f jamax is the maximum of the jth attribute of available services; f jamin is the minimum of the jth

attribute of available services. In this case, Cmaj, Cta j, Qj1, Qj2, Qj3 and Coj were normalized
first to address their large data fluctuations (Tab. 3).

Table 3: Normalized service attributes

S j Cmaj/(�/Pice) Cta j/(�/Pice) Tmaj(D/Pice) Tta j Qj1 Qj2 Qj3 Goj Gn j Co j M j

1 0.9615 0.5714 0.004 0.5 0.6667 0 0.75 23 22 0.3 100
2 0.3846 0.7143 0.002 1.0 0.3333 1 0.5 125 100 0.1 200
3 0.4808 1 0.002 1.5 0 0.5 0 136 94 0.7 200
4 0 0.2857 0.001 0.5 1 0 1 231 128 0.95 500
5 1 0.2857 0.005 0.5 0.3333 0 0.5 45 42 0.6 200
6 0.7692 0.7143 0.002 1.0 0.3333 0 0.5 98 78 0.1 200
7 0.5 0.8571 0.001 1.0 0.3333 0.5 0.5 89 76 0.1 300
8 0.5769 0 0.002 1.5 0.3333 0 0 79 69 0 100
9 0.4808 0.8571 0.002 2.0 0.6667 0 0.25 146 102 0.85 200
10 0.5769 0.7857 0.002 1.0 0 0.5 1 65 59 0.84 200

Table 4: Example solutions of ILA-CTD

Si s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 Ci Ti Qi SIi Coi Gi

1 0 334 273 0 0 235 0 158 0 0 1.2111 2.046 0.9973 0.997 0.7809 0.9
2 298 0 281 0 0 0 0 0 0 421 1.4466 2.062 1.1942 1.194 0.8614 1.4
3 350 0 0 0 0 360 0 0 0 290 1.4658 2 1.2308 1.23 0.8845 0.8
4 341 486 0 0 0 0 0 0 173 0 1.1566 2 1.4318 1.432 0.8661 0.4
5 0 507 0 0 0 0 0 0 0 493 1.2289 2.014 1.669 1.669 0.8531 0.5
6 199 0 0 507 0 0 0 370 430 1.3874 2.74 1.2676 1.268 0.8401 1.35
7 0 634 0 0 0 0 0 0 0 366 1.1954 2.268 1.7113 1.711 0.8394 0.5
8 190 0 605 0 0 205 0 0 0 0 1.4913 2.71 0.7425 0.743 0.7631 1.1
9 245 489 0 0 0 0 0 0 0 266 1.2754 2 1.6426 1.643 0.867 0.8
10 0 612 0 0 603 0 0 0 0 388 1.2012 2.224 1.704 1.704 0.8418 0.5

Then, the experiment was conducted under the environment of Windows10 and MATLAB
2016a. The parameters of ILA-CTD were set as population size P = 100, elite archives = 100,

CMES, 2021, vol.128, no.1 371

number of groups q= 5, evolutionary generation T= 2,000, speed factors a= 0.1 and b= 10, and
diversity factor c= 0.4. The solution set obtained via ILA-CTD is shown in Tab. 4 and Fig. 5.

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

Number of solutions

F(i) Ti

Ci

Qi

SIi

Coi

Gi

Figure 5: Performances of solutions obtained through ILA-CTD

5.1 Feasibility Analysis

The number of non-dominated solutions in the elite archives of each generation (Eid shown
in Fig. 6) can reflect the dynamic process of the generated non-dominated solutions. As the
generations increase, Eia grows rapidly at first, and then fluctuates dynamically. This means that
better solutions have been found and filled into the elite archives with the increase of generations.

Figure 6: Non-dominated solutions in the elite archives of each generation

372 CMES, 2021, vol.128, no.1

The IGD (inverted generational distance) is a simple way to evaluate the convergence of the
algorithm based on the optimal solutions set. However, it is impossible for this problem. Because
the optimal solutions cannot be obtained at first. Therefore, a new measure was constructed to
evaluate the performance of the method proposed in this article. The model proposed in this work
is a six-targets problem, and it is difficult to directly display the Pareto frontier. If the algorithm
converges, then it means the Pareto frontier converges to a certain area. Thus, the average distance
between adjacent generations should become steady. Hence, the average distance between adjacent
generations (Da) was adopted to evaluate the convergence of the proposed method (Eq. (19)).

Da =
∑n

i=1
∑n1

j=1D
(
si∗, sj

)
/n1

n

D
(
s∗i, sj

)=
√√√√ k∑

s=1

(
f si − f sj

)2
(19)

D(s∗i , sj) is the distance between the ith solution in the kth generation and the jth solution
in the (k + 1)th generation; n1 and n is the number of non-dominated solutions in the elite
archives of the kth and the (k+ 1)th generation, respectively. The evolution process of Da along
generations is shown in Fig. 7.

Figure 7: Average distance between adjacent generations

As shown in Fig. 7, Da rises sharply at first, then falls, and finally stabilizes, which is
consistent with the process predicted by the algorithm. The phenomenon results because of three
reasons: (1) The non-dominated solutions with different search directions increase dramatically
as the generations increase, (2) the optimal search direction is determined progressively and the
non-dominated solutions tend to the definite search direction; so, Da decrease, and (3) the Pareto
frontier is found, Da becomes steady, which validates that the proposed method converges.

5.2 Performance Comparison
To assess the performance of the method proposed in this work, the results obtained via

ILA-CTD were compared with MOEA/D-PSO, MOEA/D-GA [11], and NSGA-� under the
same conditions. The solutions set obtained via ILA-CTD, MOEA/D-PSO, MOEA/D-GA and

CMES, 2021, vol.128, no.1 373

NSGA-� are shown in Tabs. 5–7, respectively, and their performances are shown in Figs. 8–10,
respectively.

Table 5: Example solutions of MOEA/D-POS

S j s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 Ci Ti Qi SIi Coi Gi

1 464 0 300 0 0 0 236 0 0 0 1.4758 2.356 1.122 1.122 0.8527 2
2 453 0 0 0 340 0 0 207 0 0 1.251 2.312 0.9941 0.994 0.9314 0.9
3 404 232 0 0 363 0 0 0 0 0 1.341 2.315 1.3 1.298 0.9108 1
4 421 0 0 0 0 305 0 0 274 0 1.4644 2.548 1.1018 1.102 0.8369 0.85
5 0 0 0 0 567 224 209 0 0 0 1.345 3.335 0.9378 0.9378 0.886 1.7
6 0 0 247 0 502 251 0 0 0 0 1.3835 3.01 0.751 0.751 0.839 1.4
7 369 0 221 0 410 0 0 0 0 0 1.4201 2.55 0.9749 0.975 0.8884 1.6
8 500 0 0 0 500 0 0 0 0 0 1.4093 3 1.125 1.125 0.9449 0.9
9 447 0 0 0 318 0 235 0 0 0 1.413 2.228 1.2116 1.211 0.925 1.9
10 254 0 0 501 245 0 0 0 0 0 0.8475 2 1.566 1.566 0.7492 1.85

Table 6: Example solutions of MOEA/D-GA

S j s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 Ci Ti Qi SIi Coi Gi

1 274 0 0 0 385 0 0 0 341 0 1.3713 2.682 1.0216 1.0216 0.8597 1.35
2 525 0 0 0 475 0 0 0 0 0 1.4155 2.875 1.1396 1.1396 0.9455 0.9
3 0 0 0 573 427 0 0 0 0 0 0.7127 2.635 1.5018 1.5018 0.716 1.55
4 357 0 0 0 367 0 276 0 0 0 1.3937 2.335 1.1796 1.1796 0.9197 1.9
5 0 0 0 0 600 224 176 0 0 0 1.3426 3.5 0.9213 0.9213 0.8886 1.7
6 0 328 0 0 428 0 0 244 0 0 1.0515 2.64 1.0393 1.0393 0.875 0.7
7 475 287 0 0 238 0 0 0 0 0 1.3495 2.4 1.3974 1.3974 0.8884 1.6
8 0 0 0 0 488 0 0 522 0 0 0.9286 2.94 0.58 0.5865 0.9114 0.6
9 392 0 0 0 318 0 280 0 0 0 1.3898 2.09 1.1937 1.1817 0.9109 1.9
10 453 0 0 547 0 0 0 0 0 0 0.8507 2.312 1.7358 1.736 0.7364 1.25

Table 7: Example solutions of NSGA-�

S j s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 Ci Ti Qi SIi Coi Gi

1 215 0 238 0 245 0 302 0 0 0 1.4069 2 1.0304 1.03 0.8567 2.6
2 264 0 0 0 580 0 0 0 156 0 1.3591 3.4 0.9914 0.994 0.9314 0.9
3 378 0 0 446 0 176 0 0 0 0 1.341 2.012 1.3 1.300 0.9028 1.35
4 145 287 0 0 0 363 0 0 205 0 1.3505 2.41 1.222 1.222 0.8 0.95
5 236 0 0 0 412 0 352 0 0 0 1.3692 2.56 1.1470 1.147 0.9109 1.9
6 0 342 0 0 500 158 0 0 0 0 1.2531 3 1.1753 1.175 0.866 0.8
7 0 0 261 0 380 369 0 0 0 0 1.4225 2.4 0.7547 0.762 0.8288 1.4
8 500 0 0 0 345 155 0 0 0 0 1.44 2.5 1.125 1.125 0.9236 1
9 221 250 0 0 529 0 0 0 0 0 1.2937 3.145 1.2123 1.212 0.9051 1
10 254 0 0 0 471 0 0 275 0 0 1.1536 2.855 0.844 0.844 0.9227 0.9

374 CMES, 2021, vol.128, no.1

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5

Number of solutions

Ti

Ci

SIi

Coi

Gi

Qi

F(i)

Figure 8: Performances of solutions obtained through MOEA/D-PSO

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5

Number of solutions

Ti

Ci

Qi

SIi

Coi

Gi

F(i)

Figure 9: Performances of solutions obtained through MOEA/D-GA

Because MOEA/D-PSO, MOEA/D-GA, and NSGA-� are methods that have been proven to
be feasible in previous studies, they can be used as comparisons to evaluate the performance of
ILA-CTD. Two indicators were constructed investigate the relative performance of the proposed
method.

1) Proportion of non-dominated solutions in mixed Pareto set ta

Selecting m solutions from each Pareto set that was finally obtained via MOEA/D-PSO,
MOEA/D-GA, NSGA-�, and ILA-CTD, respectively, and dominance relationships shown in
Eq. (20) for the selected 4 m solutions were judged.

ta = D (ma)

PD

PD = 4m

(20)

CMES, 2021, vol.128, no.1 375

D(ma) is the number of non-dominated solutions obtained through method a (a ∈ MOEA/D-
PSO, MOEA/D-GA, NSGA-�, ILA-CTD), and PD is total number of solutions in the mixed
Pareto set. The comparison results are shown in Fig. 11 (m = 10).

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5

Number of solutions

Coi

Gi

Ti

Ci

Qi

SIi

F(i)

Figure 10: Performances of solutions obtained through NSGA-�

ILA-CTD NSGA-Π MOEA/D-PSO MOEA/D-GA

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

ta
0.5

Figure 11: Performance of ILA-CTD in each generation

As the generations increased, more and more non-dominated solutions in PD were obtained
via ILA-CTD. From the perspective of the number of non-dominated solutions in PD under
the same conditions (T = 2000 and m = 10), ILA-CTD performed best, followed by
NSGA-�, MOEA/D-PSO, and MOEA/D-GA.

2) Proportion of feasible solutions Pf
In practical applications, the obtained solutions must be feasible. Most evolutionary algo-

rithms deal with infeasible solutions through a penalty function. The feasibility of all final

376 CMES, 2021, vol.128, no.1

solutions cannot be guaranteed if the penalty function is unreasonable; therefore, Pf can express
the reliability and practicability of a method. The Pf of ILA-CTD, NSGA-�, MOEA/D-PSO,
and MOEA/D-GA is shown in Fig. 12.

ILA-CTD NSGA-Π MOEA/D-PSO MOEA/D-GA
0

0.2

0.4

0.6

0.8

1Pf

Figure 12: Pf of each method

From the perspective of Pf in the final output solutions, ILA-CTD performed best, followed
by MOEA/D-PSO, NSGA-�, and MOEA/D-GA. It can be concluded that ILA-CTD is more
practical compared with the other methods.

6 Conclusions

As one of the research hotspots of CMfg, more and more studies are being undertaken
on services selection and their combination especially the combination of heterogeneous services.
However, the works related to homogeneous cloud services combinations are relatively few. After
reviewing the existing works and noting certain limitations, a homogeneous cloud task distribution
model was proposed, and an improved leapfrog algorithm for cloud task distribution (ILA-CTD)
was designed to solve the model. The contributions of the paper are summarized as follows:

1) Compared to heterogeneous task distribution, there is relatively little research on homoge-
neous cloud tasks. A strategy of dealing with homogeneous tasks in the cloud environment was
presented to bridge this gap.

2) A specific model was proposed to describe homogeneous cloud task distribution more
precisely compared with alternative methods. An improved leapfrog algorithm was designed, which
was proven to be more suitable for solving the proposed model.

3) The distribution of real manufacturing tasks of medical labeling machine bottom plates
was presented as a case. It was shown that the proposed method provided a combination of
factories with a high degree of quality similarity and high informationization under the constraints
of factory capacity, task duration, and cost.

To promote the implementation of CMfg platforms with higher agility, future works should
focus on the development of efficient demand-service matching algorithm. Personalized ser-
vice customization should also be studied, because personalized demands from consumers are
increasing.

CMES, 2021, vol.128, no.1 377

Funding Statement: The research was financially supported by the National Science and Technol-
ogy Major Project of China (No. 2019ZX04007001), the Science and Technology Major Project
of Sichuan Province (No. 2020ZDZX0022).

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding
the present study.

References
1. Zhang, Y., Liu, J., Peng, Y., Dong, Y., Zhao, C. (2020). Performance analysis of intelligent CR-NOMA

model for industrial IoT communications. Computer Modeling in Engineering & Sciences, 125(1), 239–257.
DOI 10.32604/cmes.2020.010778.

2. Xu, S., Chen, J., Wu, M., Zhao, C. (2021). E-commerce supply chain process optimization based on
whole-process sharing of internet of things identification technology. Computer Modeling in Engineering &
Sciences, 126(2), 843–854. DOI 10.32604/cmes.2021.014265.

3. Giret, A., Garcia, E., Botti, V. (2016). An engineering framework for service-oriented intelligent manufac-
turing systems. Computers in Industry, 81, 116–127. DOI 10.1016/j.compind.2016.02.002.

4. Nirmal Kumar, S. J., Ravimaran, S., Alam, M. M. (2020). An effective non-commutative encryption
approach with optimized genetic algorithm for ensuring data protection in cloud computing. Computer
Modeling in Engineering & Sciences, 125(2), 671–697. DOI 10.32604/cmes.2020.09361.

5. Gong, Y., Guo, G. (2019). A data-intensive FLAC3D computation model: Application of geospatial big
data to predict mining induced subsidence. ComputerModeling in Engineering & Sciences, 119(2), 395–408.
DOI 10.32604/cmes.2019.03686.

6. Li, B. H., Zhang, L., Wang, S. L., Tao, F., Cao, J. W. et al. (2010). Cloud manufacturing: A new service
oriented networked manufacturing model. Computer Integrated Manufacturing Systems, 16, 1–7. DOI
10.13196/j.cims.2010.01.3.libh.004.

7. Li, B. H., Zhang, L., Ren, L., Chai, X. D., Tao, F. et al. (2011). Further discussion on cloud manufacturing.
Computer Integrated Manufacturing Systems, 17, 451–457. DOI 10.13196/j.cims.2011.03.3.libh.004.

8. Argoneto, P., Renna, P. (2016). Supporting capacity sharing in the cloud manufacturing environ-
ment based on game theory and fuzzy logic. Enterprise Information Systems, 10(2), 193–210. DOI
10.1080/17517575.2014.928950.

9. Correa, J. E., Toro, R., Ferreira, P.M. (2018). A new paradigm for organizing networks of computer numer-
ical control manufacturing resources in cloud manufacturing. Procedia Manufacturing, 26(2), 1318–1329.
DOI 10.1016/j.promfg.2018.07.132.

10. Ren, L., Zhang, L., Wang, L., Tao, F., Chai, X. (2017). Cloud manufacturing: Key characteristics
and applications. International Journal of Computer Integrated Manufacturing, 6(6), 501–515. DOI
10.1080/0951192X.2014.902105.

11. Wu, Y., Jia, G., Cheng, Y. (2019). Cloud manufacturing service composition and optimal selection with
sustainability considerations: A multi-objective integer bi-level multi-follower programming approach.
International Journal of Production Research, 58(19), 6024–6042. DOI 10.1080/00207543.2019.1665203.

12. Maheswari, S., Karpagam, G. R. (2018). Performance evaluation of semantic based service selection
methods. Computers & Electrical Engineering, 71(5), 966–977. DOI 10.1016/j.compeleceng.2017.10.006.

13. Eisa, M., Younas, M., Basu, K., Awan, I. (2020). Modelling and simulation of QoS-aware ser-
vice selection in cloud computing. Simulation Modelling Practice and Theory, 103, 102108. DOI
10.1016/j.simpat.2020.102108.

14. Chen, Z., Ming, X. (2020). A rough-fuzzy approach integrating best-worst method and data envelopment
analysis to multi-criteria selection of smart product service module. Applied Soft Computing, 94, 106479.
DOI 10.1016/j.asoc.2020.106479.

15. Li, F., Liao, T.W., Zhang, L. (2019). Two-level multi-task scheduling in a cloud manufacturing environment.
Robotics and Computer-IntegratedManufacturing, 56, 127–139. DOI 10.1016/j.rcim.2018.09.002.

http://dx.doi.org/10.32604/cmes.2020.010778
http://dx.doi.org/10.32604/cmes.2021.014265
http://dx.doi.org/10.1016/j.compind.2016.02.002
http://dx.doi.org/10.32604/cmes.2020.09361
http://dx.doi.org/10.32604/cmes.2019.03686
http://dx.doi.org/10.13196/j.cims.2010.01.3.libh.004
http://dx.doi.org/10.13196/j.cims.2011.03.3.libh.004
http://dx.doi.org/10.1080/17517575.2014.928950
http://dx.doi.org/10.1016/j.promfg.2018.07.132
http://dx.doi.org/10.1080/0951192X.2014.902105
http://dx.doi.org/10.1080/00207543.2019.1665203
http://dx.doi.org/10.1016/j.compeleceng.2017.10.006
http://dx.doi.org/10.1016/j.simpat.2020.102108
http://dx.doi.org/10.1016/j.asoc.2020.106479
http://dx.doi.org/10.1016/j.rcim.2018.09.002

378 CMES, 2021, vol.128, no.1

16. Chen, Y., Niu, Y. F., Li, J., Zuo, L. D., Wang, L. (2019). Task distribution optimization for multi-supplier
collaborative production in cloud manufacturing. Computer Integrated Manufacturing Systems, 25, 1806–
1816. DOI 10.13196/j.cims.2019.07.021.

17. Liu, J., Chen, Y. (2019). A personalized clustering-based and reliable trust-aware QoS prediction approach
for cloud service recommendation in cloud manufacturing. Knowledge-Based Systems, 174(1–4), 43–56.
DOI 10.1016/j.knosys.2019.02.032.

18. Eisa, M., Younas, M., Basu, K., Awan, I. (2020). Modelling and simulation of QoS—Aware ser-
vice selection in cloud computing. Simulation Modelling Practice and Theory, 103, 102–108. DOI
10.1016/j.simpat.2020.102108.

19. Zhao, L., Tan, W., Xie, N., Huang, L. (2020). An optimal service selection approach for service-oriented
business collaboration using crowd-based cooperative computing.Applied Soft Computing, 92, 106270.DOI
10.1016/j.asoc.2020.106270.

20. Hussain, A., Chun, J., Khan, M. (2020). A novel customer-centric methodology for optimal service
selection (MOSS) in a cloud environment. Future Generation Computer Systems, 105, 562–580. DOI
10.1016/j.future.2019.12.024.

21. Bouzary, H., Chen, F. F. (2020). A classification-based approach for integrated service matching and
composition in cloud manufacturing. Robotics and Computer-Integrated Manufacturing, 66, 106989. DOI
10.1016/j.rcim.2020.101989.

22. Poordavoodi, A., Goudarzi, M. R. M., Javadi, H. H. S., Rahmani, A. M., Izadikhah, M. (2020). Toward a
more accurateweb service selection usingmodifiedintervalDEAmodels with undesirable outputs.Computer
Modeling in Engineering & Sciences, 123(2), 525–570. DOI 10.32604/cmes.2020.08854.

23. Devi, R., Shanmugalakshmi, R. (2020). Cloud providers ranking and selection using quantitative and
qualitative approach. Computer Communications, 154, 370–379. DOI 10.1016/j.comcom.2020.02.028.

24. Gad-Elrab, A. A., Noaman, A. Y. (2020). A two-tier bipartite graph task allocation approach based on
fuzzy clustering in cloud-fog environment. Future Generation Computer Systems, 103(11), 79–90. DOI
10.1016/j.future.2019.10.003.

25. Gigliotta, O. (2018). Equal but different: Task allocation in homogeneous communicating robots. Neuro-
computing, 272(3), 3–9. DOI 10.1016/j.neucom.2017.05.093.

26. Sharma, V., Bala, M. (2020). An improved task allocation strategy in cloud using modified k-means
clustering technique. Egyptian Informatics Journal, 21(4), 201–208. DOI 10.1016/j.eij.2020.02.001.

27. Moussa,M., ElMaraghy,H. (2020). A genetic algorithm-basedmodel for product platformdesign for hybrid
manufacturing. Procedia CIRP, 93, 389–394. DOI 10.1016/j.procir.2020.04.044.

28. Jiang, H., Yi, J., Chen, S., Zhu, X. (2016). A multi-objective algorithm for task scheduling and
resource allocation in cloud-based disassembly. Journal of Manufacturing Systems, 41(4), 239–255. DOI
10.1016/j.jmsy.2016.09.008.

29. Jatoth, C., Gangadharan, G. R., Fiore, U. (2019). Optimal fitness aware cloud service composition using
modified invasive weed optimization. Swarm and Evolutionary Computations, 44(4), 1073–1091. DOI
10.1016/j.swevo.2018.11.001.

30. Zhou, J., Gao, L., Yao, X., Zhang, C., Chan, F. T. et al. (2019). Evolutionary algorithms for many-
objective cloud service composition: Performance assessments and comparisons. Swarm and Evolutionary
Computation, 51, 100605. DOI 10.1016/j.swevo.2019.100605.

31. Somasundaram, T. S., Govindarajan, K. (2014). CLOUDRB: A framework for scheduling and managing
high-performance computing (HPC) applications in science cloud. Future Generation Computer Systems,
34(3), 47–65. DOI 10.1016/j.future.2013.12.024.

32. Guo, Y., Tian, X., Fang, G., Xu, Y. (2020). Many-objective optimization with improved shuffled frog
leaping algorithm for inter-basin water transfers. Advances in Water Resources, 138, 103531. DOI
10.1016/j.advwatres.2020.103531.

http://dx.doi.org/10.13196/j.cims.2019.07.021
http://dx.doi.org/10.1016/j.knosys.2019.02.032
http://dx.doi.org/10.1016/j.simpat.2020.102108
http://dx.doi.org/10.1016/j.asoc.2020.106270
http://dx.doi.org/10.1016/j.future.2019.12.024
http://dx.doi.org/10.1016/j.rcim.2020.101989
http://dx.doi.org/10.32604/cmes.2020.08854
http://dx.doi.org/10.1016/j.comcom.2020.02.028
http://dx.doi.org/10.1016/j.future.2019.10.003
http://dx.doi.org/10.1016/j.neucom.2017.05.093
http://dx.doi.org/10.1016/j.eij.2020.02.001
http://dx.doi.org/10.1016/j.procir.2020.04.044
http://dx.doi.org/10.1016/j.jmsy.2016.09.008
http://dx.doi.org/10.1016/j.swevo.2018.11.001
http://dx.doi.org/10.1016/j.swevo.2019.100605
http://dx.doi.org/10.1016/j.future.2013.12.024
http://dx.doi.org/10.1016/j.advwatres.2020.103531

CMES, 2021, vol.128, no.1 379

33. Shampine, L. F. (2009). Stability of the leapfrog/midpoint method. Applied Mathematics and Computation,
208, 293–298. DOI 10.1016/j.amc.2008.11.029.

34. Manimegalai-Sridhar, U., Govindarajan, A., Rhinehart, R. R. (2014). Improved initialization of
players in leapfrogging optimization. Computers & Chemical Engineering, 60(2), 426–429. DOI
10.1016/j.compchemeng.2013.08.009.

http://dx.doi.org/10.1016/j.amc.2008.11.029
http://dx.doi.org/10.1016/j.compchemeng.2013.08.009

